Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 醫學檢驗暨生物技術學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82238
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳瑞菁(Jui-Ching Wu)
dc.contributor.authorYu-Hao Chenen
dc.contributor.author陳宇豪zh_TW
dc.date.accessioned2022-11-25T06:34:10Z-
dc.date.copyright2021-11-10
dc.date.issued2021
dc.date.submitted2021-10-28
dc.identifier.citation1. Taylor, S.S., M.I.F. Scott, and A.J. Holland, The spindle checkpoint: a quality control mechanism which ensures accurate chromosome segregation. Chromosome Research, 2004. 12(6): p. 599-616. 2. Lara-Gonzalez, P., F.G. Westhorpe, and S.S. Taylor, The Spindle Assembly Checkpoint. Current Biology, 2012. 22(22): p. R966-R980. 3. Sen, S., Aneuploidy and cancer. Curr Opin Oncol, 2000. 12(1): p. 82-8. 4. Duijf, P.H., N. Schultz, and R. Benezra, Cancer cells preferentially lose small chromosomes. Int J Cancer, 2013. 132(10): p. 2316-26. 5. Downing, K.H. and E. Nogales, Tubulin structure: insights into microtubule properties and functions. Curr Opin Struct Biol, 1998. 8(6): p. 785-91. 6. Delgehyr, N., J. Sillibourne, and M. Bornens, Microtubule nucleation and anchoring at the centrosome are independent processes linked by ninein function. Journal of Cell Science, 2005. 118(8): p. 1565-1575. 7. Oakley, B.R., Gamma-tubulin: the microtubule organizer? Trends Cell Biol, 1992. 2(1): p. 1-5. 8. Bonner, M.K., et al., Enrichment of Aurora B kinase at the inner kinetochore controls outer kinetochore assembly. Journal of Cell Biology, 2019. 218(10): p. 3237-3257. 9. Wei, R.R., P.K. Sorger, and S.C. Harrison, Molecular organization of the Ndc80 complex, an essential kinetochore component. Proceedings of the National Academy of Sciences of the United States of America, 2005. 102(15): p. 5363-5367. 10. Alushin, G.M., et al., The Ndc80 kinetochore complex forms oligomeric arrays along microtubules. Nature, 2010. 467(7317): p. 805-U68. 11. Ciferri, C., A. Musacchio, and A. Petrovic, The Ndc80 complex: Hub of kinetochore activity. Febs Letters, 2007. 581(15): p. 2862-2869. 12. Howe, M., et al., HIM-10 is required for kinetochore structure and function on Caenorhabditis elegans holocentric chromosomes. Journal of Cell Biology, 2001. 153(6): p. 1227-1238. 13. Kitagawa, R., The spindle assembly checkpoint in Caenorhabditis elegans One who lacks Mad1 becomes mad one. Cell Cycle, 2009. 8(3): p. 338-344. 14. Henriques, A.C., et al., Mitosis inhibitors in anticancer therapy: When blocking the exit becomes a solution. Cancer Letters, 2019. 440: p. 64-81. 15. Rischitor, P.E., K.M. May, and K.G. Hardwick, Bub1 Is a Fission Yeast Kinetochore Scaffold Protein, and Is Sufficient to Recruit other Spindle Checkpoint Proteins to Ectopic Sites on Chromosomes. Plos One, 2007. 2(12). 16. Wang, X., et al., The function of a spindle checkpoint gene bub-1 in C. elegans development. PLoS One, 2009. 4(6): p. e5912. 17. Musacchio, A., The Molecular Biology of Spindle Assembly Checkpoint Signaling Dynamics. Current Biology, 2015. 25(20): p. R1002-R1018. 18. Moyle, M.W., et al., A Bub1-Mad1 interaction targets the Mad1-Mad2 complex to unattached kinetochores to initiate the spindle checkpoint. Journal of Cell Biology, 2014. 204(5): p. 647-657. 19. Cheeseman, I., et al., The CENP-F-like proteins HCP-1 and HCP-2 target CLASP to kinetochores to mediate chromosome segregation. Cell Structure and Function, 2005. 30: p. 8-8. 20. Holt, S.V., et al., Silencing Cenp-F weakens centromeric cohesion, prevents chromosome alignment and activates the spindle checkpoint. Journal of Cell Science, 2005. 118(20): p. 4889-4900. 21. Civril, F., et al., Structural Analysis of the RZZ Complex Reveals Common Ancestry with Multisubunit Vesicle Tethering Machinery. Structure, 2010. 18(5): p. 616-626. 22. Gama, J.B., et al., Molecular mechanism of dynein recruitment to kinetochores by the Rod-Zw10-Zwilch complex and Spindly. Journal of Cell Biology, 2017. 216(4): p. 943-960. 23. Mosalaganti, S., et al., Structure of the RZZ complex and molecular basis of its interaction with Spindly. Journal of Cell Biology, 2017. 216(4): p. 961-981. 24. Karess, R., Rod-Zw10-Zwilch: a key player in the spindle checkpoint. Trends in Cell Biology, 2005. 15(7): p. 386-392. 25. Zhang, G., et al., Distinct domains in Bub1 localize RZZ and BubR1 to kinetochores to regulate the checkpoint. Nature Communications, 2015. 6. 26. Schrader, E.K., K.G. Harstad, and A. Matouschek, Targeting proteins for degradation. Nat Chem Biol, 2009. 5(11): p. 815-22. 27. Phalle, B.D. and W. Sullivan, Spindle assembly and mitosis without centrosomes in parthenogenetic Sciara embryos. Journal of Cell Biology, 1998. 141(6): p. 1383-1391. 28. Mckim, K.S. and R.S. Hawley, Chromosomal Control of Meiotic Cell-Division. Science, 1995. 270(5242): p. 1595-1601. 29. Rebollo, E., et al., Contribution of noncentrosomal microtubules to spindle assembly in Drosophila spermatocytes. Plos Biology, 2004. 2(1): p. 54-64. 30. Wang, X. and M.E. Pepling, Regulation of Meiotic Prophase One in Mammalian Oocytes. Front Cell Dev Biol, 2021. 9: p. 667306. 31. La, H.M. and R.M. Hobbs, Mechanisms regulating mammalian spermatogenesis and fertility recovery following germ cell depletion. Cellular and Molecular Life Sciences, 2019. 76(20): p. 4071-4102. 32. Endo, T., et al., Periodic production of retinoic acid by meiotic and somatic cells coordinates four transitions in mouse spermatogenesis. Proc Natl Acad Sci U S A, 2017. 114(47): p. E10132-E10141. 33. Oatley, J.A. and R.L. Brinster, Regulation of Spermatogonial Stem Cell Self-Renewal in Mammals. Annual Review of Cell and Developmental Biology, 2008. 24: p. 263-286. 34. Phillips, B.T., K. Gassei, and K.E. Orwig, Spermatogonial stem cell regulation and spermatogenesis. Philosophical Transactions of the Royal Society B-Biological Sciences, 2010. 365(1546): p. 1663-1678. 35. Griswold, M.D., The central role of Sertoli cells in spermatogenesis. Seminars in Cell Developmental Biology, 1998. 9(4): p. 411-416. 36. De Rooij, D.G., The Spermatogonial Stem Cell Niche. Microscopy Research and Technique, 2009. 72(8): p. 580-585. 37. Oatley, M.J., K.E. Racicot, and J.M. Oatley, Sertoli Cells Dictate Spermatogonial Stem Cell Niches in the Mouse Testis. Biology of Reproduction, 2011. 84(4): p. 639-645. 38. Greenbaum, M.P., et al., Germ cell intercellular bridges. Cold Spring Harb Perspect Biol, 2011. 3(8): p. a005850. 39. Shakes, D.C., et al., Spermatogenesis-Specific Features of the Meiotic Program in Caenorhabditis elegans. Plos Genetics, 2009. 5(8). 40. Wu, J.C., et al., Sperm Development and Motility are Regulated by PP1 Phosphatases in Caenorhabditis elegans. Genetics, 2012. 190(1): p. 143-U615. 41. Gartner, A., P.R. Boag, and T.K. Blackwell, Germline survival and apoptosis. WormBook, 2008: p. 1-20. 42. Ellis, H.M. and H.R. Horvitz, Genetic-Control of Programmed Cell-Death in the Nematode C-Elegans. Cell, 1986. 44(6): p. 817-829. 43. Chu, D.S., et al., Sperm chromatin proteomics identifies evolutionarily conserved fertility factors. Nature, 2006. 443(7107): p. 101-105. 44. 陳尚暘, 利用線蟲為模型探討紡錘體檢查點在調控精子生成時的角色, in 醫學檢驗暨生物技術學研究所. 2017, 國立臺灣大學. p. 1-40. 45. Johnson, V.L., et al., Bub1 is required for kinetochore localization of BubR1, Cenp-E, Cenp-F and Mad2, and chromosome congression. Journal of Cell Science, 2004. 117(8): p. 1577-1589. 46. Tanaka, T.U., Kinetochore-microtubule interactions: steps towards bi-orientation. EMBO J, 2010. 29(24): p. 4070-82. 47. Varma, D. and E.D. Salmon, The KMN protein network - chief conductors of the kinetochore orchestra. Journal of Cell Science, 2012. 125(24): p. 5927-5936. 48. Ciferri, C., A. Musacchio, and A. Petrovic, The Ndc80 complex: hub of kinetochore activity. FEBS Lett, 2007. 581(15): p. 2862-9. 49. Pereira, C., et al., Self-Assembly of the RZZ Complex into Filaments Drives Kinetochore Expansion in the Absence of Microtubule Attachment. Current Biology, 2018. 28(21): p. 3408-+. 50. 陳柏任, 利用線蟲為模型探討在雄性減數分裂過程的中心粒的複製, in 醫學檢驗暨生物技術學研究所. 2019, 國立臺灣大學. p. 1-49. 51. Kobayashi, T. and B.D. Dynlacht, Regulating the transition from centriole to basal body. Journal of Cell Biology, 2011. 193(3): p. 435-444. 52. Avidor-Reiss, T. and Id, Rapid Evolution of Sperm Produces Diverse Centriole Structures that Reveal the Most Rudimentary Structure Needed for Function. Cells, 2018. 7. 53. Meraldi, P. and E.A. Nigg, The centrosome cycle. FEBS Letters, 2002. 521(1-3): p. 9-13. 54. Ward, S., Y. Argon, and G.A. Nelson, Sperm morphogenesis in wild-type and fertilization-defective mutants of Caenorhabditis elegans. J Cell Biol, 1981. 91(1): p. 26-44. 55. L'Hernault, S.W. and T.M. Roberts, Cell biology of nematode sperm. Methods Cell Biol, 1995. 48: p. 273-301. 56. Hajeri, V.A., et al., Genetic analysis of the spindle checkpoint genes san-1, mdf-2, bub-3 and the CENP-F homologues hcp-1 and hcp-2 in Caenorhabditis elegans. Cell Division, 2008. 3. 57. Williams, B.C., et al., The Drosophila L(1)Zw10 Gene-Product, Required for Accurate Mitotic Chromosome Segregation, Is Redistributed at Anaphase Onset. Journal of Cell Biology, 1992. 118(4): p. 759-773. 58. Williams, B.C., et al., Zwilch, a new component of the ZW10/ROD complex required for kinetochore functions. Molecular Biology of the Cell, 2003. 14(4): p. 1379-1391. 59. Basto, R., et al., In vivo dynamics of the rough deal checkpoint protein during Drosophila mitosis. Current Biology, 2004. 14(1): p. 56-61. 60. Scaerou, F., et al., The rough deal protein is a new kinetochore component required for accurate chromosome segregation in Drosophila. Journal of Cell Science, 1999. 112(21): p. 3757-3768. 61. Chan, G.K.T., et al., Human ZW10 and ROD kinetochore proteins are novel components of the mitotic checkpoint. Molecular Biology of the Cell, 2000. 11: p. 93a-93a. 62. Amiri, A., et al., An isoform of eIF4E is a component of germ granules and is required for spermatogenesis in C-elegans. Development, 2001. 128(20): p. 3899-3912. 63. Luitjens, C., et al., CPEB proteins control two key steps in spermatogenesis in C-elegans. Genes Development, 2000. 14(20): p. 2596-2609. 64. Fernandes Povoa, E.E., et al., An optimized dissociation protocol for FACS-based isolation of rare cell types from Caenorhabditis elegans L1 larvae. MethodsX, 2020. 7: p. 100922. 65. Wolgemuth, D.J., M. Manterola, and A. Vasileva, Role of cyclins in controlling progression of mammalian spermatogenesis. International Journal of Developmental Biology, 2013. 57(2-4): p. 159-168. 66. McNally, K.L. and F.J. McNally, Fertilization initiates the transition from anaphase I to metaphase II during female meiosis in C. elegans. Dev Biol, 2005. 282(1): p. 218-30. 67. van der Voet, M., et al., C. elegans mitotic cyclins have distinct as well as overlapping functions in chromosome segregation. Cell cycle (Georgetown, Tex.), 2009. 8(24): p. 4091-4102.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82238-
dc.description.abstract"細胞分裂對於生物體的生長、繁殖是一個重要的過程。在細胞分裂期間,染色體會分離並且受到紡錘體檢查點(spindle assembly checkpoint, SAC)調控以確保準確的染色體分離。在雄性減數分裂過程中會牽涉到兩次連續的細胞分裂階段,目前尚不清楚在兩次分裂之間的調控機制。先前本實驗室發現在給予轉譯抑制劑時雖然精母細胞可以成功完成第一次的染色體分離,但細胞遂即停滯而無法進行第二次染色體分離。這顯示在第一次減數分裂過程中製造的新合成蛋白質是為了提供給第二次的減數分裂。因此本篇研究想要探討這些參與在兩次減數分裂之間的重要分子。 如同實驗室先前的研究成果,位在kinetochore外側的蛋白質BUB-1在第一次染色體開始分離後會快速的掉下來,降至低點後會以較慢的速率回升訊號並進入metaphase II,顯示有部分kinetochore蛋白需要被拆解下來並重新組裝回去以利進入第二次的減數分裂。我們發現在兩次細胞分裂期間有兩階段的染色體分離。在BUB-1訊號回升時期,染色體分開速率下降。在抑制轉譯時,會使anaphase I的染色體分開速率以及BUB-1訊號下降變慢;此外,當BUB-1訊號降至低點後不再回升且染色體分離也停滯。我們發現藉著BUB-1而能連接上kinetochore 的CENP-F蛋白HCP-1也有相同的訊號變化。因此我們推測在兩次染色體分離之間部分kinetochore勢必要重新建構。我們進一步檢視其他outer kinetochore是否也需被拆解再重組。我們發現NDC-80和HIM-10,兩個主要連結紡錘絲的Ndc80 complex成員,在兩次減數分裂過程中維持在染色體上,且至少NDC-80在染色體上的訊號不受轉譯抑制的影響。此外,和SAC調控的相關蛋白RZZ complex (ROD-1)兩次減數分裂過程中維持在染色體上。綜上所述,在transition中只有部分outer kinetochore需要被拆解再重組,轉譯對於outer kinetochore的重組及能否進到第二次減數分裂是必須的。 由於主要連接microtubules的Ndc80 complex成員在兩次減數分裂過程中依然維持在染色體上,我們進一步檢視spindle microtubules在兩次分裂期間的動態變化。我們發現spindle microtubules在anaphase I開始後有變少再變多的現象。同時,我們發現spindle pole成員γ-tubulins的訊號在兩次減數分裂期間會分裂並且也有訊號變弱再回升現象,當抑制轉譯時,訊號下降後不再回升,我們認為轉譯對於spindle pole的成熟並長出spindle microtubules是必須的。 最後,根據我們先前在抑制轉譯後對於精母細胞的觀察,我們認為在meiosis I期間的新合成蛋白質對於精母細胞能否過渡到第二次的減數分裂是重要的。雖然抑制轉譯不太影響第一次減數分裂的完成,但在第一次減數分裂中勢必會有新製造出來的蛋白質提供給第二次減數分裂。因此,我們也利用了代謝性蛋白質標定(metabolic labeling)技術來找出新合成蛋白質在初級精母細胞中的分布。"zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-25T06:34:10Z (GMT). No. of bitstreams: 1
U0001-2710202109532700.pdf: 2357898 bytes, checksum: 2273c224206251400ade2a4aabd316a8 (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents口試委員審定書………………………………………………………………………....i 致謝…………………………………………………………………...………………....ii 摘要………………………………………………………………………………..........iii Abstract…………………………………………………………………………………..v 1 Introduction………………………………………………………….........................1 2 Materials and Methods………………………………………………………….….12 2.1 C. elegans strains and maintenance…………………………..….……….....12 2.2 Time-lapse live imaging………………..…………………………...............12 2.3 Image processing and quantitative analysis……………………………........13 2.4 Chemical Inhibition Assay…………………………………………………..13 2.5 Click-iT® HPG Alexa Fluor® Protein Synthesis Assay………………..........13 3 Results………………………………………………………………………….......15 3.1 Translation is associated with the rearranged kinetics of chromosomes during the MI-MII transition (anaphase I onset – metaphase II)……………...…15 3.2 BUB-1 and HCP-1 disassemble from chromosomes after first meiosis and reassemble on chromosomes during the MI-MII transition……………..……….16 3.3 Translation is required for BUB-1 reassembly on chromosomes during the MI-MII transition………………………………………………...……………....18 3.4 Translation participates in the MI-MII transition and is associated with the chromosome separation and the reassembly of BUB-1 on chromosomes…...…..19 3.5 Ndc80 complex maintains on the chromosomes during the MI-MII transition……………………………………………………………………..…...22 3.6 Translation is not associated with the maintenance of Ndc80 complex on chromosomes during the MI-MII transition…………..………………………….23 3.7 The localization of GFP-ROD-1 maintained nearby the chromosomes during the MI-MII transition………………………………………….………………....24 3.8 Translation inhibition perturbs spindle maturation but not centrosome split during the MI-MII transition……………………………………………………..25 3.9 Detection of newly synthesized proteins required for MI-MII transition with metabolic labeling………………………………………………………………..28 3.10 Translation is required for the re-building of some kinetochore proteins and centrosome during the MI-MII transition…………………………………..…….30 4 Discussion……………………………………………………………………….….32 4.1 The role of CENP-F proteins in spermatogenesis …………………....…....32 4.2 KMN network connects with chromosomes during the MI-MII transition in spermatogenesis………………………………………………………….……....33 4.3 The localization of RZZ complex during the MI-MII transition in spermatogenesis…………………………………………….................................35 4.4 Chromosomes segregation requires the microtubules growing from the centrosomes to pull the chromosomes……………………………………….…..36 4.5 Translation inhibition by chemical treatment is effective in our model organism.………………………………….…………………...............................37 4.6 Which protein molecules are translated in the first meiosis for initiation and meiosis II?..............................................................................................................38 4.7 Cell cycle regulators participate in the MI-MII transition during spermatogenesis……………………………………………………………….....40 5 Figure…………………………….………………………………………………....42 Figure 1. Translation is associated with the rearranged kinetics of chromosomes during the MI-MII transition (anaphase I onset-metaphase II)………………..…42 Figure 2. BUB-1 and HCP-1 disassembled from chromosomes after first meiosis and reassembled on chromosomes during the MI-MII transition…………….….43 Figure 3. Translation is required for BUB-1 reassembly on chromosomes during the MI-MII transition………………………………………………….…………45 Figure 4. Translation participates in the MI-MII transition and is associated with the chromosomes separation and the reassembly of BUB-1 on chromosomes…..48 Figure 5. Ndc80 complex maintains on the chromosomes during the MI-MII transition……………………………………………………………………….…52 Figure 6. Translation is not associated with the maintenance of Ndc80 complex on chromosomes during the MI-MII transition…………………………….………..54 Figure 7. The localization of GFP-ROD-1 maintained nearby the chromosomes during the MI-MII transition……………………………………………………..56 Figure 8. The GFP-microtubule signals split and moved to the both sides of the separated chromosomes…………………………………………….…………….57 Figure 9. Translation inhibition perturbs spindle maturation but not centrosome split during the MI-MII transition…………………………………..…………....59 Figure 10. The staining results with Click-iT® HPG Alexa Fluor® Protein Synthesis Assay Kit……………………………………………………..………..61 Figure 11. Some kinetochore proteins and centrosome components need to be rebuilt during the MI-MII transition.………………………………….……….…63 6 Table………………………………………………………………………………..65 Table 1. Strains used in this study………………………………………….…….65 Table 2. The quantification analysis of GFP-BUB-1 and GFP-HCP-1 (Time= 0 sec is the anaphase I onset.)…………………….………………………………..66 7 Reference…………………………………………………………….……………..67
dc.language.isoen
dc.subject轉譯zh_TW
dc.subject雄性減數分裂zh_TW
dc.subject染色體分離zh_TW
dc.subject紡錘體檢查點zh_TW
dc.subject動粒zh_TW
dc.subject微管zh_TW
dc.subject中心體zh_TW
dc.subject代謝性蛋白質標定zh_TW
dc.subjectmale meiotic divisionsen
dc.subjectmicrotubulesen
dc.subjectkinetochoreen
dc.subjectspindle assembly checkpointen
dc.subjecttranslationen
dc.subjectchromosome segregationen
dc.subjectmetabolic labelingen
dc.subjectcentrosomeen
dc.title以線蟲為模型探討在精子生成過程中兩次減數分裂之間過渡時期的表徵zh_TW
dc.titleCharacterization of the transition between meiosis I and meiosis II during spermatogenesis in Caenorhabditis elegansen
dc.date.schoolyear109-2
dc.description.degree碩士
dc.contributor.oralexamcommittee王齡玉(Hsin-Tsai Liu),楊雅倩(Chih-Yang Tseng),蘇剛毅
dc.subject.keyword雄性減數分裂,染色體分離,紡錘體檢查點,動粒,微管,中心體,代謝性蛋白質標定,轉譯,zh_TW
dc.subject.keywordmale meiotic divisions,chromosome segregation,spindle assembly checkpoint,kinetochore,microtubules,centrosome,metabolic labeling,translation,en
dc.relation.page76
dc.identifier.doi10.6342/NTU202104310
dc.rights.note未授權
dc.date.accepted2021-10-28
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept醫學檢驗暨生物技術學研究所zh_TW
dc.date.embargo-lift2026-10-28-
顯示於系所單位:醫學檢驗暨生物技術學系

文件中的檔案:
檔案 大小格式 
U0001-2710202109532700.pdf
  未授權公開取用
2.3 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved