請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82254完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 江茂雄(Mao-Hsiung Chiang) | |
| dc.contributor.author | Ching Lin | en |
| dc.contributor.author | 林靖 | zh_TW |
| dc.date.accessioned | 2022-11-25T06:34:26Z | - |
| dc.date.copyright | 2021-11-01 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-10-22 | |
| dc.identifier.citation | Ackermann, T. and L. Söder, Wind energy technology and current status: a review. Renewable and sustainable energy reviews, 2000. 4(4): p. 315-374. Menezes, E.J.N., A.M. Araújo, and N.S.B. da Silva, A review on wind turbine control and its associated methods. Journal of cleaner production, 2018. 174: p. 945-953. Stol, K.A., Dynamics modeling and periodic control of horizontal-axis wind turbines. 2001, University of Colorado Boulder, CO. Delarue, P., et al., Modelling, control and simulation of an overall wind energy conversion system. Renewable Energy, 2003. 28(8): p. 1169-1185. Jones, R. and G. Smith. High quality mains power from variable-speed wind turbines. in International Conference on Renewable Energy-Clean Power 2001, 1993. 1993. IET. Freeman, J. and M. Balas. An investigation of variable speed horizontal-axis wind turbines using direct model-reference adaptive control. in Proc. 18th ASME Wind Energy Symp. 1999. Bashetty, S. and S. Ozcelik. Effect of Pitch Control on the Performance of an Offshore Floating Multi-Wind-Turbine Platform. in Journal of Physics: Conference Series. 2021. IOP Publishing. Mahfouz, M.Y., et al., Response of the IEA Wind 15 MW–WindCrete and Activefloat floating wind turbines to wind and second-order waves. Wind Energy Science Discussions, 2021: p. 1-24. Liu, J., et al., Integrated system design for a large wind turbine supported on a moored semi-submersible platform. Journal of Marine Science and Engineering, 2018. 6(1): p. 9. Liu, Y., et al., Developments in semi-submersible floating foundations supporting wind turbines: A comprehensive review. Renewable and Sustainable Energy Reviews, 2016. 60: p. 433-449. Thys, M., et al., EXPERIMENTAL INVESTIGATION OF THE COUPLING BETWEEN AERO- AND HYDRODYNAMICAL LOADS ON A 12 MW SEMI-SUBMERSIBLE FLOATING WIND TURBINE, in ASME 2021 40th International Conference on Ocean, Offshore and Arctic Engineering. 2021. Gonçalves, R.T., et al., Experimental study on vortex-induced motions of a semi-submersible platform with four square columns, Part II: Effects of surface waves, external damping and draft condition. Ocean engineering, 2013. 62: p. 10-24. Johlas, H.M., et al., Floating platform effects on power generation in spar and semisubmersible wind turbines. Wind Energy, 2021. Souza, C.E.S.d., et al., CALIBRATION OF A TIME-DOMAIN HYDRODYNAMIC MODEL FOR A 12 MW SEMI-SUBMERSIBLE FLOATING WIND TURBINE, in ASME 2021 40th International Conference on Ocean, Offshore Arctic Engineering. 2021: Virtual, Online. Joao Cruz, M.A., Floating offshore wind energy: The next generation of wind energy. 2016. Toshiki, C. and H. Ken, CONCEPT STUDY FOR THE FLOATER TYPE SELECTION ON FLOATING OFFSHORE WIND TURBINES, in ASME 2021 40th International Conference on Ocean, Offshore and Arctic Engineering. 2021. Saeed Karimian Aliabadi, S.R., Effect of Platform Surge Motion on the Performance of 5MW NREL Offshore Floating Wind Turbine. October 21, 2019. 石原孟, 福島復興浮體式洋上Wind-Farm實證研究事業. Zhang, J., M. Cheng, and Z. Chen. Design of wind turbine controller by using wind turbine codes. in 2008 International Conference on Electrical Machines and Systems. 2008. IEEE. 张建忠 and 程明, 基于非线性控制的永磁风力发电机最大风能跟踪. 电网技术, 2010(6): p. 181-185. D. Matha; F. Beyer. Offshore Wind Turbine Hydrodynamics Modeling in SIMPACK. 2013. Jassmann, U., et al. Model predictive control of a wind turbine modelled in Simpack. in Journal of Physics: Conference Series. 2014. IOP Publishing. Rulka, W., SIMPACK—A computer program for simulation of large-motion multibody systems, in Multibody systems handbook. 1990, Springer. p. 265-284. Moriarty, P.J. and A.C. Hansen, AeroDyn theory manual. 2005, National Renewable Energy Lab., Golden, CO (US). Jonkman, J.M., et al., AeroDyn v15 user’s guide and theory manual. NREL Draft Report, 2015. Lee, C. and J. Newman, Wamit–user manual version 7.0. WAMIT Inc, Chestnut Hill, Massachusetts, 2013. Jonkman, J.M., A. Robertson, and G.J. Hayman, HydroDyn user’s guide and theory manual. National Renewable Energy Laboratory, 2014. Jonkman, B.J. and M.L. Buhl Jr, TurbSim user's guide. 2006, National Renewable Energy Lab.(NREL), Golden, CO (United States). Masciola, M., MAP++ Documentation. 2015. Bortolotti, P., et al., IEA Wind TCP Task 37: Systems engineering in wind energy-WP2. 1 Reference wind turbines. 2019, National Renewable Energy Lab.(NREL), Golden, CO (United States). Bak, C., et al. The DTU 10-MW reference wind turbine. in Danish Wind Power Research 2013. 2013. GL, L.B.D., Qualification of innovative floating substructures for 10MW wind turbines and water depths greater than 50m. 2015. Chen, L. Functionality investigation and expansion of 5kW wind turbine yaw and vibration sensors. 2017. Bergey, K.H., The Lanchester-Betz limit (energy conversion efficiency factor for windmills). Journal of Energy, 1979. 3(6): p. 382-384. Chien, C.-C. and Y.-Y. Kuo, A Study on the Nonlinearity of Nearshore Water Waves. Coastal Engineering in Japan, 1994. 37(1): p. 1-21. Krause, P.C., et al., Analysis of electric machinery and drive systems. Vol. 2. 2002: Wiley Online Library. Boldea, I., Synchronous generators. 2015: CRC press. Rolan, A., et al. Modeling of a variable speed wind turbine with a permanent magnet synchronous generator. in 2009 IEEE international symposium on industrial electronics. 2009. IEEE. Kim, Y.-S., I.-Y. Chung, and S.-I. Moon, An analysis of variable-speed wind turbine power-control methods with fluctuating wind speed. Energies, 2013. 6(7): p. 3323-3338. Yang, S.-Y., Y.-K. Wu, and H.-J. Lin, New application of predictive direct torque control in permanent magnet synchronous generator-based wind turbine. Journal of Renewable and Sustainable Energy, 2015. 7(2): p. 023108. 林廷晏., 以FAST+SIMPACK+MATLAB實現5MW浮動半潛式離岸風力發電機動態分析之研究. 2021. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82254 | - |
| dc.description.abstract | 本研究以浮動式風力發電機結合LIFES50+ OO-Star Wind Floater Semi 10MW半潛式浮台、IEA 10MW葉片和直驅式永磁同步發電機,透過MATLAB/ Simulink和Simpack的軟體整合,進行浮動式風力發電機建模、風機控制器建立以及風機全機模擬。Simpack進行風力發電機浮台、塔柱、機艙、葉片的建模以及模擬海底深度的設定,藉由空氣動力計算程式AeroDyn、水動力計算軟體HydroDyn、繫纜錨碇分析軟體MAP++進行同步模擬。浮台水動力係數以WAMIT進行分析,再輸入到HydroDyn進行風機模擬。MATLAB/Simulink中發展風力發電機控制器、永磁同步發電機(Direct-Drive Permanent Magnet Synchronous Generator)建模、液壓葉片旋角系統、以及MATLAB/Simulink同步模擬模塊SIMAT。控制器發展包含轉子轉速控制器、葉片旋角控制器、磁場導向控制及電網側變流器控制。控制策略共分為三個部分,分別為追蹤最佳葉尖速比區、額定轉速區以及功率恆定區,目標在不損壞風力發電機組的情況下,擷取最大的風能。根據上述控制策略進行動態模擬分析,驗證風力發電機在不同區間的穩定性,以及不同區域轉換下控制器的表現。針對同樣錨點不同繫纜長度的情況下進行模擬,比較浮台的位移、繫纜內部的繩張力的差異,對風力發電機的影響進行分析探討。最後以1%及3%的紊流風速的風況進行模擬,驗證本研究的風機控制系統在紊流下的性能。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-25T06:34:26Z (GMT). No. of bitstreams: 1 U0001-2010202116173300.pdf: 4679303 bytes, checksum: 17d2b8678a8438ba219b9351438c380a (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | 致謝 i 摘要 ii Abstract iii 目錄 iv 圖目錄 vii 表目錄 ix 符號說明 x 第1章 緒論 1 1-1 前言 1 1-2 文獻回顧 2 1-2-1 浮動式風力發電機回顧 2 1-2-2 風機模擬軟體回顧 3 1-3 研究動機 4 1-4 本文架構 5 第2章 模擬軟體架構及介紹 7 2-1 浮動式風力發電機模擬架構介紹 7 2-2 多體運動學模擬軟體Simpack 9 2-3 氣動力分析模擬軟體AeroDyn 10 2-4 水動力頻域分析軟體WAMIT 10 2-5 水動力時域分析軟體HydroDyn 11 2-6 風況產生軟體IECWind與TurbSim 11 2-7 錨碇系統軟體MAP++ 12 第3章 浮動式風力發電機之運動模型 13 3-1 風力發電機運動模型架構 14 3-2 塔架模型建立 15 3-3 風機葉片模型建立 17 3-4 浮台模型建立 18 3-5 錨碇系統模型建立 20 第4章 風力發電機系統之數學模型 22 4-1 風能轉換數學推導 22 4-2 波浪數學推導 24 4-3 發電機系統架構 26 4-3-1 直驅式永磁同步發電機 27 4-3-2 磁場導向控制 29 4-3-3 電網側轉換器控制 31 4-4 葉片液壓變旋角系統 33 4-4-1 閥控液壓葉片變旋角系統數學模型 34 第5章 控制理論與策略 39 5-1 線性轉速功率追蹤控制器 39 5-2 風力發電機控制策略 40 第6章 模擬結果與討論 41 6-1 全機組動態模擬 43 6-1-1 追蹤最佳尖速比區及額定轉速區模擬 43 6-1-2 全區域風機模擬 48 6-2 不同葉尖速比對風力發電機表現之分析 54 6-3 繫纜長度對於浮動式風機浮台表現影響之比較 59 6-4 紊流對風力發電機性能之比較 65 6-4-1 紊流強度1%之模擬 65 6-4-2 紊流強度3%之模擬 69 6-4-3 紊流強度1%與3%模擬之討論 73 第7章 結論與未來展望 74 7-1 結論 74 7-2 未來展望 75 參考文獻 76 | |
| dc.language.iso | zh-TW | |
| dc.subject | 直驅式風力發電機 | zh_TW |
| dc.subject | 發電機變轉速控制 | zh_TW |
| dc.subject | 台灣海峽環境 | zh_TW |
| dc.subject | 繫纜錨碇系統 | zh_TW |
| dc.subject | 液壓控制系統 | zh_TW |
| dc.subject | 發電機變轉速控制系統 | zh_TW |
| dc.subject | 葉片變旋角控制系統 | zh_TW |
| dc.subject | 永磁同步發電機 | zh_TW |
| dc.subject | 浮動半潛式 | zh_TW |
| dc.subject | variable-pitch control system | en |
| dc.subject | mooring system | en |
| dc.subject | variable-generator control system | en |
| dc.subject | semi-submersible | en |
| dc.subject | floating direct-driving wind turbine | en |
| dc.subject | permanent-magnet synchronous generator | en |
| dc.subject | hydraulic servo valve control | en |
| dc.subject | Taiwan strait environment | en |
| dc.title | 10MW浮動半潛式離岸直驅式風力發電機於台灣海峽環境之全機組動態分析及控制之研究 | zh_TW |
| dc.title | Dynamic Simulation and Control of 10MW Semi-submersible Floating Direct-Driving Offshore Wind Turbine Under Taiwan Strait Environment | en |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳宗傑(Hsin-Tsai Liu),張恆華(Chih-Yang Tseng) | |
| dc.subject.keyword | 浮動半潛式,直驅式風力發電機,永磁同步發電機,葉片變旋角控制系統,發電機變轉速控制系統,液壓控制系統,繫纜錨碇系統,台灣海峽環境,發電機變轉速控制, | zh_TW |
| dc.subject.keyword | semi-submersible,floating direct-driving wind turbine,permanent-magnet synchronous generator,variable-pitch control system,hydraulic servo valve control,variable-generator control system,mooring system,Taiwan strait environment, | en |
| dc.relation.page | 78 | |
| dc.identifier.doi | 10.6342/NTU202103935 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2021-10-25 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 工程科學及海洋工程學研究所 | zh_TW |
| dc.date.embargo-lift | 2025-10-20 | - |
| 顯示於系所單位: | 工程科學及海洋工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2010202116173300.pdf 未授權公開取用 | 4.57 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
