Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 醫學工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82228
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor呂東武(Tung-Wu Lu)
dc.contributor.authorHsuan-Yu Luen
dc.contributor.author呂軒瑜zh_TW
dc.date.accessioned2022-11-25T06:34:01Z-
dc.date.copyright2022-01-03
dc.date.issued2021
dc.date.submitted2021-12-21
dc.identifier.citation[1] Y. Zhang et al., 'Comparison of the prevalence of knee osteoarthritis between the elderly Chinese population in Beijing and whites in the United States: The Beijing Osteoarthritis Study,' Arthritis Rheumatism: Official Journal of the American College of Rheumatology, vol. 44, no. 9, pp. 2065-2071, 2001. [2] D. T. Felson et al., 'High prevalence of lateral knee osteoarthritis in Beijing Chinese compared with Framingham Caucasian subjects,' Arthritis Rheumatism, vol. 46, no. 5, pp. 1217-1222, 2002. [3] G. Wu et al., 'ISB recommendation on definitions of joint coordinate system of various joints for the reporting of human joint motion—part I: ankle, hip, and spine,' Journal of biomechanics, vol. 35, no. 4, pp. 543-548, 2002. [4] A. Cui, H. Li, D. Wang, J. Zhong, Y. Chen, and H. Lu, 'Global, regional prevalence, incidence and risk factors of knee osteoarthritis in population-based studies,' EClinicalMedicine, vol. 29-30, 2020. [5] C. S. Ranawat, W. F. Flynn Jr, S. Saddler, K. K. Hansraj, and M. J. Maynard, 'Long-term results of the total condylar knee arthroplasty. A 15-year survivorship study,' Clinical orthopaedics and related research, no. 286, pp. 94-102, 1993. [6] K. Emmerson, C. Moran, and I. Pinder, 'Survivorship analysis of the Kinematic Stabilizer total knee replacement: a 10-to 14-year follow-up,' The Journal of bone and joint surgery. British volume, vol. 78, no. 3, pp. 441-445, 1996. [7] J. Parvizi et al., 'High level of residual symptoms in young patients after total knee arthroplasty,' Clinical Orthopaedics and Related Research®, vol. 472, no. 1, pp. 133-137, 2014. [8] C. Halewood, A. Traynor, J. Bellemans, J. Victor, and A. A. Amis, 'Anteroposterior laxity after bicruciate-retaining total knee arthroplasty is closer to the native knee than ACL-resecting TKA: a biomechanical cadaver study,' The Journal of arthroplasty, vol. 30, no. 12, pp. 2315-2319, 2015. [9] E. P. Chassin, R. P. Mikosz, T. P. Andriacchi, and A. G. Rosenberg, 'Functional analysis of cemented medial unicompartmental knee arthroplasty,' The Journal of arthroplasty, vol. 11, no. 5, pp. 553-559, 1996. [10] S. Isaac, K. Barker, I. Danial, D. Beard, C. Dodd, and D. Murray, 'Does arthroplasty type influence knee joint proprioception? A longitudinal prospective study comparing total and unicompartmental arthroplasty,' The knee, vol. 14, no. 3, pp. 212-217, 2007. [11] P. J. Jeer, A. J. Cossey, and G. C. Keene, 'Haemoglobin levels following unicompartmental knee arthroplasty: influence of transfusion practice and surgical approach,' The Knee, vol. 12, no. 5, pp. 358-361, 2005. [12] N. M. Brown et al., 'Total knee arthroplasty has higher postoperative morbidity than unicompartmental knee arthroplasty: a multicenter analysis,' The Journal of arthroplasty, vol. 27, no. 8, pp. 86-90, 2012. [13] A. W-Dahl, O. Robertsson, L. Lidgren, L. Miller, D. Davidson, and S. Graves, 'Unicompartmental knee arthroplasty in patients aged less than 65: combined data from the Australian and Swedish Knee Registries,' Acta orthopaedica, vol. 81, no. 1, pp. 90-94, 2010. [14] J. R. Hang, T. E. Stanford, S. E. Graves, D. C. Davidson, R. N. de Steiger, and L. N. Miller, 'Outcome of revision of unicompartmental knee replacement: 1,948 cases from the Australian Orthopaedic Association National Joint Replacement Registry, 1999–2008,' Acta orthopaedica, vol. 81, no. 1, pp. 95-98, 2010. [15] A. Pearse, G. Hooper, A. Rothwell, and C. Frampton, 'Survival and functional outcome after revision of a unicompartmental to a total knee replacement: the New Zealand National Joint Registry,' The Journal of bone and joint surgery. British volume, vol. 92, no. 4, pp. 508-512, 2010. [16] T. E. Dudley, T. J. Gioe, P. Sinner, and S. Mehle, 'Registry outcomes of unicompartmental knee arthroplasty revisions,' Clinical orthopaedics and related research, vol. 466, no. 7, pp. 1666-1670, 2008. [17] J. Cobb et al., 'Hands-on robotic unicompartmental knee replacement: a prospective, randomised controlled study of the acrobot system,' The Journal of bone and joint surgery. British volume, vol. 88, no. 2, pp. 188-197, 2006. [18] S. W. Bell, I. Anthony, B. Jones, A. MacLean, P. Rowe, and M. Blyth, 'Improved Accuracy of Component Positioning with Robotic-Assisted Unicompartmental Knee Arthroplasty: Data from a Prospective, Randomized Controlled Study,' J Bone Joint Surg Am, vol. 98, no. 8, pp. 627-35, Apr 20 2016. [19] A. D. Pearle, D. Kendoff, V. Stueber, V. Musahl, and J. A. Repicci, 'Perioperative management of unicompartmental knee arthroplasty using the MAKO robotic arm system (MAKOplasty),' American Journal of Orthopedics, vol. 38, no. 2, pp. 16-19, 2009. [20] M. A. Conditt and M. W. Roche, 'Minimally invasive robotic-arm-guided unicompartmental knee arthroplasty,' JBJS, vol. 91, no. Supplement_1, pp. 63-68, 2009. [21] P. Hernigou and G. Deschamps, 'Posterior slope of the tibial implant and the outcome of unicompartmental knee arthroplasty,' JBJS, vol. 86, no. 3, pp. 506-511, 2004. [22] R. H. Emerson Jr and L. L. Higgins, 'Unicompartmental knee arthroplasty with the oxford prosthesis in patients with medial compartment arthritis,' JBJS, vol. 90, no. 1, pp. 118-122, 2008. [23] T. J. Aleto, M. E. Berend, M. A. Ritter, P. M. Faris, and R. M. Meneghini, 'Early failure of unicompartmental knee arthroplasty leading to revision,' The Journal of arthroplasty, vol. 23, no. 2, pp. 159-163, 2008. [24] K. S. Shih et al., 'Patient-specific instrumentation improves functional kinematics of minimally-invasive total knee replacements as revealed by computerized 3D fluoroscopy,' Comput Methods Programs Biomed, vol. 188, p. 105250, May 2020. [25] T.-W. Lu, T.-Y. Tsai, M.-Y. Kuo, H.-C. Hsu, and H.-L. Chen, 'In vivo three-dimensional kinematics of the normal knee during active extension under unloaded and loaded conditions using single-plane fluoroscopy,' Medical engineering physics, vol. 30, no. 8, pp. 1004-1012, 2008. [26] C.-C. Lin, T.-W. Lu, J.-D. Li, M.-Y. Kuo, C.-C. Kuo, and H.-C. Hsu, 'An Automated Three-Dimensional Bone Pose Tracking Method Using Clinical Interleaved Biplane Fluoroscopy Systems: Application to the Knee,' Applied Sciences, vol. 10, no. 23, p. 8426, 2020. [27] M. N. Joseph, M. R. Carmont, H. Tailor, J. M. Stephen, and A. A. Amis, 'Total knee arthroplasty reduces knee extension torque in-vitro and patellofemoral arthroplasty does not,' Journal of biomechanics, vol. 104, p. 109739, 2020. [28] P. Levinger, H. B. Menz, E. Wee, J. A. Feller, J. R. Bartlett, and N. R. Bergman, 'Physiological risk factors for falls in people with knee osteoarthritis before and early after knee replacement surgery,' Knee surgery, sports traumatology, arthroscopy, vol. 19, no. 7, pp. 1082-1089, 2011. [29] H. J. Yack, C. E. Collins, and T. J. Whieldon, 'Comparison of closed and open kinetic chain exercise in the anterior cruciate ligament-deficient knee,' The American journal of sports medicine, vol. 21, no. 1, pp. 49-54, 1993. [30] P. Levinger et al., 'Lower limb proprioception deficits persist following knee replacement surgery despite improvements in knee extension strength,' Knee Surgery, Sports Traumatology, Arthroscopy, vol. 20, no. 6, pp. 1097-1103, 2012. [31] W. G. Janssen, H. B. Bussmann, and H. J. Stam, 'Determinants of the sit-to-stand movement: a review,' Physical therapy, vol. 82, no. 9, pp. 866-879, 2002. [32] S. Coghlin and B. McFadyen, 'Transfer strategies used to rise from a chair in normal and low back pain subjects,' Clinical Biomechanics, vol. 9, no. 2, pp. 85-92, 1994. [33] K. Yoshida, H. Iwakura, and F. Inoue, 'Motion analysis in the movements of standing up from and sitting down on a chair. A comparison of normal and hemiparetic subjects and the differences of sex and age among the normals,' Scandinavian journal of rehabilitation medicine, vol. 15, no. 3, pp. 133-140, 1983. [34] M. Schenkman, P. Riley, and C. Pieper, 'Sit to stand from progressively lower seat heights—alterations in angular velocity,' Clinical Biomechanics, vol. 11, no. 3, pp. 153-158, 1996. [35] J. Schwiesau et al., 'Definition and evaluation of testing scenarios for knee wear simulation under conditions of highly demanding daily activities,' Medical engineering physics, vol. 35, no. 5, pp. 591-600, 2013. [36] D. R. Wilson, J. D. Feikes, and J. J. O’Connor, 'Ligaments and articular contact guide passive knee flexion,' Journal of Biomechanics, vol. 31, no. 12, pp. 1127-1136, 12// 1998. [37] J. C. Eck et al., 'Biomechanical Study on the Effect of Cervical Spine Fusion on Adjacent-Level Intradiscal Pressure and Segmental Motion,' Spine, vol. 27, no. 22, 2002. [38] R. Kleipool and L. Blankevoort, 'The relation between geometry and function of the ankle joint complex: a biomechanical review,' (in English), Knee Surgery, Sports Traumatology, Arthroscopy, vol. 18, no. 5, pp. 618-627, 2010/05/01 2010. [39] T. Zantop, N. Diermann, T. Schumacher, S. Schanz, F. H. Fu, and W. Petersen, 'Anatomical and nonanatomical double-bundle anterior cruciate ligament reconstruction: importance of femoral tunnel location on knee kinematics,' The American journal of sports medicine, vol. 36, no. 4, pp. 678-685, 2008. [40] A. D. Georgoulis, A. Papadonikolakis, C. D. Papageorgiou, A. Mitsou, and N. Stergiou, 'Three-Dimensional Tibiofemoral Kinematics of the Anterior Cruciate Ligament-Deficient and Reconstructed Knee during Walking,' The American Journal of Sports Medicine, vol. 31, no. 1, pp. 75-79, January 1, 2003 2003. [41] C. P. MCDonalD, V. Chang, M. MCDonalD, N. Ramo, M. J. Bey, and S. Bartol, 'Three-dimensional motion analysis of the cervical spine for comparison of anterior cervical decompression and fusion versus artificial disc replacement in 17 patients,' Journal of Neurosurgery: Spine, vol. 20, no. 3, pp. 245-255, 2014. [42] T. Kobayashi et al., 'In vivo talocrural joint contact mechanics with functional ankle instability,' Foot ankle specialist, vol. 8, no. 6, pp. 445-453, 2015. [43] G. Li, L. E. DeFrate, H. Sun, and T. J. Gill, 'In Vivo Elongation of the Anterior Cruciate Ligament and Posterior Cruciate Ligament During Knee Flexion,' The American Journal of Sports Medicine, vol. 32, no. 6, pp. 1415-1420, September 1, 2004 2004. [44] N. Haraguchi, R. S. Armiger, M. S. Myerson, J. T. Campbell, and E. Y. S. Chao, 'Prediction of Three-Dimensional Contact Stress and Ligament Tension in the Ankle During Stance Determined from Computational Modeling,' Foot Ankle International, vol. 30, no. 2, pp. 177-185, February 1, 2009 2009. [45] S. Wang et al., 'A combined numerical and experimental technique for estimation of the forces and moments in the lumbar intervertebral disc,' Computer Methods in Biomechanics and Biomedical Engineering, vol. 16, no. 12, pp. 1278-1286, 2013/12/01 2013. [46] B. T. K. Ding and S. A. Khan, 'The judet quadricepsplasty for elderly traumatic knee extension contracture: a case report and review of the literature,' BioMedicine, vol. 9, no. 3, 2019. [47] H. A. Gray, S. Guan, L. T. Thomeer, A. G. Schache, R. de Steiger, and M. G. Pandy, 'Three‐dimensional motion of the knee‐joint complex during normal walking revealed by mobile biplane x‐ray imaging,' Journal of Orthopaedic Research®, vol. 37, no. 3, pp. 615-630, 2019. [48] C. Yang, Y. Tashiro, A. Lynch, F. Fu, and W. Anderst, 'Kinematics and arthrokinematics in the chronic ACL-deficient knee are altered even in the absence of instability symptoms,' Knee Surgery, Sports Traumatology, Arthroscopy, vol. 26, no. 5, pp. 1406-1413, 2018. [49] S. Brandsson, J. Karlsson, L. Swärd, J. Kartus, B. I. Eriksson, and J. Kärrholm, 'Kinematics and laxity of the knee joint after anterior cruciate ligament reconstruction: pre-and postoperative radiostereometric studies,' The American journal of sports medicine, vol. 30, no. 3, pp. 361-367, 2002. [50] H. McEwen et al., 'The influence of design, materials and kinematics on the in vitro wear of total knee replacements,' Journal of biomechanics, vol. 38, no. 2, pp. 357-365, 2005. [51] C.-C. Lin, T.-W. Lu, H.-L. Lu, M.-Y. Kuo, and H.-C. Hsu, 'Effects of soft tissue artifacts on differentiating kinematic differences between natural and replaced knee joints during functional activity,' Gait posture, vol. 46, pp. 154-160, 2016. [52] V. Camomilla, A. Cappozzo, and G. Vannozzi, 'Three-dimensional reconstruction of the human skeleton in motion,' Handbook of human motion. Cham: Springer International Publishing, pp. 17-45, 2018. [53] T.-Y. Tsai, T.-W. Lu, M.-Y. Kuo, and C.-C. Lin, 'Effects of soft tissue artifacts on the calculated kinematics and kinetics of the knee during stair-ascent,' Journal of biomechanics, vol. 44, no. 6, pp. 1182-1188, 2011. [54] V. V. Patel et al., 'A three‐dimensional MRI analysis of knee kinematics,' Journal of Orthopaedic Research, vol. 22, no. 2, pp. 283-292, 2004. [55] C. C. Lin, S. Zhang, J. Frahm, T. W. Lu, C. Y. Hsu, and T. F. Shih, 'A slice‐to‐volume registration method based on real‐time magnetic resonance imaging for measuring three‐dimensional kinematics of the knee,' Medical physics, vol. 40, no. 10, p. 102302, 2013. [56] J.-D. Li, T.-W. Lu, C.-C. Lin, M.-Y. Kuo, H.-C. Hsu, and W.-C. Shen, 'Soft tissue artefacts of skin markers on the lower limb during cycling: effects of joint angles and pedal resistance,' Journal of biomechanics, vol. 62, pp. 27-38, 2017. [57] C. C. Lin, S. Zhang, J. Frahm, T. W. Lu, C. Y. Hsu, and T. F. Shih, 'A slice-to-volume registration method based on real-time magnetic resonance imaging for measuring three-dimensional kinematics of the knee,' Med Phys, vol. 40, no. 10, p. 102302, Oct 2013. [58] T. a. Moro‐oka et al., 'Can magnetic resonance imaging–derived bone models be used for accurate motion measurement with single‐plane three‐dimensional shape registration?,' Journal of orthopaedic research, vol. 25, no. 7, pp. 867-872, 2007. [59] P. Markelj, D. Tomaževič, B. Likar, and F. Pernuš, 'A review of 3D/2D registration methods for image-guided interventions,' Medical image analysis, vol. 16, no. 3, pp. 642-661, 2012. [60] C.-C. Lin, T.-W. Lu, T.-M. Wang, C.-Y. Hsu, S.-J. Hsu, and T.-F. Shih, 'In vivo three-dimensional intervertebral kinematics of the subaxial cervical spine during seated axial rotation and lateral bending via a fluoroscopy-to-CT registration approach,' Journal of biomechanics, vol. 47, no. 13, pp. 3310-3317, 2014. [61] F. Ikuta et al., 'Knee kinematics of severe medial knee osteoarthritis showed tibial posterior translation and external rotation: a cross-sectional study,' Aging clinical and experimental research, vol. 32, no. 9, pp. 1767-1775, 2020. [62] J. T. Lynch et al., 'Shape is only a weak predictor of deep knee flexion kinematics in healthy and osteoarthritic knees,' Journal of Orthopaedic Research®, vol. 38, no. 10, pp. 2250-2261, 2020. [63] K.-S. Shih et al., 'Patient-specific instrumentation improves functional kinematics of minimally-invasive total knee replacements as revealed by computerized 3D fluoroscopy,' Computer methods and programs in biomedicine, vol. 188, p. 105250, 2020. [64] K. Kono et al., 'In vivo kinematic comparison before and after mobile-bearing unicompartmental knee arthroplasty during high-flexion activities,' The Knee, vol. 27, no. 3, pp. 878-883, 2020. [65] H. Dai et al., 'More Anterior in vivo Contact Position in Patients With Fixed-Bearing Unicompartmental Knee Arthroplasty During Daily Activities Than in vitro Wear Simulator,' Frontiers in bioengineering and biotechnology, vol. 9, 2021. [66] K. Kono et al., 'In vivo kinematics and cruciate ligament forces in bicruciate-retaining total knee arthroplasty,' Scientific Reports, vol. 11, no. 1, pp. 1-10, 2021. [67] S. A. Banks and W. A. Hodge, 'Accurate measurement of three-dimensional knee replacement kinematics using single-plane fluoroscopy,' IEEE transactions on Biomedical Engineering, vol. 43, no. 6, pp. 638-649, 1996. [68] T. Y. Tsai, T. W. Lu, C. M. Chen, M. Y. Kuo, and H. C. Hsu, 'A volumetric model-based 2D to 3D registration method for measuring kinematics of natural knees with single-plane fluoroscopy,' Med Phys, vol. 37, no. 3, pp. 1273-84, Mar 2010. [69] B. J. Fregly, H. A. Rahman, and S. A. Banks, 'Theoretical accuracy of model-based shape matching for measuring natural knee kinematics with single-plane fluoroscopy,' 2005. [70] C.-C. Lin, T.-W. Lu, T.-M. Wang, C.-Y. Hsu, and T.-F. Shih, 'Comparisons of surface vs. volumetric model-based registration methods using single-plane vs. bi-plane fluoroscopy in measuring spinal kinematics,' Medical engineering physics, vol. 36, no. 2, pp. 267-274, 2014. [71] C. C. Lin, J. D. Li, T. W. Lu, M. Y. Kuo, C. C. Kuo, and H. C. Hsu, 'A model-based tracking method for measuring 3D dynamic joint motion using an alternating biplane x-ray imaging system,' Med Phys, Jun 11 2018. [72] M. Akbari-Shandiz, J. D. Mozingo, D. R. Holmes III, and K. D. Zhao, 'An interpolation technique to enable accurate three-dimensional joint kinematic analyses using asynchronous biplane fluoroscopy,' Medical engineering physics, vol. 60, pp. 109-116, 2018. [73] T.-Y. Tsai et al., 'Assessment of accuracy and precision of 3D reconstruction of unicompartmental knee arthroplasty in upright position using biplanar radiography,' Medical engineering physics, vol. 38, no. 7, pp. 633-638, 2016. [74] K. Kono et al., 'Weight-bearing status affects in vivo kinematics following mobile-bearing unicompartmental knee arthroplasty,' Knee Surgery, Sports Traumatology, Arthroscopy, vol. 29, no. 3, pp. 718-724, 2021. [75] H.-Y. Lu, C.-C. Lin, T.-W. Lu, M.-Y. Kuo, and H.-C. Hsu, 'Effects of Model Types for Model-Based Registration with Bi-Plane Fluoroscopy on Accuracy of 3D Kinematics of Uni-Compartmental Knee Replacements,' Under review, 2021. [76] S. Fantozzi, F. Catani, A. Ensini, A. Leardini, and S. Giannini, 'Femoral rollback of cruciate‐retaining and posterior‐stabilized total knee replacements: in vivo fluoroscopic analysis during activities of daily living,' Journal of orthopaedic research, vol. 24, no. 12, pp. 2222-2229, 2006. [77] S. Yoshiya, N. Matsui, R. D. Komistek, D. A. Dennis, M. Mahfouz, and M. Kurosaka, 'In vivo kinematic comparison of posterior cruciate-retaining and posterior stabilized total knee arthroplasties under passive and weight-bearing conditions,' The Journal of arthroplasty, vol. 20, no. 6, pp. 777-783, 2005. [78] D. Dennis et al., 'In vivo three-dimensional determination of kinematics for subjects with a normal knee or a unicompartmental or total knee replacement,' JBJS, vol. 83, no. 2, pp. S104-115, 2001. [79] B. H. Van Duren, H. Pandit, D. J. Beard, D. W. Murray, and H. S. Gill, 'Accuracy evaluation of fluoroscopy-based 2D and 3D pose reconstruction with unicompartmental knee arthroplasty,' Med Eng Phys, vol. 31, no. 3, pp. 356-63, Apr 2009. [80] G. Li, S. K. Van de Velde, and J. T. Bingham, 'Validation of a non-invasive fluoroscopic imaging technique for the measurement of dynamic knee joint motion,' Journal of Biomechanics, vol. 41, no. 7, pp. 1616-1622, 2008. [81] W. Anderst, R. Zauel, J. Bishop, E. Demps, and S. Tashman, 'Validation of three-dimensional model-based tibio-femoral tracking during running,' Medical Engineering and Physics, vol. 31, no. 1, pp. 10-16, 2009. [82] T.-Y. Tsai et al., 'A novel dual fluoroscopic imaging method for determination of THA kinematics: in-vitro and in-vivo study,' Journal of biomechanics, vol. 46, no. 7, pp. 1300-1304, 2013. [83] T. W. Lu, T. Y. Tsai, M. Y. Kuo, H. C. Hsu, and H. L. Chen, 'In vivo three-dimensional kinematics of the normal knee during active extension under unloaded and loaded conditions using single-plane fluoroscopy,' Med Eng Phys, vol. 30, no. 8, pp. 1004-12, Oct 2008. [84] S. Yamaguchi, T. Sasho, H. Kato, Y. Kuroyanagi, and S. A. Banks, 'Ankle and subtalar kinematics during dorsiflexion-plantarflexion activities,' (in eng), Foot ankle international, vol. 30, no. 4, pp. 361-366, 2009/04// 2009. [85] D. A. Dennis, M. R. Mahfouz, R. D. Komistek, and W. Hoff, 'In vivo determination of normal and anterior cruciate ligament-deficient knee kinematics,' Journal of Biomechanics, vol. 38, no. 2, pp. 241-253, 2005. [86] S. Hamai et al., 'Knee kinematics in medial osteoarthritis during in vivo weight-bearing activities,' (in eng), Journal of orthopaedic research : official publication of the Orthopaedic Research Society, vol. 27, no. 12, pp. 1555-1561, 2009/12// 2009. [87] D. A. Dennis, R. D. Komistek, M. R. Mahfouz, B. D. Haas, and J. B. Stiehl, 'Multicenter Determination of in Vivo Kinematics after Total Knee Arthroplasty,' Clinical Orthopaedics and Related Research, no. 416, pp. 37-57, 2003. [88] F. Liu, J. Cheng, R. D. Komistek, M. R. Mahfouz, and A. Sharma, 'In vivo evaluation of dynamic characteristics of the normal, fused, and disc replacement cervical spines,' Spine, vol. 32, no. 23, pp. 2578-2584, 2007. [89] S. Yamaguchi, Y. Tanaka, S. Kosugi, Y. Takakura, T. Sasho, and S. A. Banks, 'In vivo kinematics of two-component total ankle arthroplasty during non-weightbearing and weightbearing dorsiflexion/plantarflexion,' Journal of Biomechanics, vol. 44, no. 6, pp. 995-1000, 4/7/ 2011. [90] B. J. Fregly, H. A. Rahman, and S. A. Banks, 'Theoretical accuracy of model-based shape matching for measuring natural knee kinematics with single-plane fluoroscopy,' Journal of Biomechanical Engineering, vol. 127, no. 4, pp. 692-699, 2005. [91] A. L. Kapron et al., 'Accuracy and feasibility of dual fluoroscopy and model-based tracking to quantify in vivo hip kinematics during clinical exams,' (in eng), Journal of applied biomechanics, vol. 30, no. 3, pp. 461-470, 2014/06// 2014. [92] K. Ito et al., 'Direct assessment of 3D foot bone kinematics using biplanar X-ray fluoroscopy and an automatic model registration method,' Journal of Foot and Ankle Research, vol. 8, no. 1, pp. 1-10, 2015// 2015. [93] E. L. Brainerd et al., 'X-ray reconstruction of moving morphology (XROMM): precision, accuracy and applications in comparative biomechanics research,' (in eng), Journal of experimental zoology. Part A, Ecological genetics and physiology, vol. 313, no. 5, pp. 262-279, 2010/06// 2010. [94] H. Lamecker, M. Seebass, H.-C. Hege, and P. Deuflhard, 'A 3D statistical shape model of the pelvic bone for segmentation,' in Medical imaging 2004: Image processing, 2004, vol. 5370, pp. 1341-1351: International Society for Optics and Photonics. [95] J. Fripp, S. K. Warfield, S. Crozier, and S. Ourselin, 'Automatic segmentation of the knee bones using 3D active shape models,' in 18th International Conference on Pattern Recognition (ICPR'06), 2006, vol. 1, pp. 167-170: IEEE. [96] K. Josephson, A. Ericsson, and J. Karlsson, 'Segmentation of medical images using three-dimensional active shape models,' in Scandinavian Conference on Image Analysis, 2005, pp. 719-728: Springer. [97] G. A. Seber, Multivariate observations. John Wiley Sons, 2009. [98] N. Baka et al., '2D-3D shape reconstruction of the distal femur from stereo X-ray imaging using statistical shape models,' Med Image Anal, vol. 15, no. 6, pp. 840-50, Dec 2011. [99] P. Cerveri, C. Sacco, G. Olgiati, A. Manzotti, and G. Baroni, '2D/3D reconstruction of the distal femur using statistical shape models addressing personalized surgical instruments in knee arthroplasty: a feasibility analysis,' The International Journal of Medical Robotics and Computer Assisted Surgery, vol. 13, no. 4, p. e1823, 2017. [100] M. Valenti et al., 'Fluoroscopy-based tracking of femoral kinematics with statistical shape models,' International journal of computer assisted radiology and surgery, vol. 11, no. 5, pp. 757-765, 2016. [101] M. Valenti et al., 'Gaussian mixture models based 2D–3D registration of bone shapes for orthopedic surgery planning,' Medical biological engineering computing, vol. 54, no. 11, pp. 1727-1740, 2016. [102] E. van IJsseldijk et al., 'Three dimensional measurement of minimum joint space width in the knee from stereo radiographs using statistical shape models,' Bone joint research, vol. 5, no. 8, pp. 320-327, 2016. [103] W. Yu, C. Chu, M. Tannast, and G. Zheng, 'Fully automatic reconstruction of personalized 3D volumes of the proximal femur from 2D X-ray images,' International journal of computer assisted radiology and surgery, vol. 11, no. 9, pp. 1673-1685, 2016. [104] W. Yu, M. Tannast, and G. Zheng, 'Non-rigid free-form 2D–3D registration using a B-spline-based statistical deformation model,' Pattern recognition, vol. 63, pp. 689-699, 2017. [105] L. M. Smoger, K. B. Shelburne, A. J. Cyr, P. J. Rullkoetter, and P. J. Laz, 'Statistical shape modeling predicts patellar bone geometry to enable stereo-radiographic kinematic tracking,' Journal of biomechanics, vol. 58, pp. 187-194, 2017. [106] G. Zheng and W. Yu, 'Statistical shape and deformation models based 2D–3D reconstruction,' in Statistical shape and deformation analysis: Elsevier, 2017, pp. 329-349. [107] T. J. T. Fotsin, C. Vázquez, T. Cresson, and J. De Guise, 'Shape, pose and density statistical model for 3D reconstruction of articulated structures from x-ray images,' in 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2019, pp. 2748-2751: IEEE. [108] P. Cerveri, A. Belfatto, and A. Manzotti, 'Predicting Knee Joint Instability Using a Tibio-Femoral Statistical Shape Model,' Frontiers in bioengineering and biotechnology, vol. 8, p. 253, 2020. [109] J. Wu and M. R. Mahfouz, 'Reconstruction of knee anatomy from single-plane fluoroscopic x-ray based on a nonlinear statistical shape model,' Journal of Medical Imaging, vol. 8, no. 1, p. 016001, 2021. [110] H. Lamecker, T. H. Wenckebach, and H.-C. Hege, 'Atlas-based 3D-shape reconstruction from X-ray images,' in 18th International Conference on Pattern Recognition (ICPR'06), 2006, vol. 1, pp. 371-374: IEEE. [111] V. Karade and B. Ravi, '3D femur model reconstruction from biplane X-ray images: a novel method based on Laplacian surface deformation,' International journal of computer assisted radiology and surgery, vol. 10, no. 4, pp. 473-485, 2015. [112] N. Sarkalkan, H. Weinans, and A. A. Zadpoor, 'Statistical shape and appearance models of bones,' Bone, vol. 60, pp. 129-140, 2014. [113] N. Baka et al., 'Statistical shape model-based femur kinematics from biplane fluoroscopy,' IEEE Trans Med Imaging, vol. 31, no. 8, pp. 1573-83, Aug 2012. [114] T. Y. Tsai, J. S. Li, S. Wang, P. Li, Y. M. Kwon, and G. Li, 'Principal component analysis in construction of 3D human knee joint models using a statistical shape model method,' Comput Methods Biomech Biomed Engin, vol. 18, no. 7, pp. 721-9, 2015. [115] C.-K. Cheng, C.-Y. Lung, Y.-M. Lee, and C.-H. Huang, 'A new approach of designing the tibial baseplate of total knee prostheses,' Clinical Biomechanics, vol. 14, no. 2, pp. 112-117, 1999. [116] M. Mahfouz, E. E. Abdel Fatah, L. S. Bowers, and G. Scuderi, 'Three-dimensional morphology of the knee reveals ethnic differences,' Clin Orthop Relat Res, vol. 470, no. 1, pp. 172-85, Jan 2012. [117] M. Fleute and S. Lavallée, 'Nonrigid 3-D/2-D registration of images using statistical models,' in International Conference on Medical Image Computing and Computer-Assisted Intervention, 1999, pp. 138-147: Springer. [118] G. Zheng, K. T. Rajamani, X. Zhang, X. Dong, M. Styner, and L.-P. Nolte, 'Kernel regularized bone surface reconstruction from partial data using statistical shape model,' in Engineering in Medicine and Biology Society, 2005. IEEE-EMBS 2005. 27th Annual International Conference of the, 2006, pp. 6579-6582: IEEE. [119] T. S. Tang and R. E. Ellis, '2D/3D deformable registration using a hybrid atlas,' in International Conference on Medical Image Computing and Computer-Assisted Intervention, 2005, pp. 223-230: Springer. [120] S. Laporte, W. Skalli, J. A. de Guise, F. Lavaste, and D. Mitton, 'A biplanar reconstruction method based on 2D and 3D contours: application to the distal femur,' Comput Methods Biomech Biomed Engin, vol. 6, no. 1, pp. 1-6, Feb 2003. [121] Z. Zhu and G. Li, 'Construction of 3D human distal femoral surface models using a 3D statistical deformable model,' J Biomech, vol. 44, no. 13, pp. 2362-8, Sep 2 2011. [122] H.-Y. Lu et al., 'Three-Dimensional Subject-Specific Knee Shape Reconstruction with Asynchronous Fluoroscopy Images Using Statistical Shape Modeling,' Frontiers in Bioengineering and Biotechnology, vol. 9, 2021. [123] V. Karade and B. Ravi, '3D femur model reconstruction from biplane X-ray images: a novel method based on Laplacian surface deformation,' Int J Comput Assist Radiol Surg, vol. 10, no. 4, pp. 473-85, Apr 2015. [124] H.-Y. Lu et al., 'Three-Dimensional Personalized Knee Shape Reconstruction with Bi-Plane Fluoroscopy Images Using Statistical Shape Modeling for Patients with Uni-Compartmental Arthroplasty and Old Healthy,' Frontiers in Bioengineering and Biotechnology, p. under review, 2021. [125] N. Baka et al., 'Evaluation of automated statistical shape model based knee kinematics from biplane fluoroscopy,' J Biomech, vol. 47, no. 1, pp. 122-9, Jan 3 2014. [126] J. S. Li et al., 'Prediction of in vivo knee joint kinematics using a combined dual fluoroscopy imaging and statistical shape modeling technique,' J Biomech Eng, vol. 136, no. 12, p. 124503, Dec 2014. [127] L. M. Smoger, K. B. Shelburne, A. J. Cyr, P. J. Rullkoetter, and P. J. Laz, 'Statistical shape modeling predicts patellar bone geometry to enable stereo-radiographic kinematic tracking,' J Biomech, vol. 58, pp. 187-194, Jun 14 2017. [128] H.-Y. Lu, C.-C. Lin, T.-W. Lu, M.-Y. Kuo, and H.-C. Hsu, 'Effects of Model Types for Model-Based Registration with Bi-Plane Fluoroscopy on Accuracy of 3D Kinematics of Uni-Compartmental Knee Replacements,' Computer Methods and Programs in Biomedicine, p. under review, 2021. [129] D. L. Miranda, M. J. Rainbow, E. L. Leventhal, J. J. Crisco, and B. C. Fleming, 'Automatic determination of anatomical coordinate systems for three-dimensional bone models of the isolated human knee,' Journal of biomechanics, vol. 43, no. 8, pp. 1623-1626, 2010. [130] M. Hadwiger, J. M. Kniss, C. Rezk-salama, D. Weiskopf, and K. Engel, Real-time Volume Graphics. A. K. Peters, Ltd., 2006. [131] S. Patil and B. Ravi, 'Voxel-based representation, display and thickness analysis of intricate shapes,' in Ninth International Conference on Computer Aided Design and Computer Graphics (CAD-CG'05), 2005, p. 6 pp.: IEEE. [132] Y. Otake et al., 'Intraoperative image-based multiview 2D/3D registration for image-guided orthopaedic surgery: incorporation of fiducial-based C-arm tracking and GPU-acceleration,' IEEE transactions on medical imaging, vol. 31, no. 4, pp. 948-962, 2011. [133] D. E. Goldberg, 'Genetic algorithms in search, optimization, and machine learning. Addison,' Reading, 1989. [134] J. C. Lagarias, J. A. Reeds, M. H. Wright, and P. E. Wright, 'Convergence properties of the Nelder--Mead simplex method in low dimensions,' SIAM Journal on optimization, vol. 9, no. 1, pp. 112-147, 1998. [135] G. P. Penney, P. G. Batchelor, D. L. Hill, D. J. Hawkes, and J. Weese, 'Validation of a two‐to three‐dimensional registration algorithm for aligning preoperative CT images and intraoperative fluoroscopy images,' Medical physics, vol. 28, no. 6, pp. 1024-1032, 2001. [136] D. L. Miranda, M. J. Rainbow, E. L. Leventhal, J. J. Crisco, and B. C. Fleming, 'Automatic determination of anatomical coordinate systems for three-dimensional bone models of the isolated human knee,' J Biomech, vol. 43, no. 8, pp. 1623-6, May 28 2010. [137] D. E. Goldberg and J. H. Holland, 'Genetic algorithms and machine learning,' 1988. [138] E. S. Grood and W. J. Suntay, 'A joint coordinate system for the clinical description of three-dimensional motions: application to the knee,' Journal of biomechanical engineering, vol. 105, no. 2, pp. 136-144, 1983. [139] A. J. Price, J. L. Rees, D. J. Beard, R. H. Gill, C. A. Dodd, and D. M. Murray, 'Sagittal plane kinematics of a mobile-bearing unicompartmental knee arthroplasty at 10 years………
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82228-
dc.description.abstract精確量測人工置換膝關節之剛體運動與關節表面相對運動將有助於許多臨床醫療與研究。單髁人工膝關節相較於全膝人工關節其幾何較為對稱且體積較小,造成藉由醫學影像技術之量測精度不佳,其中以出平面位移與出平面旋轉影響尤具。然而,現存的關節運動量測方法不論在精度上或實驗驗證上皆有其限制。因此,本研究之目的在於:發展基於實體模型之2D/3D兩階段影像對位方法,以雙平面動態X光非侵入式測量功能性動作時,單髁人工膝關節之精確三維運動; 應用該方法以比較接受機器手臂輔助單髁膝關節置換與全膝人工關節置換,以評估人工關節設計對於退化性膝關節炎患者執行功能性動作時,所量測之膝關節運動學與表面運動學之影響; 結合統計形狀方法與雙平面影像重建個人化三維膝關節模型技術,並驗證此技術於重建接受單髁膝關節患者其膝關節模型之精度; 並進一步將藉由此重建模型以量測單髁膝關節運動學資訊。研究結果顯示實體模型之2D/3D兩階段影像對位方法量測單髁膝關節三維運動之精確度,均方根的平均值於膝關節角度誤差小於0.5°,膝關節移動誤差小於0.8 mm。以統計形狀模型重建模型搭配2D/3D兩階段影像對位方法量測單髁膝關節三維運動之精確度,均方根的平均值於膝關節角度誤差約在1.24-1.88°,膝關節移動誤差約在1.2-1.83 mm。本研究結果確認實體模型之2D/3D兩階段影像對位方法可精準量測單髁膝關節運動學資訊,此結論可有助於人體動作分析領域於三維動態X光之臨床應用,且搭配統計形狀模型方法將有助於減少人體輻射劑量。zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-25T06:34:01Z (GMT). No. of bitstreams: 1
U0001-1812202100052400.pdf: 5597124 bytes, checksum: 9bee25eb98cf5fbf2fd0ec442d1a69d2 (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents"中文摘要 ii Abstract iii Acknowledgements v Table of Contents vi List of Tables ix List of Figures Chapter 1. Introduction 1 1.1 Issue of Knee Osteoarthritis 1 1.2 Knee Kinematics Measurement Using Interleaved Bi-plane Fluoroscopy 4 1.3 Statistical Shape Modeling Method for 3D Knee Kinematics Measurement in UKA 8 1.4 Aims and Scope of the Dissertation 13 Chapter 2. Development and Accuracy Assessment of Model-Based 2D/3D Registration Methods for Uni-Compartmental Knee Kinematics with Bi-Plane Fluoroscopy 16 2.1 Novel Volumetric Model-Based 2D/3D Image Registration Method for Measuring Uni-compartmental Knee Kinematics 16 2.2.1. Overview 16 2.2.2. Computer Simulation 17 2.2.3. Determination of Gold Standard Knee Kinematics 18 2.2.4. Simulated Fluoroscopy Images from Gold Standard Kinematics 18 2.2.5. 3D/2D Image Registration Methods Using the AIMT Approach 19 2.2.6. Evaluation of Kinematics Accuracy 24 2.2.7. Statistical Analysis 24 2.3. Results 25 2.3.1. Computer Simulations 25 2.4. Discussion 28 2.4. Conclusions 31 Chapter 3. Comparisons of Rigid-Body and Surface Kinematics Between Robot-Assisted Uni-Compartmental and Total Knee Arthroplasty During Functional Activities 32 3.1 Comparisons of Rigid-Body and Surface Kinematics Between Robot-Assisted Uni-Compartmental and Total Knee Arthroplasty During Active Knee Extension 33 3.2. Materials Methods 34 3.2.1 Subjects 34 3.2.2 CT-Based Bone Model and CAD Implant Model 34 3.2.3 2D/3D Image Registration 35 3.2.4 Data Analysis 38 3.2.5 Statistical Method 40 3.3. Results of Between UKA and TKA During AKE 40 3.4. Discussion of Between UKA and TKA During AKE 47 3.5. Conclusions of Between UKA and TKA During AKE 51 3.6 Comparisons of Rigid-Body and Surface Kinematics Between Robot-Assisted Uni-Compartmental and Total Knee Arthroplasty During Sit-to-stand 52 3.7. Materials Methods 53 3.8. Results of Between UKA and TKA During STS 53 3.9. Discussion of Between UKA and TKA During STS 60 3.10. Conclusions Between UKA and TKA During STS 64 Chapter 4. Three-Dimensional Reconstruction of Personalized Knee Surface Model from Bi-Plane Fluoroscopy Images Using Statistical Shape Modeling: Applications to Older Healthy Adults and Those with Uni-Compartmental Replacements 65 4.2. Materials Methods 66 4.2.1 Statistical shape modeling of the knee 66 4.2.2 Reconstruction of personalized statistical shape model 69 4.2.3 Evaluation of the SSM 74 4.2.4 Statistical analysis 76 4.3. Results 77 3.1 Principal component analysis 77 3.2 In vivo study 77 4.4. Discussion 82 4.4. Conclusions 86 Chapter 5. Three-Dimensional Uni-Compartmental Knee Kinematics Measured by Alternating Interpolation-Based Model Tracking with Personalized Statistical Shape Models Using Clinical Interleaved Bi-Plane Fluoroscopy 87 5.2. Materials Methods 88 5.2.1 Subjects 88 5.2.1 Experimental Protocol 88 5.2.2 Statistical Shape Modeling of the Knee 89 5.2.3 Model-based registration for measuring bone kinematics in old healthy 90 5.2.4 Model-based registration with two-phase optimization approach for measuring bone kinematics in UKA 91 5.2.5 Evaluation of the AIMT technique with SSM-reconstructed bone model 93 5.2.6 Statistical analysis 94 5.3. Results 98 5.4. Discussion 106 5.4. Conclusions 111 Chapter 6. Conclusions and Suggestions 112 6.1. Conclusions 112 6.1.1 Development of a new approach to measure 3D knee kinematics of UKA 112 6.1.2 Measuring 3D Knee Kinematics of UKA During Functional Activities 113 6.1.3 Reconstruction Personalized Knee Model for UKA Using SSM Modeling This study reconstructed the personalized SSM-reconstructed knee model for patients with UKA and old healthy populations. Using a two-phase optimization approach to reconstruct the SSM-based personalized bone model was possible. The accuracy in the SSM-reconstructed bone model of UKA for femur and tibia were less than 1.4 mm. Utilization of a two-phase optimization approach enabled reconstructing 3D SSM-based personalized knee model reconstructions with acceptable accuracy from available alternating bi-plane fluoroscopy systems in clinical settings. Moreover, this approach will be useful for generating personalized knee models for clinical applications using clinical bi-plane fluoroscopy systems with reducing radiation exposure. 113 6.1.4 Accuracy of Uni-compartmental Knee Kinematics Measurement Using Personalized SSM-based Model 114 6.2. Suggestions for Further Studies 115 6.2.1 Approach of Uni-compartment 3D Knee Kinematics Measurement 115 6.2.2 Measurement of Uni-compartment 3D Knee Kinematics and Surface Kinematics 115 6.2.3 Personalized Knee Model Using SSM Modeling 116 6.2.4 Uni-compartment 3D Knee Kinematics Measurement Using SSM Modeling 116 Appendix: Publication 118 (A) Refereed Journal Articles 118 (B) Proceeding Articles and Conference Presentations 119 (C) Title Pages of Published Journal Papers 122 Bibliography 125 "
dc.language.isoen
dc.subject統計形狀模型zh_TW
dc.subject單髁膝關節置換手術zh_TW
dc.subject膝關節zh_TW
dc.subject運動學zh_TW
dc.subject表面運動學zh_TW
dc.subject三維動態X光zh_TW
dc.subject二維至三維影像比對zh_TW
dc.subject3D fluoroscopyen
dc.subjectstatistical shape modelen
dc.subject2D/3D image registrationen
dc.subjectuni-compartmental knee arthroplastyen
dc.subjectkneeen
dc.subjectkinematicsen
dc.subjectsurface kinematicsen
dc.title雙平面動態X光量測膝關節運動所使用不同模型之2D/3D影像對位方法之開發與評估:機器手臂輔助單髁與全人工膝關節置換術之比較研究zh_TW
dc.titleDevelopment and Assessment of 2D/3D Registration Methods with Different Model Types for Knee Kinematics Using Bi-Plane Fluoroscopy: A Comparative Study on Robot-Assisted Uni-Compartmental and Total Knee Arthroplastyen
dc.date.schoolyear110-1
dc.description.degree博士
dc.contributor.author-orcid0000-0002-3414-8092
dc.contributor.coadvisor林正忠(Cheng-Chung Lin)
dc.contributor.oralexamcommittee許弘昌(Hsin-Tsai Liu),陳文斌(Chih-Yang Tseng),陳祥和,王廷明
dc.subject.keyword單髁膝關節置換手術,膝關節,運動學,表面運動學,三維動態X光,二維至三維影像比對,統計形狀模型,zh_TW
dc.subject.keyworduni-compartmental knee arthroplasty,knee,kinematics,surface kinematics,3D fluoroscopy,2D/3D image registration,statistical shape model,en
dc.relation.page136
dc.identifier.doi10.6342/NTU202104542
dc.rights.note未授權
dc.date.accepted2021-12-21
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept醫學工程學研究所zh_TW
dc.date.embargo-lift2026-12-22-
顯示於系所單位:醫學工程學研究所

文件中的檔案:
檔案 大小格式 
U0001-1812202100052400.pdf
  未授權公開取用
5.47 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved