請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82214完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 沈聖峰(Sheng-Feng Shen) | |
| dc.contributor.author | Ya-Han Wen | en |
| dc.contributor.author | 溫雅涵 | zh_TW |
| dc.date.accessioned | 2022-11-25T06:33:48Z | - |
| dc.date.copyright | 2022-02-18 | |
| dc.date.issued | 2022 | |
| dc.date.submitted | 2022-01-26 | |
| dc.identifier.citation | Cott, H. B. (1940). Adaptive coloration in animals. Kettlewell, B. (1973). Evolution of melanism: the study of a recurring necessity. Endler, J. A. (1978). A predator’s view of animal color patterns. In Evolutionary biology (pp. 319-364). Springer. Kottler, M. J. (1980). Darwin, Wallace, and the origin of sexual dimorphism. Proceedings of the American Philosophical Society, 124(3), 203-226. Brown, J. H. (1984). On the relationship between abundance and distribution of species. The American Naturalist, 124(2), 255-279. Slatkin, M. (1984). Ecological causes of sexual dimorphism. Evolution, 622-630. Frayer, D. W., Wolpoff, M. H. (1985). Sexual dimorphism. Annual Review of Anthropology, 14(1), 429-473. Lynch, M., Gabriel, W. (1987). Environmental tolerance. The American Naturalist, 129(2), 283-303. Hedrick, A. V., Temeles, E. J. (1989). The evolution of sexual dimorphism in animals: hypotheses and tests. Trends in ecology evolution, 4(5), 136-138. Shine, R. (1989). Ecological causes for the evolution of sexual dimorphism: a review of the evidence. The Quarterly Review of Biology, 64(4), 419-461. Wiernasz, D. C. (1989). Female choice and sexual selection of male wing melanin pattern in Pieris occidentalis (Lepidoptera). Evolution, 43(8), 1672-1682. Evans, D. L., Schmidt, J. O. (1990). Insect defenses: adaptive mechanisms and strategies of prey and predators. Suny Press. Moore, A. J. (1990). The evolution of sexual dimorphism by sexual selection: the separate effects of intrasexual selection and intersexual selection. Evolution, 44(2), 315-331. Kingsolver, J. G., Wiernasz, D. C. (1991). Seasonal polyphenism in wing-melanin pattern and thermoregulatory adaptation in Pieris butterflies. The American Naturalist, 137(6), 816-830. Andersson, S., Örnborg, J., Andersson, M. (1998). Ultraviolet sexual dimorphism and assortative mating in blue tits. Proceedings of the Royal Society of London. Series B: Biological Sciences, 265(1395), 445-450. Majerus, M. E. (1998). Melanism. Evolution in action. Merilaita, S. (1998). Crypsis through disruptive coloration in an isopod. Proceedings of the Royal Society of London. Series B: Biological Sciences, 265(1401), 1059-1064. Ellers, J., Boggs, C. L. (2003). The evolution of wing color: male mate choice opposes adaptive wing color divergence in Colias butterflies. Evolution, 57(5), 1100-1106. Schaefer, H. M., Stobbe, N. (2006). Disruptive coloration provides camouflage independent of background matching. Proceedings of the Royal Society B: Biological Sciences, 273(1600), 2427-2432. Bates, D., Sarkar, D., Bates, M. D., Matrix, L. (2007). The lme4 package. R package version, 2(1), 74. Trullas, S. C., van Wyk, J. H., Spotila, J. R. (2007). Thermal melanism in ectotherms. Journal of Thermal Biology, 32(5), 235-245. Darwin, C. (2008). The descent of man, and selection in relation to sex. Princeton University Press. Kunte, K. (2008). Mimetic butterflies support Wallace's model of sexual dimorphism. Proceedings of the Royal Society B: Biological Sciences, 275(1643), 1617-1624. Allen, C. E., Zwaan, B. J., Brakefield, P. M. (2011). Evolution of sexual dimorphism in the Lepidoptera. Annual review of entomology, 56, 445-464. Lindstedt, C., Eager, H., Ihalainen, E., Kahilainen, A., Stevens, M., Mappes, J. (2011). Direction and strength of selection by predators for the color of the aposematic wood tiger moth. Behavioral Ecology, 22(3), 580-587. Tuomaala, M., Kaitala, A., Rutowski, R. L. (2012). Females show greater changes in wing colour with latitude than males in the green-veined white butterfly, Pieris napi (Lepidoptera: Pieridae). Biological Journal of the Linnean Society, 107(4), 899-909. Mouillot, D., Graham, N. A., Villéger, S., Mason, N. W., Bellwood, D. R. (2013). A functional approach reveals community responses to disturbances. Trends in ecology evolution, 28(3), 167-177. Oksanen, J., Blanchet, F. G., Kindt, R., Legendre, P., Minchin, P. R., O’hara, R., Simpson, G. L., Solymos, P., Stevens, M. H. H., Wagner, H. (2013). Package ‘vegan’. Community ecology package, version, 2(9), 1-295. Sheth, S. N., Angert, A. L. (2014). The evolution of environmental tolerance and range size: a comparison of geographically restricted and widespread Mimulus. Evolution, 68(10), 2917-2931. Zeuss, D., Brandl, R., Brändle, M., Rahbek, C., Brunzel, S. (2014). Global warming favours light-coloured insects in Europe. Nature Communications, 5(1), 1-9. LeCun, Y., Bengio, Y., Hinton, G. (2015). Deep learning. nature, 521(7553), 436-444. Kassambara, A., Mundt, F. (2017). Package ‘factoextra’. Extract and visualize the results of multivariate data analyses, 76. Roslin, T., Hardwick, B., Novotny, V., Petry, W. K., Andrew, N. R., Asmus, A., Barrio, I. C., Basset, Y., Boesing, A. L., Bonebrake, T. C. (2017). Higher predation risk for insect prey at low latitudes and elevations. Science, 356(6339), 742-744. Dai, B., Fidler, S., Urtasun, R., Lin, D. (2017). Towards diverse and natural image descriptions via a conditional gan. Proceedings of the IEEE International Conference on Computer Vision. Heidrich, L., Friess, N., Fiedler, K., Brändle, M., Hausmann, A., Brandl, R., Zeuss, D. (2018). The dark side of Lepidoptera: colour lightness of geometrid moths decreases with increasing latitude. Global Ecology and Biogeography, 27(4), 407-416. Henze, M. J., Lind, O., Mappes, J., Rojas, B., Kelber, A. (2018). An aposematic colour‐polymorphic moth seen through the eyes of conspecifics and predators–Sensitivity and colour discrimination in a tiger moth. Functional Ecology, 32(7), 1797-1809. Carmona, C. P., de Bello, F., Mason, N. W., Lepš, J. (2019). Trait probability density (TPD): measuring functional diversity across scales based on TPD with R. Ecology, 100(12), e02876. Cuthill, J. F. H., Guttenberg, N., Ledger, S., Crowther, R., Huertas, B. (2019). Deep learning on butterfly phenotypes tests evolution’s oldest mathematical model. Science advances, 5(8), eaaw4967. Wu, S., Chang, C.-M., Mai, G.-S., Rubenstein, D. R., Yang, C.-M., Huang, Y.-T., Lin, H.-H., Shih, L.-C., Chen, S.-W., Shen, S.-F. (2019). Artificial intelligence reveals environmental constraints on colour diversity in insects. Nature Communications, 10(1), 1-9. Tsai, C.-C., Childers, R. A., Shi, N. N., Ren, C., Pelaez, J. N., Bernard, G. D., Pierce, N. E., Yu, N. (2020). Physical and behavioral adaptations to prevent overheating of the living wings of butterflies. Nature Communications, 11(1), 1-14. Dray, S., Siberchicot, M. A. (2020). Package ‘ade4’. Université de Lyon, France. Tonolini, F., Jensen, B. S., Murray-Smith, R. (2020). Variational sparse coding. Uncertainty in Artificial Intelligence, Moore, M. P., Hersch, K., Sricharoen, C., Lee, S., Reice, C., Rice, P., Kronick, S., Medley, K. A., Fowler-Finn, K. D. (2021). Sex-specific ornament evolution is a consistent feature of climatic adaptation across space and time in dragonflies. Proceedings of the National Academy of Sciences, 118(28). Moraes, S. d. S., Murillo‐Ramos, L., Duarte, M. (2021). Evolution of sexual dimorphism and polychromatism in a lineage of tiger moths (Lepidoptera: Erebidae): advancing knowledge of a taxonomically chaotic group. Cladistics. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82214 | - |
| dc.description.abstract | 雌雄二型性的機制從達爾文與華萊士以來就爭論不休,達爾文認為是因為跟性別相關的性擇;華萊士則是認為是跟性別相關的天擇產生雌雄二型性.過去生態學家一直對於鱗翅目的雌雄二型性很有興趣.然而,量化雌雄蟲的形態差異一直都缺乏宏觀與客觀的方法.這裡我們透過深度學習技術—自編碼器(AutoEncoder)來研究台灣蛾類雌雄二型性沿海拔的演化機制. 這個模型可以從資料庫大量的資料訓練模型從較低維(512維)的特徵還原蛾成原本的標本照(256*256*3維),學到構成蛾的外觀特徵後再去處理台灣有雌雄二型性小樣本的蛾類標本照資料(7915筆資料,138個物種),從中萃取出特徵後就可以量化雌雄二型性的差異及之後的探討與海拔之間的關係.接著從此算出雌蟲與雄蟲在不同海拔區間的外觀變異、特徵分布均勻度與特徵獨特性.最後模型能視覺化出雌蟲與雄蟲在海拔實際上的外觀變化. 結果顯示雌雄二型性的差異會隨著海拔上升而增加.而這樣的趨勢是由於雄性沿著海拔梯度的外觀變化較小;雌性沿著海拔梯度的外觀變化較大導致.自編碼器視覺化的結果顯示在海拔梯度上的外觀變化雌雄蟲不同.雌蟲在高海拔顏色變深、紋路變明顯.顏色變深符合熱黑化假說(Thermal melanism hypothesis),紋路變明顯可能因為紋路在雌性較不易受到捕食壓力影響,紋路不改變,但因為顏色變深而變明顯;雄蟲在高海拔亮度維持、前翅的紋路變不明顯,顯示出在捕食壓力隨捕食壓力而減少下,由於天擇效應減少但性擇的顯現.這個結果表示了雌雄二型性在海拔上的演化混合了達爾文的天擇與華萊士性擇的作用,不能以單一機制去解釋.另外這份研究也提供了一個新的方法去研究昆蟲的外觀. | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-25T06:33:48Z (GMT). No. of bitstreams: 1 U0001-2501202219014200.pdf: 17122290 bytes, checksum: ae84f75cc0e76ce52384b5c6bcd818b1 (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | 誌謝 i 中文摘要 ii Abstract iii 目錄 v 表目錄 vii 圖目錄 viii 前言 1 2. 材料與方法 4 2.1 標本照來源 4 2.1.1 訓練自編碼器 4 2.1.2 分析雌雄二型性 4 2.2 模型 4 2.2.1 問題表述 4 2.2.2 模型架構 4 2.2.3 訓練細節 4 2.3 統計 5 2.3.1 雌雄二型性與海拔的回歸模型 5 2.3.2 從512維挑選特徵分析 6 2.3.3 量化雌雄蟲分別的特徵空間 6 2.3.4 視覺化每個海拔區段蛾的外觀 7 3. 結果 8 3.1 自編碼器 8 3.2 雌雄二型性的程度會隨著海拔梯度而上升 8 3.3 雌性高低海拔物種的特徵差異較雄性大 9 3.4 雌性與雄性在海拔梯度上有不同的外觀變化 10 4. 討論 12 4.1 嶄新與客觀的方式量化昆蟲整體的外觀特徵 12 4.2 造成雌雄二型性隨著海拔上升的原因 13 5. 參考文獻 15 6. 表 20 7. 圖 21 | |
| dc.language.iso | zh-TW | |
| dc.subject | 自編碼器 | zh_TW |
| dc.subject | 海拔 | zh_TW |
| dc.subject | 形態 | zh_TW |
| dc.subject | 深度學習 | zh_TW |
| dc.subject | 雌雄二型性 | zh_TW |
| dc.subject | Morphology | en |
| dc.subject | Sexual dimorphism | en |
| dc.subject | Deep-learning | en |
| dc.subject | AutoEncoder | en |
| dc.subject | Elevation | en |
| dc.title | 利用深度學習探討台灣蛾類雌雄二型性沿著海拔的演化 | zh_TW |
| dc.title | Deep learning reveals the evolution of sexual dimorphism in moths along elevational gradients in Taiwan | en |
| dc.date.schoolyear | 110-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳一菁(Ming-Jen Yang),王慧瑜(Chung-Chieh Wang),林仁俊 | |
| dc.subject.keyword | 雌雄二型性,深度學習,自編碼器,海拔,形態, | zh_TW |
| dc.subject.keyword | Sexual dimorphism,Deep-learning,AutoEncoder,Elevation,Morphology, | en |
| dc.relation.page | 42 | |
| dc.identifier.doi | 10.6342/NTU202200205 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2022-01-27 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 生態學與演化生物學研究所 | zh_TW |
| dc.date.embargo-lift | 2024-02-14 | - |
| 顯示於系所單位: | 生態學與演化生物學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2501202219014200.pdf 未授權公開取用 | 16.72 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
