請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82245完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳沛隆(Pei-Lung Chen) | |
| dc.contributor.author | Yu-Tsung Lai | en |
| dc.contributor.author | 賴昱璁 | zh_TW |
| dc.date.accessioned | 2022-11-25T06:34:16Z | - |
| dc.date.copyright | 2021-11-03 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-10-26 | |
| dc.identifier.citation | 1. Wieczorek, M., et al., Major histocompatibility complex (MHC) class I and MHC class II proteins: conformational plasticity in antigen presentation. 2017. 8: p. 292. 2. Janeway Jr, C.A., et al., The major histocompatibility complex and its functions, in Immunobiology: The Immune System in Health and Disease. 5th edition. 2001, Garland Science. 3. Shankarkumar, U.J.I.J.o.H.G., The human leukocyte antigen (HLA) system. 2004. 4(2): p. 91-103. 4. Hewitt, E.W.J.I., The MHC class I antigen presentation pathway: strategies for viral immune evasion. 2003. 110(2): p. 163-169. 5. Hanna, S., A.J.J.o.A. Etzioni, and C. Immunology, MHC class I and II deficiencies. 2014. 134(2): p. 269-275. 6. Debnath, M., et al., Variation in the major histocompatibility complex [MHC] gene family in schizophrenia: associations and functional implications. 2013. 42: p. 49-62. 7. Reith, W., S. LeibundGut-Landmann, and J.-M.J.N.R.I. Waldburger, Regulation of MHC class II gene expression by the class II transactivator. 2005. 5(10): p. 793-806. 8. Nikolich-Žugich, J., et al., The role of mhc polymorphism in anti-microbial resistance. 2004. 6(5): p. 501-512. 9. Matzaraki, V., et al., The MHC locus and genetic susceptibility to autoimmune and infectious diseases. 2017. 18(1): p. 1-21. 10. Shiina, T., et al., The HLA genomic loci map: expression, interaction, diversity and disease. 2009. 54(1): p. 15-39. 11. Sorrentino, R., R.A. Böckmann, and M.T.J.M.I. Fiorillo, HLA-B27 and antigen presentation: at the crossroads between immune defense and autoimmunity. 2014. 57(1): p. 22-27. 12. Barcellos, L.F., et al., Heterogeneity at the HLA-DRB1 locus and risk for multiple sclerosis. 2006. 15(18): p. 2813-2824. 13. Chen, P.-L., et al., Genetic determinants of antithyroid drug-induced agranulocytosis by human leukocyte antigen genotyping and genome-wide association study. 2015. 6(1): p. 1-8. 14. Chen, P.-L., et al., Comprehensive genotyping in two homogeneous Graves' disease samples reveals major and novel HLA association alleles. 2011. 6(1): p. e16635. 15. Luescher, I.F., et al., CD8 modulation of T-cell antigen receptor–ligand interactions on living cytotoxic T lymphocytes. 1995. 373(6512): p. 353-356. 16. Kern, P.S., et al., Structural basis of CD8 coreceptor function revealed by crystallographic analysis of a murine CD8αα ectodomain fragment in complex with H-2Kb. 1998. 9(4): p. 519-530. 17. Artyomov, M.N., et al., CD4 and CD8 binding to MHC molecules primarily acts to enhance Lck delivery. 2010. 107(39): p. 16916-16921. 18. Wooldridge, L., et al., Interaction between the CD8 coreceptor and major histocompatibility complex class I stabilizes T cell receptor-antigen complexes at the cell surface. 2005. 280(30): p. 27491-27501. 19. Holler, P.D. and D.M.J.I. Kranz, Quantitative analysis of the contribution of TCR/pepMHC affinity and CD8 to T cell activation. 2003. 18(2): p. 255-264. 20. Li, Y. and R.J.F.i.i. Mariuzza, Structural and biophysical insights into the role of CD4 and CD8 in T cell activation. 2013. 4: p. 206. 21. Huang, B., et al., Analysis of the contact sites on the CD4 molecule with class II MHC molecule: co-ligand versus co-receptor function. 1997. 158(1): p. 216-225. 22. Bowers, K., et al., CD4: a co-receptor in the immune response and HIV infection. 1997. 29(6): p. 871-875. 23. Leahy, D.J.J.T.F.j., A structural view of CD4 and CD8. 1995. 9(1): p. 17-25. 24. Foti, M., et al., p56Lck anchors CD4 to distinct microdomains on microvilli. 2002. 99(4): p. 2008-2013. 25. Pelchen-Matthews, A., et al., The protein tyrosine kinase p56lck inhibits CD4 endocytosis by preventing entry of CD4 into coated pits. 1992. 117(2): p. 279-290. 26. Sweet, R.W., A. Truneh, and W.A.J.C.o.i.b. Hendrickson, CD4: its structure, role in immune function and AIDS pathogenesis, and potential as a pharmacological target. 1991. 2(4): p. 622-633. 27. Doyle, C. and J.L.J.N. Strominger, Interaction between CD4 and class II MHC molecules mediates cell adhesion. 1987. 330(6145): p. 256-259. 28. Li, Q.-J., et al., CD4 enhances T cell sensitivity to antigen by coordinating Lck accumulation at the immunological synapse. 2004. 5(8): p. 791-799. 29. Clayton, L.K., et al., Identification of human CD4 residues affecting class II MHC versus HIV-1 gp120 binding. 1989. 339(6225): p. 548-551. 30. Moebius, U., et al., Human immunodeficiency virus gp120 binding C'C' ridge of CD4 domain 1 is also involved in interaction with class II major histocompatibility complex molecules. 1992. 89(24): p. 12008-12012. 31. Moebius, U., et al., Delineation of an extended surface contact area on human CD4 involved in class II major histocompatibility complex binding. 1993. 90(17): p. 8259-8263. 32. Wang, J.-h., et al., Crystal structure of the human CD4 N-terminal two-domain fragment complexed to a class II MHC molecule. 2001. 98(19): p. 10799-10804. 33. Germain, R.N.J.N.r.i., T-cell development and the CD4–CD8 lineage decision. 2002. 2(5): p. 309-322. 34. Rahemtulla, A., et al., Class II major histocompatibility complex‐restricted T cell function in CD4‐deficient mice. 1994. 24(9): p. 2213-2218. 35. Sun, J.C. and M.J.J.S. Bevan, Defective CD8 T cell memory following acute infection without CD4 T cell help. 2003. 300(5617): p. 339-342. 36. von Herrath, M.G., et al., CD4-deficient mice have reduced levels of memory cytotoxic T lymphocytes after immunization and show diminished resistance to subsequent virus challenge. 1996. 70(2): p. 1072-1079. 37. Alexander, J., et al., Derivation of HLA-B* 0702 transgenic mice: functional CTL repertoire and recognition of human B* 0702-restricted CTL epitopes. 2003. 64(2): p. 211-223. 38. Taneja, V., et al., New humanized HLA–DR4–transgenic mice that mimic the sex bias of rheumatoid arthritis. 2007. 56(1): p. 69-78. 39. Cardone, M., et al., A transgenic mouse model for HLA-B* 57: 01–linked abacavir drug tolerance and reactivity. 2018. 128(7): p. 2819-2832. 40. Zhang, P., et al., Mouse model to study human A β2M amyloidosis: generation of a transgenic mouse with excessive expression of human β2-microglobulin. 2010. 17(2): p. 50-62. 41. Hamilton-Williams, E.E., et al., Transgenic rescue implicates β2-microglobulin as a diabetes susceptibility gene in nonobese diabetic (NOD) mice. 2001. 98(20): p. 11533-11538. 42. Sattentau, Q.J., et al., Epitopes of the CD4 antigen and HIV infection. 1986. 234(4780): p. 1120-1123. 43. Browning, J., et al., Mice transgenic for human CD4 and CCR5 are susceptible to HIV infection. 1997. 94(26): p. 14637-14641. 44. Yeung, R.S., et al., Human CD4 and human major histocompatibility complex class II (DQ6) transgenic mice: supersensitivity to superantigen‐induced septic shock. 1996. 26(5): p. 1074-1082. 45. Kon, O.M., et al., Randomised, dose-ranging, placebo-controlled study of chimeric antibody to CD4 (keliximab) in chronic severe asthma. 1998. 352(9134): p. 1109-1113. 46. Bugelskil, P., et al., Preclinical development of keliximab, a Primatized™ anti-CD4 monoclonal antibody, in human CD4 transgenic mice: characterization of the model and safety studies. 2000. 19(4): p. 230-243. 47. Smith, T.J. and L.J.N.E.J.o.M. Hegedüs, Graves’ disease. 2016. 375(16): p. 1552-1565. 48. Eckstein, A., et al., Lessons from mouse models of Graves’ disease. 2020. 68(2): p. 265. 49. Ungerer, M., et al., Review of mouse models of Graves’ disease and orbitopathy—novel treatment by induction of tolerance. 2017. 52(2): p. 182-193. 50. Raghavan, M., et al., MHC class I assembly: out and about. 2008. 29(9): p. 436-443. 51. Jamur, M.C. and C. Oliver, Permeabilization of cell membranes, in Immunocytochemical methods and protocols. 2010, Springer. p. 63-66. 52. Krutzik, P.O. and G.P.J.C.P.A.t.j.o.t.I.S.f.A.C. Nolan, Intracellular phospho‐protein staining techniques for flow cytometry: monitoring single cell signaling events. 2003. 55(2): p. 61-70. 53. Huet, S., et al., CD44 contributes to T cell activation. 1989. 143(3): p. 798-801. 54. Kmieciak, M., et al., Human T cells express CD25 and Foxp3 upon activation and exhibit effector/memory phenotypes without any regulatory/suppressor function. 2009. 7(1): p. 1-7. 55. Padgett, L.E., et al., Loss of NOX-derived superoxide exacerbates diabetogenic CD4 T-cell effector responses in type 1 diabetes. 2015. 64(12): p. 4171-4183. 56. Stanley, M.J.J.M., Chapter 17: Genital human papillomavirus infections—current and prospective therapies. 2003. 2003(31): p. 117-124. 57. Laing, K.J., et al., Evolution of the CD4 family: teleost fish possess two divergent forms of CD4 in addition to lymphocyte activation gene-3. 2006. 177(6): p. 3939-3951. 58. Robinson, P.J., L. Graf, and K.J.P.o.t.N.A.o.S. Sege, Two allelic forms of mouse beta 2-microglobulin. 1981. 78(2): p. 1167-1170. 59. Pedersen, L.Ø., et al., The interaction of beta 2‐microglobulin (β2m) with mouse class I major histocompatibility antigens and its ability to support peptide binding. A comparison of human and mouse β2m. 1995. 25(6): p. 1609-1616. 60. Shields, M.J., L.E. Moffat, and R.K.J.M.i. Ribaudo, Functional comparison of bovine, murine, and human β2-microglobulin: interactions with murine MHC I molecules. 1998. 35(14-15): p. 919-928. 61. Hughes, E.A., C. Hammond, and P.J.P.o.t.N.A.o.S. Cresswell, Misfolded major histocompatibility complex class I heavy chains are translocated into the cytoplasm and degraded by the proteasome. 1997. 94(5): p. 1896-1901. 62. Pérarnau, B., et al., Single H2Kb, H2Db and double H2KbDb knockout mice: peripheral CD8+ T cell repertoire and antilymphocytic choriomeningitis virus cytolytic responses. 1999. 29(4): p. 1243-1252. 63. Klein, L., et al., Positive and negative selection of the T cell repertoire: what thymocytes see (and don't see). 2014. 14(6): p. 377-391. 64. Viret, C. and C.J.R.i.i. Janeway Jr, MHC and T cell development. 1999. 1(1): p. 91-104. 65. Maruic-Galesic, S., et al., Development of CD4− CD8+ cytotoxic T cells requires interactions with class I MHC determinants. 1988. 333(6169): p. 180-183. 66. Zuñiga-Pflucker, J.C., D.L. Longo, and A.M.J.N. Kruisbeek, Positive selection of CD4-CD8+ T cells in the thymus of normal mice. 1989. 338(6210): p. 76-78. 67. Koller, B.H., et al., Normal development of mice deficient in beta 2M, MHC class I proteins, and CD8+ T cells. 1990. 248(4960): p. 1227-1230. 68. Zijlstra, M., et al., β2-microglobulin deficient mice lack CD4− 8+ cytolytic T cells. 1990. 344(6268): p. 742-746. 69. De Rosa, S.C., et al., Vaccination in humans generates broad T cell cytokine responses. 2004. 173(9): p. 5372-5380. 70. Zhang, M., et al., T-cell cytokine responses in human infection with Mycobacterium tuberculosis. 1995. 63(8): p. 3231-3234. 71. Leng, S.X., et al., ELISA and multiplex technologies for cytokine measurement in inflammation and aging research. 2008. 63(8): p. 879-884. 72. Mosmann, T. and T.J.J.o.i.m. Fong, Specific assays for cytokine production by T cells. 1989. 116(2): p. 151-158. 73. Harrison, M.M., et al., A CRISPR view of development. 2014. 28(17): p. 1859-1872. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82245 | - |
| dc.description.abstract | "許多報導顯示,人類白血球抗原 ( human leukocyte antigen, HLA ) 基因的變異和許多免疫疾病有關連。因此建立起帶有人類 HLA 基因敲入 (knock-in, KI)的擬人化小鼠,將有助用於免疫反應疾病研究。現今雖已有許多相關小鼠模型,然而其多為「轉基因小鼠」,將基因以「隨機嵌合」的形式轉入小鼠基因組中,可能會有無法避免的副作用產生。因此,本研究旨在建立兩株擬人化的免疫小鼠模型,並分別帶有第一類以及第二類人類HLA基因,可用於我們有興趣的Graves’ disease 或是其他免疫疾病研究。同時建立導入人源的「表面抗原分化簇 4 受體 (Cluster of Differentiation 4 receptor, CD4) 」、「表面抗原分化簇 8 受體 (Cluster of Differentiation 8 receptor, CD8) 」以及「β2 微球蛋白 ( Beta 2- microglobulin, β2M )」三個在協助抗原呈現過程中重要的蛋白的小鼠模型,以確保小鼠體內免疫機制更接近人體。我們分別採用了 Crispr-Cas9 以及傳統的同源臂重組技術,將人源基因嵌入小鼠中。我們最終目標是預期能將五株小鼠以配種方式,產生帶有完整人類白血球抗原系統的擬人化小鼠模型。 目前我們已獲得擬人化的 B2M 以及 CD4 小鼠。我們發現在帶有人類 B2M 基因的純合子擬人化小鼠當中,小鼠無法順利表達自身的一類主要組織相容性複合體 (major histocompatibility complex class I, MHC class I) 的 H-2Kb 分子,而另一種 MHC class I 分子 H-2Db 的表現則是異常表現。而小鼠體內的 CD4-CD8+ T 細胞比例仍與野生型小鼠類似。體外細胞培養實驗,發現擬人化的 B2M小鼠在T細胞的增生功能並未有異常現象。總體來說,這株品系小鼠雖然有上述蛋白表現異常狀況,但尚未發現有過早死亡現象發生或是其他免疫反應,不過有關免疫學上的功能仍有待後續研究。另外一株已經獲得的小鼠品系為擬人化的CD4小鼠。該品系小鼠成功表達人類的CD4基因。在細胞表面蛋白表現上,有表達人類CD4。上述表現的實驗結果也符合我們的預期。體外細胞培養實驗,也顯示出該品系小鼠T細胞增生活化能力和野生型小鼠相似。總結來說,我們並未在擬人化CD4小鼠品系上,有觀察到異常的免疫現象。而上述的觀察結果,也有助於我們後續對免疫相關的議題研究。" | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-25T06:34:16Z (GMT). No. of bitstreams: 1 U0001-2510202114562200.pdf: 2646280 bytes, checksum: 65f6c550872f241f24efa05460518fca (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | 口試委員會審定書 I 致謝 II 中文摘要 III Abstract V Content VII List of figures XI List of Table XIII 1. Introduction 1 1.1 The function and structure of major histocompatibility complex (MHC) molecules 1 1.2 HLA-related disease 2 1.3 The structure and function of CD8 and CD4 co-receptor 3 1.4 HLA-transgenic mice model 5 1.5 B2M mouse model 5 1.6 CD4 mouse model 6 1.7 study purpose 6 2. Material and Method 9 2.1 Mice 9 2.2 Gibson assembly 9 2.3 CRISPR/Cas9 knock-in targeting 10 2.4 Mouse genotyping 10 2.5 mRNA extraction 11 2.6 cDNA preparation 13 2.7 Quantitative real-time PCR 13 2.8 Flow cytometry and analysis 14 2.9 Intracellular staining 15 2.10 Mouse lymphocyte extraction 15 2.11 Isolation of mouse splenocyte 16 2.12 T cell proliferation assay 17 2.13 Cell culture condition/ T cell activation assay 17 3. Result 19 3.1 The hB2M KI mice 19 3.1.1 The design of hB2M exon 2 knock-in mouse 19 3.1.2 The expression level of human B2M in the knock-in mouse 20 3.1.3 The real-time PCR confirmed the hB2M expression level in mRNA 20 3.1.4 The result flowcytometry showed that KI mouse expressed the hB2M on the cell surface 21 3.1.5 The flowcytometry analysis revealed that KI mouse failed to express H-2Kb but overexpressed the H-2Db on cell surface 21 3.1.6 Intracellular staining and flow cytometry 22 3.1.7 T cell proliferation ability didn’t have significant difference among three genotypes of hB2M KI mice 23 3.2 The hCD4 KI mice 24 3.2.1 The design of hCD4 exon 3 – 5 knock-in mouse 24 3.2.2 Genotyping showed the KI mouse expressed the human CD4 in gDNA level 25 3.2.3 hCD4 KI mouse expressed the hCD4 and mCD4 on the cell surface with a phenomenon of the dosage effect 26 3.2.4 T cell proliferation ability didn’t have significant difference among three genotypes of hB2M KI mice 26 4. Discussion 27 4.1 hB2m KI mice had abnormal count of MHC I molecular on cell surface 27 4.2 hCD4 30 4.3 In summary 30 5. Reference 32 Figure 1 hB2M KI construct and its preparation 37 Figure 2 The genotyping of the hB2M KI mice can be determined by PCR test 38 Figure 3 real-time PCR confirmed the gene expression 39 Figure 4 Heterozygous and homozygous KI mouse express the human B2M protein 40 Figure 5 Heterozygous and homozygous KI mouse express the MHC I protein 41 Figure 6 The percentage of CD8+ T cell had no significant difference among the three genotypes 42 Figure 7. KI mouse expressed the mouse and human B2M protein with dosage effect in the cell 43 Figure 8. hB2M KI mouse had abnormal expression of MHC I protein in the cell 44 Figure 9. CD25 expression on nave and memory CD8 T cell 45 Figure 10. The hCD4 KI construct and its design 46 Figure 11. Genotyping of the hCD4 KI mice verified the CD4 expression in DNA level 47 Figure 12. hCD4 KI mice express mice and human CD4 on cell surface with dosage effect 48 Figure 13 hCD4 KI mice had normal ratio of CD4 and CD8 T cell 49 Figure 14. CD25 expression on nave and memory CD4 T cell 50 Table 1. primer used in construct 51 Table 2 primer used in genotyping 52 Table 3 primer used in real-time PCR 53 | |
| dc.language.iso | en | |
| dc.subject | 擬人化小鼠模型 | zh_TW |
| dc.subject | 人類白血球抗原 | zh_TW |
| dc.subject | 表面抗原分化簇 4 受體 | zh_TW |
| dc.subject | β2 微球蛋白 | zh_TW |
| dc.subject | Humanized Mouse Model | en |
| dc.subject | Human Leukocyte Antigen (HLA) | en |
| dc.subject | Cluster of Differentiation 4 receptors (CD4) | en |
| dc.subject | Beta 2-Microglobulin (B2M) | en |
| dc.title | 建立擬人化主要組織相容性複合體免疫模式小鼠 | zh_TW |
| dc.title | Establishing a humanized MHC mouse model | en |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 游益興(Hsin-Tsai Liu),莊雅惠(Chih-Yang Tseng),陳佑宗 | |
| dc.subject.keyword | 人類白血球抗原,表面抗原分化簇 4 受體,β2 微球蛋白,擬人化小鼠模型, | zh_TW |
| dc.subject.keyword | Human Leukocyte Antigen (HLA),Cluster of Differentiation 4 receptors (CD4),Beta 2-Microglobulin (B2M),Humanized Mouse Model, | en |
| dc.relation.page | 53 | |
| dc.identifier.doi | 10.6342/NTU202104146 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2021-10-26 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 基因體暨蛋白體醫學研究所 | zh_TW |
| dc.date.embargo-lift | 2023-10-31 | - |
| 顯示於系所單位: | 基因體暨蛋白體醫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2510202114562200.pdf 未授權公開取用 | 2.58 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
