請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82279完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 郭茂坤(Mao-Kuen Kuo) | |
| dc.contributor.author | Chun-Wei Lin | en |
| dc.contributor.author | 林俊瑋 | zh_TW |
| dc.date.accessioned | 2022-11-25T06:34:53Z | - |
| dc.date.copyright | 2021-11-03 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-10-04 | |
| dc.identifier.citation | [1] X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,” J. Am. Chem. Soc. 128(6), 2115-2120, 2006. [2] A. Micsonai, F. Wien, L. Kernya, Y. H. Lee, Y. Goto, M. Refregiers, and J. Kardos, “Accurate secondary structure prediction and fold recognition for circular dichroism spectroscopy,” Proc. Natl. Acad. Sci. USA 112(24), E3095-3103, 2015. [3] S. Y. Park, A. K. Lytton-Jean, B. Lee, S. Weigand, G. C. Schatz, and C. A. Mirkin, “DNA-programmable nanoparticle crystallization,” Nature 451(7178), 553-556, 2008. [4] S.-J. Park, T. A. Taton, and C. A. Mirkin, “Array-based electrical detection of DNA with nanoparticle probes,” Science 295(5559), 1503-1506, 2002. [5] M. Sarikaya, C. Tamerler, A. K.-Y. Jen, K. Schulten, and F. Baneyx, “Molecular biomimetics: nanotechnology through biology,” Nat. Mater. 2(9), 577-585, 2003. [6] S. Iijima, “Helical microtubules of graphitic carbon,” Nature 354(6348), 56-58, 1991. [7] E. T. Thostenson, Z. Ren, T.-W. Chou, and Technology, “Advances in the science and technology of carbon nanotubes and their composites: a review,” Compos. Sci. Technol. 61(13), 1899-912, 2001. [8] B. Liedberg, C. Nylander, and I. Lunström, “Surface plasmon resonance for gas detection and biosensing,” Sens. Actuator A Phys. 4, 299-304, 1983. [9] H. Xu, E. J. Bjerneld, M. Käll, and L. Börjesson, “Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering,” Phys. Rev. Lett. 83(21), 4357, 1999. [10] S. K. Ghosh, and T. Pal, “Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: from theory to applications,” Chem. Rev. 107(11), 4797-862, 2007. [11] E. Hutter, and J. H. Fendler, “Exploitation of localized surface plasmon resonance,” Adv. Mater. 16(19), 1685-706, 2004. [12] K. M. Mayer, and J. H. Hafner, “Localized surface plasmon resonance sensors,” Chem. Rev. 111(6), 3828-57, 2011. [13] A. Ashkin, “Trapping of atoms by resonance radiation pressure.” Phys. Rev. Lett. 40(12), 73, 1978. [14] Y. He, K. Lawrence, W. Ingram, and Y. Zhao, “Circular dichroism based refractive index sensing using chiral metamaterials,” Chem. Commun. 52(10), 2047-2050, 2016 [15] G. Klös, M. Miola, and D. S. Sutherland, “Increased refractive index sensitivity by circular dichroism sensing through reduced substrate effect,” J. Phys. Chem. C 123(12), 7347-7355, 2019. [16] T. Liu, L. V. Besteiro, T. Liedl, M. A. Correa-Duarte, Z. Wang, A. O. Govorov, “Chiral Plasmonic Nanocrystals for Generation of Hot Electrons: Toward Polarization-Sensitive Photochemistry,” Nano Lett. 19(2), 1395−1407, 2019. [17] E. Zauderer, “Complex argument Hermite–Gaussian and Laguerre–Gaussian beams,” J. Opt. Soc. Am. B 3(4), 465-469, 1986. [18] K. Volke-Sepulveda, V. Garcés-Chávez, S. Chávez-Cerda, J. Arlt, and K. Dholakia, “Orbital angular momentum of a high-order Bessel light beam,” J. Opt. 4(2), S82, 2002. [19] Z. Shen, Z. Hu, G. Yuan, C. Min, H. Fang, and X. C. Yuan, “Visualizing orbital angular momentum of plasmonic vortices,” Opt. Lett. 37(22), 4627-4629, 2012. [20] E. Karimi, S. A. Schulz, I. De Leon, H. Qassim, J. Upham, R. W. Boyd, and Applications, “Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface,” Light Sci. Appl. 3, e167, 2014. [21] W. Y. Tsai, J. S. Huang, and C. B. Huang, “Selective trapping or rotation of isotropic dielectric microparticles by optical near field in a plasmonic archimedes spiral,” Nano Lett. 14(2), 547-552, 2014. [22] A. Wu, Y. Y. Tanaka, R. Fukuhara, T. Shimura, “Continuity equation for spin angular momentum in relation to optical chirality,” Phys. Rev. A 102, 023531, 2020. [23] R. W. Wood, “On a remarkable case of uneven distribution of light in a diffraction grating spectrum,” Philos. Mag. (abingdon) 4(21), 396-402, 1902. [24] U. Fano, “The theory of anomalous diffraction gratings and of quasi-stationary waves on metallic surfaces (Sommerfeld’s waves),” J. Opt. Soc. Am. A 31(3), 213-222, 1941. [25] R. H. Ritchie, “Plasma losses by fast electrons in thin films,” Phys. Rev. 106(5), 874, 1957. [26] A. Ashkin, J. M. Dziedzic, J. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11(5), 288-290, 1986. [27] A. Grigorenko, N. Roberts, M. Dickinson, and Y. Zhang, “Nanometric optical tweezers based on nanostructured substrates,” Nature Photon. 2(6), 365-370, 2008. [28] K. Y. Chen, A. T. Lee, C. C. Hung, J. S. Huang, Y. T. Yang, “Transport and trapping in two-dimensional nanoscale plasmonic optical lattice,” Nano Lett. 13(9), 4118-4122, 2013. [29] G. Volpe and G. Volpe, “Simulation of a Brownian particle in an optical trap,” Am. J. Phys. 81, 224–230, 2013. [30] D. Spadaro, M. A. Iatì, J. Pérez-Piñeiro, C. Vázquez-Vázquez, M. A. Correa-Duarte, M. G. Donato, P. G. Gucciardi, R. Saija, G. Strangi, O. M. Maragò, “Optical Trapping of Plasmonic Mesocapsules: Enhanced Optical Forces and SERS, ” J. Phys. Chem. C 121, 691−700, 2017. [31] Z. Xu, W. Song, K. B. Crozier, “Direct particle tracking observation and Brownian dynamics simulations of a single nanoparticle optically trapped by a plasmonic nanoaperture”, ACS Photonics 5, 2850-2859, 2018. [32] D. M. Lipkin, “Existence of a New Conservation Law in Electromagnetic Theory,” J. Math. Phys. 5, 696, 1964. [33] Y. Tang, A. E. Cohen, “Optical Chirality and Its Interaction with Matter,” Phys. Rev. Lett. 104, 163901, 2010. [34] M. Schäferling, D. Dregely, M. Hentschel, H. Giessen, “Tailoring Enhanced Optical Chirality: Design Principles for Chiral Plasmonic Nanostructures,” Phys. Rev. X 2, 031010, 2012. [35] L. V. Poulikakos, P. Gutsche, M. Hammerschmidt, S. Burger, and F. Schmidt, “Optical Chirality Flux as a Useful Far-Field Probe of Chiral Near Fields,” ACS Photonics 3(9), 1619-1625, 2016. [36] U. Levy, and Y. Silberberg, “Weakly diverging to tightly focused Gaussian beams: a single set of analytic expressions,” J. Opt. Soc. Am. A 33(10), 1999-2009, 2016. [37] K. Y. Bliokh, A. Y. Bekshaev, F. Nori, “Extraordinary momentum and spin in evanescent waves,” Nat. Commun. 5, 3300, 2014. [38] 劉宇嘉(2020)。金奈米陣列對聚苯乙烯珠之光力捕捉及金奈米桿二聚體之光誘導自組裝(碩士論文)。國立臺灣大學,臺北市。 [39] 羅佳芸(2020)。受圓偏振光照射之金奈米結構所產生的軌道角動量(碩士論文)。國立臺灣大學,臺北市。 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82279 | - |
| dc.description.abstract | 本論文分為兩部分:第一部分為研究在布朗運動的熱擾動下,金奈米聚體對聚苯乙烯珠所產生的光力捕捉行為。第二部分為探討Lipkin’s zilch張量與能量-動量張量之關係。 第一部分為研究在布朗運動的熱擾動下,金奈米聚體受高斯光束照射對聚苯乙烯珠所產生的光力捕捉行為,其光力流線場顯示捕捉行為大致可分為兩種:向光側的非接觸模態(noncontact mode)與背光側的接觸模態(contact mode)。於向光側的非接觸模態,單組金球奈米二聚體部分,藉由粒子運動方程式可顯示出光力靜滯點附近之布朗運動擾動情形,可運用能量均分定理(equipartition theorem),僅需透過光力場即可預估出布朗運動的擾動範圍,適用於簡易判斷靜滯點的光力捕捉能力。進一步,探討一維三聚體陣列,透過較大腰寬之高斯光束抓取,發現向光側非接觸模態隨著結構移動,靜滯點跳躍(step-liked motion)的行為更加明顯,且可透過布朗運動的預估範圍,進而看出此現象是由靜滯點之強弱變化所導致;背光側接觸模態則僅有在接近奈米結構處才有辦法進行抓取,其餘皆會排開,需以小腰寬來進行抓取。 至於Lipkin’s zilch張量與能量-動量張量之關係,首先討論通量部分,以圓偏振光照射奈米結構,比較能量通量(energy flux)即Poynting向量所定義之圓二色性(circular dichroism): 與手徵通量(chirality flux)所定義之圓二色性: 之關聯,結果顯示二者之頻譜分布具有相似性,並發現奈米結構表面之能量通量或手徵通量的面積分值越大時,該奈米結構可產生熱電子的機率也越高。關於3x3應力張量部分,由Maxwell應力張量可得出作用於奈米結構之總光力矩,另由zilch應力張量也可得到自旋角動量轉換力矩,兩力矩之差值可定義為軌道角動量轉換力矩,另外分析近場之軌道動量(orbital momentum)流線,顯示當軌道角動量轉換力矩越大時,結構近場的軌道動量流線呈螺旋纏繞現象越加明顯,意即軌道角動量(orbital angular momentum)越強,顯示兩者有相關。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-25T06:34:53Z (GMT). No. of bitstreams: 1 U0001-3009202114402200.pdf: 8223447 bytes, checksum: 984f6a560df31f4f8fc847291359dc19 (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | 口試委員會審定書 i 致謝 ii 摘要 iii Abstract iv 目錄 vi 圖目錄 vii 第1章 緒論 1 1.1 前言 1 1.2 動機與目的 2 1.3 文獻回顧 3 第2章 電磁理論與數值方法 11 2.1 高斯光束 11 2.2 Maxwell 應力張量 13 2.3 粒子運動方程式 14 2.4 能量均分定理 15 2.5 熱電子產生之機率 15 2.6 Lipkin’s zilch張量與能量-動量張量 16 第3章 數值模擬結果分析與討論 19 3.1 在布朗運動影響下金奈米球結構對聚苯乙烯珠光力抓取行為 19 3.1.1 單組金奈米球多聚體 22 3.1.2 一維金奈米球三聚體陣列 37 3.2 金奈米結構近場之Lipkin’s zilch張量與能量-動量張量物理量 50 3.2.1 手徵通量與能量通量左右旋光照射差異 51 3.2.2 近場軌道角動量與zilch張量及Maxwell應力張量之關係 56 第4章 結論與未來展望 77 4.1 結論 77 4.2 未來展望 79 參考文獻 80 | |
| dc.language.iso | zh-TW | |
| dc.subject | 高斯光束 | zh_TW |
| dc.subject | 光力 | zh_TW |
| dc.subject | 軌道角動量 | zh_TW |
| dc.subject | 手徵性 | zh_TW |
| dc.subject | zilch張量 | zh_TW |
| dc.subject | 圓二色性 | zh_TW |
| dc.subject | 能量均分定理 | zh_TW |
| dc.subject | 布朗運動 | zh_TW |
| dc.subject | 光力矩 | zh_TW |
| dc.subject | 非接觸模態 | zh_TW |
| dc.subject | 接觸模態 | zh_TW |
| dc.subject | optical force | en |
| dc.subject | Gaussian beam | en |
| dc.subject | contact mode | en |
| dc.subject | noncontact mode | en |
| dc.subject | Brownian motion | en |
| dc.subject | equipartition theorem | en |
| dc.subject | circular dichroism | en |
| dc.subject | chirality | en |
| dc.subject | optical torque | en |
| dc.subject | orbital angular momentum | en |
| dc.subject | zilch tensor | en |
| dc.title | 金奈米聚體的光力捕捉之研究及Zilch張量與能量-動量張量之比較 | zh_TW |
| dc.title | Study of Optical Trapping of Gold Nanoclusters and Comparison of Zilch Tensor with Energy-Momentum Tensor | en |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 廖駿偉(Hsin-Tsai Liu),張書維(Chih-Yang Tseng) | |
| dc.subject.keyword | 光力,高斯光束,接觸模態,非接觸模態,布朗運動,能量均分定理,圓二色性,手徵性,光力矩,軌道角動量,zilch張量, | zh_TW |
| dc.subject.keyword | optical force,Gaussian beam,contact mode,noncontact mode,Brownian motion,equipartition theorem,circular dichroism,chirality,optical torque,orbital angular momentum,zilch tensor, | en |
| dc.relation.page | 84 | |
| dc.identifier.doi | 10.6342/NTU202103470 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2021-10-05 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 應用力學研究所 | zh_TW |
| dc.date.embargo-lift | 2026-10-01 | - |
| 顯示於系所單位: | 應用力學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-3009202114402200.pdf 未授權公開取用 | 8.03 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
