Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 地質科學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8223
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳逸民(Yih-Min Wu)
dc.contributor.authorChia-Yu Wangen
dc.contributor.author王家佑zh_TW
dc.date.accessioned2021-05-20T00:50:20Z-
dc.date.available2021-08-31
dc.date.available2021-05-20T00:50:20Z-
dc.date.copyright2020-08-21
dc.date.issued2020
dc.date.submitted2020-08-13
dc.identifier.citation1. Allen, R. M., Gasparini, P., Kamigaichi, O., Bose, M. (2009). The Status of Earthquake Early Warning around the World: An Introductory Overview. Seismological Research Letters, 80(5), 682–693.
2. Allen, R. M., Melgar, D. (2019). Earthquake Early Warning: Advances, Scientific Challenges, and Societal Needs. Annual Review of Earth and Planetary Sciences, 47(1), 361–388.
3. Aranda, J. M. E., Jimenez, A., Ibarrola, G., Alcantar, F., Aguilar, A., Inostroza, M., Maldonado, S. (1995). Mexico City Seismic Alert System. Seismological Research Letters, 66(6), 42–53.
4. Fujinawa, Y., Rokugo, Y., Noda, Y., Mizui, Y., Kobayashi, M., Mizutani, E. (2008). Efforts of Earthquake Disaster Mitigation Using Earthquake Early Warning in Japan. 14th World Conference on Earthquake Engineering, Beijing, China, 2008.
5. Geller, R. J. (1997). Earthquake prediction: A critical review. Geophysical Journal International, 131(3), 425–450.
6. Hebb, D. O. (1949). The organization of behavior: A neuropsychological theory. New York: Wiley.
7. Hochreiter, S. Schmidhuber, J. (1997). Long short-term memory. Neural computation, 9(8), 1735–1780.
8. Hsiao, N.-C., Wu, Y.-M., Shin, T.-C., Zhao, L., Teng, T.-L. (2009). Development of earthquake early warning system in Taiwan. Geophysical Research Letters, 36(5).
9. Hsieh, C.-Y., Chao, W.-A., Wu, Y.-M. (2015). An Examination of the Threshold-Based Earthquake Early Warning Approach Using a Low-Cost Seismic Network. Seismological Research Letters, 86(6), 1664–1667.
10. Huang, D., Wang, G., Jin, F. (2019). Performance of On-Site Earthquake Early Warning System Using Strong-Motion Records from Recent Earthquakes. Natural Hazards Review, 20(1) 04018030.
11. Kamigaichi, O., Saito, M., Doi, K., Matsumori, T., Tsukada, S., Takeda, K., Shimoyama, T., Nakamura, K., Kiyomoto, M., Watanabe, Y. (2009). Earthquake Early Warning in Japan: Warning the General Public and Future Prospects. Seismological Research Letters, 80(5), 717–726.
12. Kanamori, H., Hauksson, E., Heaton, T. (1997). Real-time seismology and earthquake hazard mitigation. Nature, 390(6659), 461–464.
13. Kodera, Y., Yamada, Y., Hirano, K., Tamaribuchi, K., Adachi, S., Hayashimoto, N., Morimoto, M., Nakamura, M., Hoshiba, M. (2018). The Propagation of Local Undamped Motion (PLUM) Method: A Simple and Robust Seismic Wavefield Estimation Approach for Earthquake Early Warning. Bulletin of the Seismological Society of America, 108(2), 983–1003.
14. Lapedes, A., Farber, R. (1989). How Neural Nets Work. Evolution, Learning and Cognition, 331–346.
15. Leshno, M., Lin, V. Ya., Pinkus, A., Schocken, S. (1993). Multilayer feedforward networks with a nonpolynomial activation function can approximate any function. Neural Networks, 6(6), 861–867.
16. Lipton, Z.C. (2015). A Critical Review of Recurrent Neural Networks for Sequence Learning. ArXiv:1506.00019[Cs].
17. Lu, Z., Pu, H., Wang, F., Hu, Z., Wang, L. (2017). The Expressive Power of Neural Networks: A View from the Width. ArXiv:1709.02540[Cs].
18. Minson, S. E., Meier, M.-A., Baltay, A. S., Hanks, T. C., Cochran, E. S. (2018). The limits of earthquake early warning: Timeliness of ground motion estimates. Science Advances, 4(3), eaaq0504.
19. Nakamura, Y. (2004). Uredas, Urgent Earthquake Detection and Alarm System, Now and Future. 13th World Conference on Earthquake Engineering, Vancouver, B.C., Canada, 2004.
20. National Research Institute for Earth Science and Disaster Resilience (2019), NIED K-NET, KiK-net, National Research Institute for Earth Science and Disaster Resilience.
21. Okada, Y., Kasahara, K., Hori, S., Obara, K., Sekiguchi, S., Fujiwara, H., Yamamoto, A. (2004). Recent progress of seismic observation networks in Japan—Hi-net, F-net, K-NET and KiK-net. Earth, Planets and Space, 56(8), 15–28.
22. Rosenblatt, F. (1958). The perceptron: A probabilistic model for information storage and organization in the brain. Psychological Review, 65(6), 386–408.
23. Satriano, C., Wu, Y.-M., Zollo, A., Kanamori, H. (2011). Earthquake early warning: Concepts, methods and physical grounds. Soil Dynamics and Earthquake Engineering, 31(2), 106–118.
24. Sherstinsky, A. (2018). Fundamentals of Recurrent Neural Network (RNN) and Long Short-Term Memory (LSTM) Network. ArXiv:1808.03314[Cs, Stat].
25. Tamaribuchi K., Yamada M., Wu S. (2014). A New Approach to Identify Multiple Concurrent Events for Improvement of Earthquake Early Warning. Zisin (Journal of the Seismological Society of Japan. 2nd ser.), 67(2), 41–55.
26. Wang, H., Raj, B. (2017). On the Origin of Deep Learning. ArXiv:1702.07800 [Cs, Stat].
27. Wang, J. P., Wu, Y.-M. (2014). Epistemic uncertainty in on-site earthquake early warning on the use of PGV–PD3 empirical models. Soil Dynamics and Earthquake Engineering, 65, 126–130.
28. Werbos, P. J. (1990). Backpropagation through time: What it does and how to do it. Proceedings of the IEEE, 78(10), 1550–1560.
29. Wu, Y.-M. (2003). Relationship between Peak Ground Acceleration, Peak Ground Velocity, and Intensity in Taiwan. Bulletin of the Seismological Society of America, 93(1), 386–396.
30. Wu, Y.-M. (2015). Progress on Development of an Earthquake Early Warning System Using Low-Cost Sensors. Pure and Applied Geophysics, 172(9), 2343–2351.
31. Wu, Y.-M., Chen, D.-Y., Lin, T.-L., Hsieh, C.-Y., Chin, T.-L., Chang, W.-Y., Li, W.-S., Ker, S.-H. (2013). A High-Density Seismic Network for Earthquake Early Warning in Taiwan Based on Low Cost Sensors. Seismological Research Letters, 84(6), 1048–1054.
32. Wu, Y.-M., Chung, J.-K., Shin, T.-C. (1999). Development of an Integrated Earthquake Early Warning System in Taiwan-Case for the Hualien Area Earthquakes. Terrestrial, Atmospheric and Oceanic Sciences, 10(4), 719.
33. Wu, Y.-M., Hsiao, N.-C., Chin, T.-L., Chen, D.-Y., Chan, Y.-T., Wang, K.-S. (2013). Earthquake Early Warning System in Taiwan. Encyclopedia of Earthquake Engineering 1–12. Springer Berlin Heidelberg.
34. Wu, Y.-M., Lin, T.-L., Chao, W.-A., Huang, H.-H., Hsiao, N.-C., Chang, C.-H. (2011). Faster Short-Distance Earthquake Early Warning Using Continued Monitoring of Filtered Vertical Displacement: A Case Study for the 2010 Jiasian, Taiwan, Earthquake. Bulletin of the Seismological Society of America, 101(2), 701–709.
35. Wu, Y.-M., Kanamori, H. (2005a). Experiment on an Onsite Early Warning Method for the Taiwan Early Warning System. Bulletin of the Seismological Society of America, 95(1), 347–353.
36. Wu, Y.-M., Kanamori, H. (2005b). Rapid Assessment of Damage Potential of Earthquakes in Taiwan from the Beginning of P Waves. Bulletin of the Seismological Society of America, 95(3), 1181–1185.
37. Wu, Y.-M., Kanamori, H. (2008). Development of an Earthquake Early Warning System Using Real-Time Strong Motion Signals. Sensors, 8(1), 1–9.
38. Wu, Y.-M., Kanamori, H., Allen, R. M., Hauksson, E. (2007). Determination of earthquake early warning parameters, τc and Pd, for southern California. Geophysical Journal International, 170(2), 711–717.
39. Wu, Y.-M., Liang, W.-T., Mittal, H., Chao, W.-A., Lin, C.-H., Huang, B.-S., Lin, C.-M. (2016). Performance of a Low‐Cost Earthquake Early Warning System (P‐Alert) during the 2016 ML 6.4 Meinong (Taiwan) Earthquake. Seismological Research Letters, 87(5), 1050–1059.
40. Wu, Y.-M., Teng, T. (2002). A Virtual Subnetwork Approach to Earthquake Early Warning. Bulletin of the Seismological Society of America, 92(5), 2008–2018.
41. Wu, Y.-M., Yen, H.-Y., Zhao, L., Huang, B.-S., Liang, W.-T. (2006). Magnitude determination using initial P waves: A single-station approach. Geophysical Research Letters, 33(5), L05306.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8223-
dc.description.abstract近震央地區在地震事件中承受著最劇烈的地表振動,也最易受到地震災害所造成的損失。然而,區域型地震預警系統在近震央50 公里的範圍內往往無法及時提供警報,成為區域預警中的盲區。現地型地震預警系統根據初始 P 波前幾秒來估算後續可能的破壞性 S 波,以在振動到來之前發出警告,並且有效的填補區域預警無法提供警報的盲區。前人的研究表示,P 波位移振幅峰值(Pd)是一個穩定可靠的現地預警指標,並且已經持續地應用在台灣的地震預警系統中。然而現地型地震預警在不同測站下各自路徑效應與場址效應之差異所影響,在實作上成為了一個複雜的非線性問題。在這種情形下使用一個固定閾值的單一指標會產生無可避免的誤報與漏報。為了克服上述問題,本研究提出應用長短期記憶(Long Short-Term Memory, LSTM)神經網絡來實現現地型地震預警。利用多層的長短期記憶神經網絡架構,本研究得以訓練一個高度非線性的神經網絡。該模型將強地動地震儀所記錄的加速度以及經過一次積分的速度波形作為特徵輸入,並在每個時間點上輸出後續振動達 80 Gal 的機率值。本篇研究使用了臺灣近期兩個重大的致災性地震來對模型進行測試,結果顯示長短期記憶神經網絡模型的漏報率為0%,誤報率為1.31%。此模型有效地減少現地型地震預警的漏報及誤報,同時提供了適當的預警時間。zh_TW
dc.description.abstractOn-site Earthquake Early Warning (EEW) systems estimate possible destructive S-waves based on initial P-waves and issue warnings before large shaking arrives. On-site EEW plays a crucial role to fill up the blind zone of regional EEW systems near the epicenter, which often suffers from the most disastrous ground shaking. Previous studies show that peak P-wave displacement amplitude (Pd) may provide a possible indicator of destructive earthquakes. However, the attempt to use a single indicator with fixed thresholds suffers from inevitable misfits, since the diversity in travel paths and site effects for different stations introduce complex nonlinearities. To overcome the above problems, this study presents a deep learning approach using Long-Short Term Memory (LSTM) neural networks. By utilizing the properties of multi-layered LSTM, it is able to train a highly non-linear neural network that takes initial waveform as input and gives an alert probability as the output on every time step. The LSTM neural network is then put into test with 2 major earthquake events that occurred recently in Taiwan, giving the results of a missed alarm rate of 0% and false alarm rate of 1.31%. This study shows promising outcomes in reducing both missed alarms and false alarms while also providing an adequate warning time for hazard mitigation procedures.en
dc.description.provenanceMade available in DSpace on 2021-05-20T00:50:20Z (GMT). No. of bitstreams: 1
U0001-1308202012135400.pdf: 8207731 bytes, checksum: 492feb566a80932bd0fd100d8f861393 (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents口試委員會審定書 #
致謝 i
中文摘要 ii
ABSTRACT iii
CONTENTS iv
LIST OF FIGURES vii
LIST OF TABLES ix
Chapter 1 Introduction 1
1.1 Earthquake Early Warning (EEW) 1
1.1.1 Historical Retrospect on the Development of EEW 2
1.1.2 Regional EEW and Onsite EEW 5
1.2 Peak P Waves Displacement Amplitude (Pd) 6
1.2.1 Introductory of Peak P Wave Displacement Amplitude (Pd) 6
1.2.2 PGV-Pd Relationship 7
1.2.3 Permitted Time Window and Threshold Value for Pd 8
Chapter 2 Method 10
2.1 Artificial Neural Networks 10
2.1.1 Origin of Artificial Neural Networks 10
2.1.2 Feedforward Process 11
2.1.3 Backpropagation Process 12
2.2 Recurrent Neural Networks (RNN) 13
2.3 Long Short-Term memory (LSTM) 15
Chapter 3 Training the LSTM Neural Network 18
3.1 Seismic Networks Used for Training 18
3.1.1 Taiwan P-Alert Network 18
3.1.2 Japan Strong Motion Seismograph Network (K-NET) 18
3.2 Data Selection 19
3.3 Training and Validation Dataset 19
3.4 Data Preprocessing 23
3.4.1 Feature Selection 23
3.4.2 Label Determination 24
3.5 Training History 26
3.5.1 Validation Data 26
3.5.2 Training Early Stop 27
3.6 Grid Search for Optimized Model 28
3.6.1 Model Hyperparameters 28
3.6.2 Model Score Evaluation 30
Chapter 4 Testing the LSTM Neural Network 34
4.1 Testing Dataset 34
4.2 LSTM Model Performance on Testing Data 36
4.2.1 Confusion Matrix 36
4.2.2 Classification Performance 37
4.2.3 Lead Time Performance 38
4.3 LSTM Model Output Demonstration 40
4.3.1 True Positive Model Outputs 40
4.3.2 True Negative Model Outputs 41
4.3.3 False Positive Model Outputs 42
Chapter 5 Comparison with the Pd approach 43
5.1 Trigger Settings of P-Alert 43
5.2 Performance Comparison Between LSTM and Pd 43
5.2.1 EEW for the 2016 Meinong Earthquake 43
5.2.2 EEW for the 2018 Hualien Earthquake 47
5.2.3 Differences of the Warning Lead Time 50
5.3 Summary 51
Chapter 6 Conclusion 54
REFERENCE 55
APPENDIX 60
A. Training History of Grid Search Models 60
B. List of Testing Dataset 70
dc.language.isoen
dc.title長短期記憶神經網路運用於現地型地震預警zh_TW
dc.titleA LSTM Neural Network for Onsite Earthquake Early Warningen
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.oralexamcommittee金台齡(Tai-Lin Chin),許丁友(Ting-Yu Hsu),陳達毅(Da-Yi Chen),黃鼎中(Ting-Chung Huang)
dc.subject.keyword地震預警,深度學習,類神經網路,長短期記憶,zh_TW
dc.subject.keywordEarthquake Early Warning,deep learning,neural network,LSTM,en
dc.relation.page89
dc.identifier.doi10.6342/NTU202003217
dc.rights.note同意授權(全球公開)
dc.date.accepted2020-08-13
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept地質科學研究所zh_TW
顯示於系所單位:地質科學系

文件中的檔案:
檔案 大小格式 
U0001-1308202012135400.pdf8.02 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved