請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82230完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林啟萬 (Chii-Wann Lin) | |
| dc.contributor.author | Chun-Hao Chuang | en |
| dc.contributor.author | 莊淳皓 | zh_TW |
| dc.date.accessioned | 2022-11-25T06:34:03Z | - |
| dc.date.copyright | 2022-01-03 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-12-16 | |
| dc.identifier.citation | [1] Tafner, P. F. D. A., Chen, F. K., Rabello, R., Corrêa, T. D., Chaves, R. C. D. F., Serpa, A. (2017). Recent advances in bedside microcirculation assessment in critically ill patients. Revista Brasileira de terapia intensiva, 29, 238-247. [2] Aird, W. C. (2001). Vascular bed-specific hemostasis: role of endothelium in sepsis pathogenesis. Critical care medicine, 29(7), S28-S34. [3] Condon, M. R., Kim, J. E., Deitch, E. A., Machiedo, G. W., Spolarics, Z. (2003). Appearance of an erythrocyte population with decreased deformability and hemoglobin content following sepsis. American Journal of Physiology-Heart and Circulatory Physiology, 284(6), H2177-H2184. [4] Gutterman, D. D., Chabowski, D. S., Kadlec, A. O., Durand, M. J., Freed, J. K., Ait-Aissa, K., Beyer, A. M. (2016). The human microcirculation: regulation of flow and beyond. Circulation research, 118(1), 157-172. [5] Durand, M. J., Gutterman, D. D. (2013). Diversity in mechanisms of endothelium‐dependent vasodilation in health and disease. Microcirculation, 20(3), 239-247. [6] Virdis, A., Savoia, C., Grassi, G., Lembo, G., Vecchione, C., Seravalle, G., ... Rizzoni, D. (2014). Evaluation of microvascular structure in humans: a ‘state-of-the-art’document of the Working Group on Macrovascular and Microvascular Alterations of the Italian Society of Arterial Hypertension. Journal of hypertension, 32(11), 2120-2129. [7] Holowatz, L. A., Thompson-Torgerson, C. S., Kenney, W. L. (2008). The human cutaneous circulation as a model of generalized microvascular function. Journal of applied physiology, 105(1), 370-372. [8] Roustit, M., Cracowski, J. L. (2013). Assessment of endothelial and neurovascular function in human skin microcirculation. Trends in pharmacological sciences, 34(7), 373-384. [9] Camici, P. G., d'Amati, G., Rimoldi, O. (2015). Coronary microvascular dysfunction: mechanisms and functional assessment. Nature Reviews Cardiology, 12(1), 48-62. [10] Cracowski, J. L., Roustit, M. (2016). Current methods to assess human cutaneous blood flow: an updated focus on laser‐based‐techniques. Microcirculation, 23(5), 337-344. [11] Keymel, S., Sichwardt, J., Balzer, J., Stegemann, E., Rassaf, T., Kleinbongard, P., ... Lauer, T. (2010). Characterization of the non‐invasive assessment of the cutaneous microcirculation by laser Doppler perfusion scanner. Microcirculation, 17(5), 358-366. [12] Takada, H., Washino, K., Harrell, J. S., Iwata, H. (1996). Acceleration plethysmography to evaluate aging effect in cardiovascular system. Using new criteria of four wave patterns. Medical progress through technology, 21(4), 205-210. [13] Roth, G. A., Mensah, G. A., Johnson, C. O., Addolorato, G., Ammirati, E., Baddour, L. M., ... GBD-NHLBI-JACC Global Burden of Cardiovascular Diseases Writing Group. (2020). Global burden of cardiovascular diseases and risk factors, 1990–2019: update from the GBD 2019 study. Journal of the American College of Cardiology, 76(25), 2982-3021. [14] 林明政、李名世、王俊民、梁雅娟、陳甫州(台中榮民總醫院教學研究部),「雷射杜卜勒微流儀之原理與臨床醫學之應用」,醫檢會報,2002年。 [15] Roth, G. A., Mensah, G. A., Johnson, C. O., Addolorato, G., Ammirati, E., Baddour, L. M., ... GBD-NHLBI-JACC Global Burden of Cardiovascular Diseases Writing Group. (2020). Global burden of cardiovascular diseases and risk factors, 1990–2019: update from the GBD 2019 study. Journal of the American College of Cardiology, 76(25), 2982-3021. [16] Roth, G. A., Forouzanfar, M. H., Moran, A. E., Barber, R., Nguyen, G., Feigin, V. L., ... Murray, C. J. (2015). Demographic and epidemiologic drivers of global cardiovascular mortality. New England Journal of Medicine, 372(14), 1333-1341. [17] Desa, U. (2015). United nations department of economic and social affairs, population division. world population prospects: The 2015 revision, key findings and advance tables. Online Edition UN DESA, New York. [18] United Nations, Department of Economic and Social Affairs, Population Division. 'World Population Ageing 2019: Highlights. [19] Alves-Silva, J. M., Zuzarte, M., Girão, H., Salgueiro, L. (2021). The Role of Essential Oils and Their Main Compounds in the Management of Cardiovascular Disease Risk Factors. Molecules, 26(12), 3506. [20] Buttar, H. S., Li, T., Ravi, N. (2005). Prevention of cardiovascular diseases: Role of exercise, dietary interventions, obesity and smoking cessation. Experimental clinical cardiology, 10(4), 229. [21] Han, T. R., Bang, M. S., Lim, J. Y., Yoon, B. H., Kim, I. W. (2002). Risk factors of cerebral palsy in preterm infants. American journal of physical medicine rehabilitation, 81(4), 297-303. [22] Smith Jr, S. C., Milani, R. V., Arnett, D. K., Crouse III, J. R., McDermott, M. M., Ridker, P. M., ... Wilson, P. W. (2004). Atherosclerotic vascular disease conference: writing group II: risk factors. Circulation, 109(21), 2613-2616. [23] Whelton, P. K., He, J., Appel, L. J., Cutler, J. A., Havas, S., Kotchen, T. A., ... National High Blood Pressure Education Program Coordinating Committee. (2002). Primary prevention of hypertension: clinical and public health advisory from The National High Blood Pressure Education Program. Jama, 288(15), 1882-1888. [24] Kokubo, Y., Iwashima, Y. (2015). Higher blood pressure as a risk factor for diseases other than stroke and ischemic heart disease. Hypertension, 66(2), 254-259. [25] Taddei, S., Bruno, R. M., Masi, S., Solini, A. (2018). Epidemiology and pathophysiology of hypertension. ESC CardioMed, 2377-2388. [26] Kannel, W. B. (2000). Risk stratification in hypertension: new insights from the Framingham Study. American journal of hypertension, 13(S1), 3S-10S. [27] Egan, B. M., Stevens-Fabry, S. (2015). Prehypertension—prevalence, health risks, and management strategies. Nature Reviews Cardiology, 12(5), 289-300. [28] Abubakar, I. I., Tillmann, T., Banerjee, A. (2015). Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990-2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet, 385(9963), 117-171. [29] Thiyagaraj, M., Suseendran, G. (2017). Survey on heart disease prediction system based on data mining techniques. Indian Journal of Innovations and Developments, 6(1), 1-9. [30] Stehouwer CD, Ferreira I (2006) Diabetes, lipids and other risk factors. In: Safar ME, O’Rourke MF (eds) Arterial stiffness in hypertension. Elsevier, London, pp 427–456 [31] Townsend, R. R., Wilkinson, I. B., Schiffrin, E. L., Avolio, A. P., Chirinos, J. A., Cockcroft, J. R., ... Weber, T. (2015). Recommendations for improving and standardizing vascular research on arterial stiffness: a scientific statement from the American Heart Association. Hypertension, 66(3), 698-722. [32] Stehouwer, C. D. A., Henry, R. M. A., Ferreira, I. (2008). Arterial stiffness in diabetes and the metabolic syndrome: a pathway to cardiovascular disease. Diabetologia, 51(4), 527-539. [33] Franklin, S. S., Khan, S. A., Wong, N. D., Larson, M. G., Levy, D. (1999). Is pulse pressure useful in predicting risk for coronary heart disease? The Framingham Heart Study. Circulation, 100(4), 354-360. [34] O’Rourke, M. (1995). Mechanical principles in arterial disease. Hypertension, 26(1), 2-9. [35] Safar, M. E., Levy, B. I., Struijker-Boudier, H. (2003). Current perspectives on arterial stiffness and pulse pressure in hypertension and cardiovascular diseases. Circulation, 107(22), 2864-2869. [36] Nichols, W. W., O'Rourke, M. F., Kenney, W. L. (1991). McDonald's Blood Flow in Arteries: Theoretical, Experimental and Clinical Principles, ed. 3. [37] Yayan, J. (2013). Emerging families of biomarkers for coronary artery disease: inflammatory mediators. Vascular health and risk management, 9, 435. [38] Bonagura, J. D., O'Grady, M. R., Herring, D. S. (1985). Echocardiography: principles of interpretation. Veterinary Clinics of North America: Small Animal Practice, 15(6), 1177-1194. [39] Mirvis, D. M., Goldberger, A. L. (2001). Electrocardiography. Heart Disease. A Textbook of Cardiovascular Medicine, 6th ed. Philadelphia: WB Saunders, 82-128. [40] Nørgaard, B. L., Leipsic, J., Gaur, S., Seneviratne, S., Ko, B. S., Ito, H., ... NXT Trial Study Group. (2014). Diagnostic performance of noninvasive fractional flow reserve derived from coronary computed tomography angiography in suspected coronary artery disease: the NXT trial (Analysis of Coronary Blood Flow Using CT Angiography: Next Steps). Journal of the American College of Cardiology, 63(12), 1145-1155. [41] Topal, U., Kaderli, A., Topal, N. B., Özdemir, B., Yeşilbursa, D., Cordan, J., ... Aydınlar, A. (2007). Relationship between the arterial calcification detected in mammography and coronary artery disease. European journal of radiology, 63(3), 391-395. [42] Davidson, C. J., Bonow, R. O. (1997). Cardiac catheterization. Libby P, 10. [43] Westerhof N., Stergiopulos N., Noble M.I.M., Westerhof B.E. (2019) Turbulence. In: Snapshots of Hemodynamics. Springer, Cham. [44] Jung, S., Kim, D. Y. (2021). Noninvasive Flow Monitoring in Simple Flow Phantom Using Resistive Strain Sensors. Sensors, 21(6), 2201. [45] Ng, J., Bourantas, C. V., Torii, R., Ang, H. Y., Tenekecioglu, E., Serruys, P. W., Foin, N. (2017). Local hemodynamic forces after stenting: implications on restenosis and thrombosis. Arteriosclerosis, thrombosis, and vascular biology, 37(12), 2231-2242. [46] Fung YC. Biomechanics: Circulation. New York, NY: Springer; 1997. [47] LaBarbera, M. (1990). Principles of design of fluid transport systems in zoology. Science, 249(4972), 992-1000. [48] Kamiya, A., Bukhari, R., Togawa, T. (1984). Adaptive regulation of wall shear stress optimizing vascular tree function. Bulletin of mathematical biology, 46(1), 127-137. [49] Malek, A. M., Alper, S. L., Izumo, S. (1999). Hemodynamic shear stress and its role in atherosclerosis. Jama, 282(21), 2035-2042. [50] Kamiya, A. K. I. R. A., Togawa, T. A. T. S. U. O. (1980). Adaptive regulation of wall shear stress to flow change in the canine carotid artery. American Journal of Physiology-Heart and Circulatory Physiology, 239(1), H14-H21. [51] Langille, B. L., O'Donnell, F. (1986). Reductions in arterial diameter produced by chronic decreases in blood flow are endothelium-dependent. Science, 231(4736), 405-407. [52] Kraiss, L. W., Kirkman, T. R., Kohler, T. R., Zierler, B., Clowes, A. W. (1991). Shear stress regulates smooth muscle proliferation and neointimal thickening in porous polytetrafluoroethylene grafts. Arteriosclerosis and thrombosis: a journal of vascular biology, 11(6), 1844-1852. [53] Girerd, X., London, G., Boutouyrie, P., Mourad, J. J., Safar, M., Laurent, S. (1996). Remodeling of the radial artery in response to a chronic increase in shear stress. Hypertension, 27(3), 799-803. [54] Kouadio, A. A., Jordana, F., Le Bars, P., Soueidan, A. (2018). The use of laser Doppler flowmetry to evaluate oral soft tissue blood flow in humans: A review. Archives of Oral Biology, 86, 58-71. [55] Välisuo, P. (2015). Optical methods for assessing skin flap survival. Biophotonics for Medical Applications, 331-346. [56] Jafarzadeh, H. (2009). Laser Doppler flowmetry in endodontics: a review. International Endodontic Journal, 42(6), 476-490. [57] Duteil, L., Bernango, J. C., Schalla, W. (1985). A double wavelength laser Doppler system to investigate skin microcirculation. IEEE transactions on biomedical engineering, (6), 439-447. [58] Obeid, A. N., Boggett, D. M., Barnett, N. J., Dougherty, G., Rolfe, P. (1988). Depth discrimination in laser Doppler skin blood flow measurement using different lasers. Medical and Biological Engineering and Computing, 26(4), 415-424 [59] Jentink, H. W., De Mul, F. F. M., Hermsen, R. G. A. M., Graaff, R., Greve, J. (1990). Monte Carlo simulations of laser Doppler blood flow measurements in tissue. Applied optics, 29(16), 2371-2381. [60] Sorbellini, E., Rucco, M., Rinaldi, F. (2018). Photodynamic and photobiological effects of light-emitting diode (LED) therapy in dermatological disease: an update. Lasers in medical science, 33(7), 1431-1439. [61] Rajan, V., Varghese, B., van Leeuwen, T. G., Steenbergen, W. (2009). Review of methodological developments in laser Doppler flowmetry. Lasers in medical science, 24(2), 269-283. [62] KYOCERA Optical Blood-Flow Sensor is Among World’s Smallest for Wearable Devices, Smartphones [63] KYOCERA,LDF-KIT010-001-A (EVAL. KIT) VER 0.2 - ENG [64] KYOCERA,Blood Flow Sensor Presentation,2020 [65] KYOCERA, Small and Low Power Blood Flow Meter_Description_v0.4 [66] MAX30100 Pulse Oximeter and Heart-Rate Sensor IC for Wearable Health datasheet [67] O'Haver, T. C., Begley, T. (1981). Signal-to-noise ratio in higher order derivative spectrometry. Analytical Chemistry, 53(12), 1876-1878. [68] Elgendi, M. (2012). On the analysis of fingertip photoplethysmogram signals. Current cardiology reviews, 8(1), 14-25. [69] Antonelli, L., Ohley, W., Khamlach, R. (1994, November). Dicrotic notch detection using wavelet transform analysis. In Proceedings of 16th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (Vol. 2, pp. 1216-1217). IEEE. [70] Blazek, R., Lee, C. (2010). Multi-resolution linear model comparison for detection of dicrotic notch and peak in blood volume pulse signals. Anal Biomed Signals Images, 20(20), 378-386. [71] Takazawa, K., Tanaka, N., Fujita, M., Matsuoka, O., Saiki, T., Aikawa, M., ... Ibukiyama, C. (1998). Assessment of vasoactive agents and vascular aging by the second derivative of photoplethysmogram waveform. Hypertension, 32(2), 365-370. [72] Imanaga, I., Hara, H., Koyanagi, S., Tanaka, K. (1998). Correlation between wave components of the second derivative of plethysmogram and arterial distensibility. Japanese heart journal, 39(6), 775-784. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82230 | - |
| dc.description.abstract | "心血管疾病(Cardiovascular diseases, CVD)是全球主要的死亡原因,估計每年奪去 1790 萬人的生命,佔全球死亡人數32%的人口。若能早期發現微循環的障礙以及有效預測心血管疾病的危險性對於中老人在預防醫學中是很重要的,其中,動脈硬度的增加與動脈壁彈性的降低都是造成心血管的危險因素,並且也可能有助臨床醫師診斷和制訂預防心血管疾病理進展的治療方案,這對於心血管疾患者健康的維護會是一大幫助。 因此,本研究使用微型雷射都卜勒血流感測器(Micro Laser Doppler Blood Flow Sensor, LDF),來量測微循環血流訊號和分析心血管疾病患者的健康狀況及生理相關參數。此感測器對局部血流狀況的量測具有定量與高靈敏度,可以量測人體的微循環(Microcirculation)。此外,本研究使用的微型雷射都卜勒血流感測器機體微型化、具有高的訊號雜訊比(Signal-to-noise ratio)、低功耗(Power consumption)和高熱阻(Thermal resistance)等優點。此種血流感測器或許可以有效改善傳統上雷射都卜勒血流儀的缺點,如機體笨重,高功耗,檢測位置受限等。因此,此微型雷射都卜勒血流感測器可能可以幫助醫師方便管理心血管患者和追蹤治療後心血管患者的生理健康狀況。 " | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-25T06:34:03Z (GMT). No. of bitstreams: 1 U0001-1612202120215800.pdf: 4323407 bytes, checksum: d7cfa6ad893f1ceb0b39d2c6abeac103 (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | 目錄 口試委員會審定書 i 摘要 ii Abstract iii 目錄 iv 圖目錄 vi 表目錄 x 第一章 緒論1 1.1 研究背景 1 1.2 研究動機與目的4 1.3 章節架構 5 第二章 基本原理與文獻回顧 6 2.1 心血管疾病 6 2.1.1 心血管病因與機制 10 2.1.2 心血管疾病診斷方式 13 2.2 局部血液動力學 14 2.2.1 白努利定律 16 2.2.2 剪應力對微血管內皮細胞舒張功能之影響 17 2.3 雷射都卜勒血流儀量測技術 19 2.3.1 雷射都卜勒血流儀原理 22 2.3.2 雷射都卜勒血流儀的量測 23 2.3.3 雷射都卜勒血流儀於量測深度中的靈敏度 25 第三章 研究方法與實驗架構 27 3.1 系統建構 27 3.1.1 微型雷射都卜勒血流感測器 28 3.1.2 微型雷射都卜勒血流感測器訊號處理方式 34 3.1.3 脈搏血氧儀量測裝置 36 3.2 實驗設計 38 3.2.1 實驗對象 38 3.2.2 實驗流程 39 3.3 研究數據分析與方法 40 3.3.1 研究數據處理 40 3.3.2 LDF 波形特徵 41 3.3.3 微血管內皮細胞舒張功能之時域分析 42 3.3.4 LDF 二階微分波形分析方式 43 第四章 研究結果與討論 44 4.1 生理參數及 LDF 血流訊號量測結果 44 4.2 LDF 血流參數分析 50 4.3 微血管內皮細胞舒張功能之時域分析結果 60 4.4 LDF 二階微分波形分析結果 64 4.5 LDF 量測系統與人體實驗之探討 65 4.6 LDF 量測結果之探討 66 第五章 結論與未來展望 68 第六章 參考文獻 69 | |
| dc.language.iso | zh-TW | |
| dc.subject | 心血管疾病 | zh_TW |
| dc.subject | 微型雷射都卜勒血流感測器 | zh_TW |
| dc.subject | 微循環 | zh_TW |
| dc.subject | Micro Laser Doppler Blood Flow Sensor | en |
| dc.subject | Cardiovascular diseases | en |
| dc.subject | Microcirculation | en |
| dc.title | 微型雷射都卜勒血流感測器於人體微循環生理參數量測與心血管疾病相關性之可行性研究 | zh_TW |
| dc.title | The Feasibility Study of the Measurement of Human Microcirculation Physiological Parameters and the Correlation of Cardiovascular Diseases by Micro Laser Doppler Blood Flow Sensor | en |
| dc.date.schoolyear | 110-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 趙福杉(Hsin-Tsai Liu),施博仁(Chih-Yang Tseng) | |
| dc.subject.keyword | 心血管疾病,微循環,微型雷射都卜勒血流感測器, | zh_TW |
| dc.subject.keyword | Cardiovascular diseases,Microcirculation,Micro Laser Doppler Blood Flow Sensor, | en |
| dc.relation.page | 74 | |
| dc.identifier.doi | 10.6342/NTU202104539 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2021-12-17 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 醫學工程學研究所 | zh_TW |
| dc.date.embargo-lift | 2026-12-27 | - |
| 顯示於系所單位: | 醫學工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1612202120215800.pdf 未授權公開取用 | 4.22 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
