請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82250完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 姜昱至(Yu-Chih Chiang) | |
| dc.contributor.author | Szu-Ying Ho | en |
| dc.contributor.author | 何思穎 | zh_TW |
| dc.date.accessioned | 2022-11-25T06:34:21Z | - |
| dc.date.copyright | 2021-11-11 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-10-25 | |
| dc.identifier.citation | 1. Albuquerque M, Pegoraro M, Mattei G, Reis A, Loguercio A. 2008. Effect of double-application or the application of a hydrophobic layer for improved efficacy of one-step self-etch systems in enamel and dentin. Operative Dentistry, Inc. 2. Alhenaki AM, Attar EA, Alshahrani A, Farooq I, Vohra F, Abduljabbar TJP. 2021. Dentin bond integrity of filled and unfilled resin adhesive enhanced with silica nanoparticles—an sem, edx, micro-raman, ftir and micro-tensile bond strength study. 13(7):1093. 3. Amaral FL, Colucci V, PALMA‐DIBB RG, Corona SAJJoE, Dentistry R. 2007. Assessment of in vitro methods used to promote adhesive interface degradation: A critical review. 19(6):340-353. 4. Armstrong S, Breschi L, Özcan M, Pfefferkorn F, Ferrari M, Van Meerbeek BJDM. 2017. Academy of dental materials guidance on in vitro testing of dental composite bonding effectiveness to dentin/enamel using micro-tensile bond strength (μtbs) approach. 33(2):133-143. 5. Asaka Y, Amano S, Rikuta A, Kurokawa H, Miyazaki M, Platt JA, Moore BKJOd. 2007. Influence of thermal cycling on dentin bond strengths of single-step self-etch adhesive systems. 32(1):73-78. 6. Asmussen E, Munksgaard EJIdj. 1988. Bonding of restorative resins to dentine: Status of dentine adhesives and impact on cavity design and filling techniques. 38(2):97-104. 7. Barkmeier WW, Erickson RL, Latta MAJDM. 2009. Fatigue limits of enamel bonds with moist and dry techniques. 25(12):1527-1531. 8. Belli R, Sartori N, Dalmagro Peruchi L, Coutinho Guimarães J, Cardoso Vieira LC, Narciso Baratieri L, Monteiro Jr SJJoAD. 2011. Effect of multiple coats of ultra-mild all-in-one adhesives on bond strength to dentin covered with two different smear layer thicknesses. 13(6):507. 9. Buonocore MGJJodr. 1955. A simple method of increasing the adhesion of acrylic filling materials to enamel surfaces. 34(6):849-853. 10. Chiang Y-C, Lin H-P, Chang H-H, Cheng Y-W, Tang H-Y, Yen W-C, Lin P-Y, Chang K-W, Lin C-PJAn. 2014. A mesoporous silica biomaterial for dental biomimetic crystallization. 8(12):12502-12513. 11. Chiang Y-C, Rösch P, Dabanoglu A, Lin C-P, Hickel R, Kunzelmann K-HJDM. 2010. Polymerization composite shrinkage evaluation with 3d deformation analysis from μct images. 26(3):223-231. 12. Chowdhury A, Saikaew P, Alam A, Sun J, Carvalho RM, Sano HJJAD. 2019. Effects of double application of contemporary self-etch adhesives on their bonding performance to dentin with clinically relevant smear layers. 21:59-66. 13. Cuevas-Suarez CE, de Oliveira da Rosa WL, Lund RG, da Silva AF, Piva EJJoAD. 2019. Bonding performance of universal adhesives: An updated systematic review and meta-analysis. 21(1). 14. de Camargo DAA, Sinhoreti MAC, Correr-Sobrinho L, de Sousa Neto MD, Consani SJCoi. 2006. Influence of the methodology and evaluation criteria on determining microleakage in dentin–restorative interfaces. 10(4):317-323. 15. De Munck J, Vargas M, Iracki J, Van Landuyt K, Poitevin A, Lambrechts P, Van Meerbeek BJOd. 2005a. One-day bonding effectiveness of new self-etch adhesives to bur-cut enamel and dentin. 30(1):39-49. 16. De Munck Jd, Van Landuyt K, Peumans M, Poitevin A, Lambrechts P, Braem M, Van Meerbeek BJJodr. 2005b. A critical review of the durability of adhesion to tooth tissue: Methods and results. 84(2):118-132. 17. Eden E, Topaloglu-Ak V, Cuijpers V, Frencken JEJAjod. 2008. Micro-ct for measuring marginal leakage of class ii resin composite restorations in primary molars prepared in vivo. 21(6):393. 18. Eliades G, Eliades T, Watts DC. 2005. Dental hard tissues and bonding. Springer. 19. Erhardt M, Osorio R, Pisani-Proenca J, Aguilera F, Osorio E, Breschi L, Toledano MJOd. 2009. Effect of double layering and prolonged application time on mtbs of water/ethanol-based self-etch adhesives to dentin. 34(5):571-577. 20. Ermis RB, Ugurlu M, Ahmed MH, Van Meerbeek BJJAD. 2019. Universal adhesives benefit from an extra hydrophobic adhesive layer when light cured beforehand. 21(2):179-188. 21. Fujiwara S, Takamizawa T, Barkmeier WW, Tsujimoto A, Imai A, Watanabe H, Erickson RL, Latta MA, Nakatsuka T, Miyazaki MJJotmbobm. 2018. Effect of double-layer application on bond quality of adhesive systems. 77:501-509. 22. Fusayama TJDtlocd, resin uaa. 1980. New concepts in operative dentistry.61-156. 23. Gale M, Darvell BJJod. 1999. Thermal cycling procedures for laboratory testing of dental restorations. 27(2):89-99. 24. Huang Y-H, Wang Y-L, Lin P-Y, Lai Y-J, Cheng C-W, Chiang Y-CJJotFMA. 2020. Dentists' performance in dentin-composite resin bonding before and after hands-on course learning. 119(1):260-267. 25. Ito S, Hashimoto M, Wadgaonkar B, Svizero N, Carvalho RM, Yiu C, Rueggeberg FA, Foulger S, Saito T, Nishitani YJB. 2005a. Effects of resin hydrophilicity on water sorption and changes in modulus of elasticity. 26(33):6449-6459. 26. Ito S, Tay FR, Hashimoto M, Yoshiyama M, Saito T, Brackett WW, Waller JL, Pashley DHJJoAD. 2005b. Effects of multiple coatings of two all-in-one adhesives on dentin bonding. 7(2). 27. Kasraei S, Atai M, Khamverdi Z, Nejad SKJFiD. 2009. The effect of nanofiller addition to an experimental dentin adhesive on microtensile bond strength to human dentin.36-41. 28. Kinney J, Balooch M, Haupt Jr D, Marshall S, Marshall Jr GJJodr. 1995. Mineral distribution and dimensional changes in human dentin during demineralization. 74(5):1179-1184. 29. Malacarne J, Carvalho RM, Mario F, Svizero N, Pashley DH, Tay FR, Yiu CK, de Oliveira Carrilho MRJDm. 2006. Water sorption/solubility of dental adhesive resins. 22(10):973-980. 30. Meerbeek BV, Yoshihara K, Van Landuyt K, Yoshida Y, Peumans MJJoAD. 2020. From buonocore's pioneering acid-etch technique to self-adhering restoratives. A status perspective of rapidly advancing dental adhesive technology. 22(1). 31. Michailesco P, Marciano J, Grieve A, Abadie MJTJopd. 1995. An in vivo recording of variations in oral temperature during meals: A pilot study. 73(2):214-218. 32. Mitra SB, Lee C-Y, Bui HT, Tantbirojn D, Rusin RPJDM. 2009. Long-term adhesion and mechanism of bonding of a paste-liquid resin-modified glass-ionomer. 25(4):459-466. 33. Miyazaki M, Tsujimoto A, Tsubota K, Takamizawa T, Kurokawa H, Platt JAJJoos. 2014. Important compositional characteristics in the clinical use of adhesive systems. 56(1):1-9. 34. Moritake N, Takamizawa T, Ishii R, Tsujimoto A, Barkmeier WW, Latta MA, Miyazaki MJOd. 2019. Effect of active application on bond durability of universal adhesives. 44(2):188-199. 35. Morresi AL, D'Amario M, Capogreco M, Gatto R, Marzo G, D'Arcangelo C, Monaco AJJotmbobm. 2014. Thermal cycling for restorative materials: Does a standardized protocol exist in laboratory testing? A literature review. 29:295-308. 36. Moszner N, Salz U, Zimmermann JJDM. 2005. Chemical aspects of self-etching enamel–dentin adhesives: A systematic review. 21(10):895-910. 37. Nakabayashi N, Kojima K, Masuhara EJJobmr. 1982. The promotion of adhesion by the infiltration of monomers into tooth substrates. 16(3):265-273. 38. Nakaoki Y, Sasakawa W, Horiuchi S, Nagano F, Ikeda T, Tanaka T, Inoue S, Uno S, Sano H, Sidhu SKJJod. 2005. Effect of double-application of all-in-one adhesives on dentin bonding. 33(9):765-772. 39. Oi T, Saka H, Ide YJIEJ. 2004. Three‐dimensional observation of pulp cavities in the maxillary first premolar tooth using micro‐ct. 37(1):46-51. 40. Pashley DH, Tay FR, Breschi L, Tjäderhane L, Carvalho RM, Carrilho M, Tezvergil-Mutluay AJDm. 2011. State of the art etch-and-rinse adhesives. 27(1):1-16. 41. Perdigao J, Denehy GE, Swift Jr EJJQI. 1994. Silica contamination of etched dentin and enamel surfaces: A scanning electron microscopic and bond strength study. 25(5):327-333. 42. Perdigao J, May Jr K, Wilder Jr A, Lopes MJOD. 2000. The effect of depth of dentin demineralization on bond strengths and morphology of the hybrid layer. 25(3):186-194. 43. Peters OA, Laib A, Rüegsegger P, Barbakow FJJodr. 2000. Three-dimensional analysis of root canal geometry by high-resolution computed tomography. 79(6):1405-1409. 44. Peters OA, Schönenberger K, Laib AJIej. 2001. Effects of four ni–ti preparation techniques on root canal geometry assessed by micro computed tomography. 34(3):221-230. 45. Peumans M, De Munck J, Van Landuyt K, Van Meerbeek BJDM. 2015. Thirteen-year randomized controlled clinical trial of a two-step self-etch adhesive in non-carious cervical lesions. 31(3):308-314. 46. Reis A, Albuquerque M, Pegoraro M, Mattei G, de Oliveira Bauer JR, Grande RHM, Klein-Junior CA, Baumhardt-Neto R, Loguercio ADJjod. 2008. Can the durability of one-step self-etch adhesives be improved by double application or by an extra layer of hydrophobic resin? 36(5):309-315. 47. Retief D, Denys FJAjoD. 1989. Adhesion to enamel and dentin. 2:133-144. 48. Sai K, Shimamura Y, Takamizawa T, Tsujimoto A, Imai A, Endo H, Barkmeier WW, Latta MA, Miyazaki MJJod. 2016. Influence of degradation conditions on dentin bonding durability of three universal adhesives. 54:56-61. 49. Schoeman L, Williams P, du Plessis A, Manley MJTiFS, Technology. 2016. X-ray micro-computed tomography (μct) for non-destructive characterisation of food microstructure. 47:10-24. 50. Senawongse P, Sattabanasuk V, Shimada Y, Otsuki M, Tagami JJJoE, Dentistry R. 2004. Bond strengths of current adhesive systems on intact and ground enamel. 16(2):107-116. 51. Taschner M, Kümmerling M, Lohbauer U, Breschi L, Petschelt A, Frankenberger RJOd. 2014. Effect of double-layer application on dentin bond durability of one-step self-etch adhesives. 39(4):416-426. 52. Tay F, Pashley DH, Yoshiyama MJJodr. 2002a. Two modes of nanoleakage expression in single-step adhesives. 81(7):472-476. 53. Tay FR, King NM, Chan K-m, Pashley DHJJoAD. 2002b. How can nanoleakage occur in self-etching adhesive systems that demineralize and infiltrate simultaneously? 4(4). 54. Tay FR, Pashley DH, Suh BI, Carvalho RM, Itthagarun AJJod. 2002c. Single-step adhesives are permeable membranes. 30(7-8):371-382. 55. Tsujimoto A, Barkmeier W, Takamizawa T, Wilwerding T, Latta M, Miyazaki MJOd. 2017. Interfacial characteristics and bond durability of universal adhesive to various substrates. 42(2):E59-E70. 56. Van Landuyt KL, Mine A, De Munck J, Jaecques S, Peumans M, Lambrechts P, Van Meerbeek BJJoAD. 2009. Are one-step adhesives easier to use and better performing? Multifactorial assessment of contemporary one-step self-etching adhesives. 11(3). 57. Van Meerbeek B, Yoshihara K, Yoshida Y, Mine A, De Munck J, Van Landuyt KJDm. 2011. State of the art of self-etch adhesives. 27(1):17-28. 58. Wang Y, Spencer PJJodr. 2003. Hybridization efficiency of the adhesive/dentin interface with wet bonding. 82(2):141-145. 59. Wang Y, Spencer PJJoDR. 2005. Continuing etching of an all-in-one adhesive in wet dentin tubules. 84(4):350-354. 60. Yiu CK, Pashley EL, Hiraishi N, King NM, Goracci C, Ferrari M, Carvalho RM, Pashley DH, Tay FRJB. 2005. Solvent and water retention in dental adhesive blends after evaporation. 26(34):6863-6872. 61. Yokoyama M, Takamizawa T, Tamura T, et al. Influence of Different Application Methods on the Bonding Effectiveness of Universal Adhesives to Dentin in the Early Phase[J]. The Journal of Adhesive Dentistry, 2021, 23(5): 447-459. 62. Yoshioka M, Yoshida Y, Inoue S, Lambrechts P, Vanherle G, Nomura Y, Okazaki M, Shintani H, Van Meerbeek BJJoBMRAOJoTSfB, Biomaterials TJSf. 2002. Adhesion/decalcification mechanisms of acid interactions with human hard tissues. 59(1):56-62. 63. Zhao X, Li S, Gu L, Li YJOd. 2014. Detection of marginal leakage of class v restorations in vitro by micro–computed tomography. 39(2):174-180. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82250 | - |
| dc.description.abstract | "使用複合樹脂修復缺損的牙齒結構是當前牙科治療最常見的項目之一,如何讓牙齒和復形物得到良好的結合,牙科黏著劑在兩者之間扮演了相當重要的角色。目前,牙科牙本質黏著系統依照塗抹層處理方式,可以分為兩大類: 全酸蝕系統與自酸蝕系統,其中,自酸蝕系統具有降低牙本質被過度酸蝕破壞、減少全酸蝕複雜的步驟及防止治療後敏感等優點,是故廣受歡迎,然而其也存有許多缺點,如:黏著強度不高、長期穩定性較低、容易有水解性破壞及微滲漏(隙縫)的發生、產品化學成分穩定性不易維持等等。為了彌補自酸蝕黏著劑的缺陷,便有學者提出使用多層塗抹的方式來增強黏著強度,但是仍然缺乏這些做法的長期試驗與一致性的研究結論。 因此,本次研究目的為探討自酸蝕牙本質黏著劑於不同操作方式(一層塗抹1-coat、兩層塗抹2-coat、兩倍時間塗抹2-time)、加諸不同次數(0、1,000、10,000次)之冷熱循環老化後,其剪切黏著強度是否有所差異,並且藉由奈米級電腦斷層掃描(nano CT)將同一黏著樣品老化前後影像之重合比較,對牙本質-黏著劑-複合樹脂介面變化進行質化與量化分析。 本研究使用2種廠牌且不同pH值之自酸蝕黏著劑:Single bond universal (SBU, 3M Oral Care; Neuss, Germany)和G Premio bond (GPR, GC; Tokyo, Japan),依前述不同方法進行操作,實驗設計分為兩大部分:第一部分為觀察各種操作方式下自酸蝕黏著劑對牙本質表面的處理差異,檢視牙本質表面之pH值變化、SEM影像與EDS分析。第二部分為測試各項操作方法與不同冷熱循環次數處理後之剪切黏著強度,以SEM觀察牙本質-黏著劑-複合樹脂介面影像,並使用奈米級電腦斷層掃描對樣品進行老化處理前後之非破壞分析。 結果顯示不同pH值自酸蝕黏著劑以各種方式操作後,牙本質表面pH值與酸蝕程度會有所不同,但是EDS分析則沒有顯著的Ca/P 比例變化,對於特定廠牌之自酸蝕黏著劑(GPR)使用不同操作方式會對剪切黏著強度有顯著性差異產生(兩層塗抹之強度顯著低於兩倍時間,p<0.05),SEM和奈米電腦斷層掃描影像均可見明顯孔隙和裂縫生成,老化測試後各種操作方式之黏著強度不僅顯著降低,尤其以兩層塗抹組別其孔隙變化最為明顯,且其黏著強度也是最低(p<0.05),反觀另一廠牌(SBU)則不易受到操作方式不同而有所差異(p>0.05),但是不同次數之冷熱循環也會對其黏著強度產生統計上的顯著影響。 綜合以上研究結果可知,如果期望使用兩層塗抹、加倍塗抹時間等不同操作方法來增強黏著效果,對SBU來說各種操作方法間並不具有統計上顯著差異;若是對GPR而言,並不建議塗抹兩層的方式處理黏著牙本質,其兩層塗抹的操作方式不管是短時間或長時間老化後都會產生最差的鍵結效果。兩層塗抹的方法不僅失去了當初自酸蝕黏著劑因簡化步驟所產生的便利性優勢,在長時間老化後所測得之鍵結強度平均值還較一層操作方式低。最後,奈米等級電腦斷層掃描對牙本質-黏著劑-複合樹脂介面進行的質化與量化分析,也能夠支持前述研究結果,藉由這項非破壞性的技術,不但有利於觀察相同樣本經歷老化處理後的全面性變化,也可以避免因樣本不同而產生的個體差異。" | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-25T06:34:21Z (GMT). No. of bitstreams: 1 U0001-2110202112252500.pdf: 7331042 bytes, checksum: cadf21dfda43605cc8dcd48334d36ac2 (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | 目錄 中文摘要 i ABSTRACT iii 目錄 vi 圖目錄 ix 表目錄 x 第一章 緒論 1 1.1 牙科黏著劑之發展 1 1.1.1 牙釉質黏著 1 1.1.2 牙本質黏著. 2 1.2 自酸蝕黏著劑之黏著強度影響因素文獻回顧 5 1.3 自酸蝕黏著劑不同操作方法之文獻回顧 7 1.3.1 兩次塗抹double-layer/ multilayer 7 1.3.2 兩層塗抹double-coat (2-coat). 9 1.3.3 兩倍時間塗抹double-time/double-application (2-time) 10 1.4 老化試驗 10 1.5 黏著介面之影像分析與觀察 11 第二章 實驗動機與目的 15 第三章 實驗材料與方法 16 3.1 自酸蝕黏著劑處理牙本質之酸鹼值與牙本質表面酸蝕分析 16 3.1.1 酸鹼值測試 16 3.1.2 牙本質表面酸蝕之觀察分析 19 3.2 黏著劑剪切黏著強度測試 21 3.2.1 測試樣品製備與分組 21 3.2.2 剪切黏著強度(SBS)測試 21 3.2.3 掃描式電子顯微鏡(SEM)觀察 22 3.3 牙本質-黏著劑-複合樹脂之黏著介面影像分析 23 3.3.1 掃描式電子顯微鏡(SEM)觀察 23 3.3.2 奈米級X光電腦斷層掃描(nano CT)分析 24 3.4 統計分析 27 第四章 實驗結果 28 4.1 黏著劑酸鹼值與牙本質表面酸蝕觀察分析 28 4.1.1 酸鹼值 28 4.1.2 牙本質表面酸蝕之觀察分析 28 4.1.2.1 掃描式電子顯微鏡(SEM) 28 4.1.2.2 能量散射X射線(EDS)分析 29 4.2 黏著劑剪切黏著強度測試與測試後斷裂介面影像 29 4.2.1 剪切黏著強度測試 29 4.2.2 掃描式電子顯微鏡(SEM)斷裂介面觀察 30 4.3 牙本質-黏著劑-複合樹脂之黏著介面影像分析 30 4.3.1 掃描式電子顯微鏡(SEM)黏著介面橫切面觀察 30 4.3.2 奈米級X光電腦斷層掃描(nano CT)分析 31 4.3.2.1 影像比較 31 4.3.2.2 VOI平均孔隙體積比率(volume fraction of porosity) 32 第五章 討論 33 5.1 不同廠牌黏著劑之差異探討 33 5.1.1 自酸蝕黏著劑pH值 33 5.1.2 自酸蝕黏著劑之成分 34 5.2 不同操作方式之影響探討 36 5.3 冷熱循環次數之影響 37 5.4 奈米級X光電腦斷層掃描(nano CT)分析 39 第六章 結論 44 第七章 未來研究方向 46 參考資料 47 圖目錄 圖4-1 51 圖4-2 51 圖4-3 52 圖4-4 52 圖4-5 53 圖4-6 53 圖4-7 54 圖4-8 55 圖4-9 56 圖4-10 57 圖4-11 58 圖4-12 59 圖4-13 60 圖4-14 61 圖4-15 62 圖4-16 63 表目錄 表4-1 不同處理方式之牙本質試片表面Ca/P ratio 64 表4-2 SBU與GPR於不同操作方式及冷熱循環次數之剪切黏著強度(SBS) 64 表4-3 理想鍵結強度比例QBS rate 65 表4-4 不同處理方式之牙本質試片表面Ca/P ratio 66 | |
| dc.language.iso | zh-TW | |
| dc.subject | 兩倍時間塗抹 | zh_TW |
| dc.subject | 剪切黏著強度 | zh_TW |
| dc.subject | 非破壞性分析 | zh_TW |
| dc.subject | 奈米級電腦斷層掃描 | zh_TW |
| dc.subject | 冷熱循環老化測試 | zh_TW |
| dc.subject | 兩層塗抹 | zh_TW |
| dc.subject | 自酸蝕牙科黏著劑 | zh_TW |
| dc.subject | thermal cycling aging test | en |
| dc.subject | shear bond strength | en |
| dc.subject | Nondestructive analysis | en |
| dc.subject | nano CT | en |
| dc.subject | self-etch adhesive | en |
| dc.subject | double-coat application | en |
| dc.subject | double-time application | en |
| dc.title | 自酸蝕牙科黏著劑經老化測試之奈米級斷層掃描非破壞性分析與剪切黏著強度檢測 | zh_TW |
| dc.title | Nondestructive Analysis on Dentin-adhesive-composite Interface by Nano-computed Tomography and Shear Bond Strength Evaluation of Self-etch Adhesives after Aging Tests | en |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 李伯訓(Hsin-Tsai Liu),林弘萍(Chih-Yang Tseng) | |
| dc.subject.keyword | 自酸蝕牙科黏著劑,兩層塗抹,兩倍時間塗抹,冷熱循環老化測試,奈米級電腦斷層掃描,非破壞性分析,剪切黏著強度, | zh_TW |
| dc.subject.keyword | self-etch adhesive,double-coat application,double-time application,thermal cycling aging test,nano CT,Nondestructive analysis,shear bond strength, | en |
| dc.relation.page | 66 | |
| dc.identifier.doi | 10.6342/NTU202103963 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2021-10-25 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 臨床牙醫學研究所 | zh_TW |
| dc.date.embargo-lift | 2024-12-31 | - |
| 顯示於系所單位: | 臨床牙醫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2110202112252500.pdf 未授權公開取用 | 7.16 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
