Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 園藝暨景觀學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82199
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor許輔(Fuu Sheu)
dc.contributor.authorJhih-Ting Hsiaoen
dc.contributor.author蕭智庭zh_TW
dc.date.accessioned2022-11-25T06:33:33Z-
dc.date.copyright2021-08-18
dc.date.issued2021
dc.date.submitted2021-07-14
dc.identifier.citationAhmadizadeh, M., Heidari, P. (2014). Bioinformatics study of transcription factors involved in cold stress. Biharean Biol., 8, 83-86. Albà, M. M., Pagès, M. (1998). Plant proteins containing the RNA-recognition motif. Trends in Plant Science, 3(1), 15-21. Buck, P. (1956). Origin and taxonomy of broccoli. Economic Botany, 10(3), 250-253. Chaikam, V., Karlson, D. (2008). Functional characterization of two cold shock domain proteins from Oryza sativa. Plant, Cell Environment, 31(7), 995-1006. Chen, J., Liu, X., Li, F., Li, Y., Yuan, D. (2017). Cold shock treatment extends shelf life of naturally ripened or ethylene-ripened avocado fruits. PloS One, 12(12), e0189991. Cornelis, S., Tinton, S. A., Schepens, B., Bruynooghe, Y., Beyaert, R. (2005). UNR translation can be driven by an IRES element that is negatively regulated by polypyrimidine tract binding protein. Nucleic Acids Research, 33(10), 3095-3108. Costa, M. L., Civello, P. M., Chaves, A. R., Martínez, G. A. (2005). Effect of hot air treatments on senescence and quality parameters of harvested broccoli (Brassica oleracea L. var. Italica) heads. Journal of the Science of Food and Agriculture, 85(7), 1154-1160. Evdokimova, V., Ruzanov, P., Imataka, H., Raught, B., Svitkin, Y., Ovchinnikov, L. P., Sonenberg, N. (2001). The major mRNA‐associated protein YB‐1 is a potent 5′ cap‐dependent mRNA stabilizer. The EMBO Journal, 20(19), 5491-5502. Fan, X., Mattheis, J. P. (2000). Yellowing of broccoli in storage is reduced by 1-methylcyclopropene. HortScience, 35(5), 885-887. Fan, Z.Q., Tan, X.L., Shan, W., Kuang, J.F., Lu, W.J., Chen, J.Y. (2017). BrWRKY65, a WRKY transcription factor, is involved in regulating three leaf senescence-associated genes in Chinese flowering cabbage. International Journal of Molecular Sciences, 18(6), 1228. Fu, Z. Q., Guo, M., Jeong, B.-r., Tian, F., Elthon, T. E., Cerny, R. L., Staiger, D., Alfano, J. R. (2007). A type III effector ADP-ribosylates RNA-binding proteins and quells plant immunity. Nature, 447(7142), 284-288. Fusaro, A. F., Bocca, S. N., Ramos, R. L. B., Barrôco, R. M., Magioli, C., Jorge, V. C., Coutinho, T. C., Rangel-Lima, C. M., De Rycke, R., Inzé, D. (2007). AtGRP2, a cold-induced nucleo-cytoplasmic RNA-binding protein, has a role in flower and seed development. Planta, 225(6), 1339-1351. Giuliodori, A. M., Di Pietro, F., Marzi, S., Masquida, B., Wagner, R., Romby, P., Gualerzi, C. O., Pon, C. L. (2010). The cspA mRNA is a thermosensor that modulates translation of the cold-shock protein CspA. Molecular Cell, 37(1), 21-33. Goldstein, J., Pollitt, N. S., Inouye, M. (1990). Major cold shock protein of Escherichia coli. Proceedings of the National Academy of Sciences, 87(1), 283-287. Graumann, P., Wendrich, T. M., Weber, M. H., Schröder, K., Marahiel, M. A. (1997). A family of cold shock proteins in Bacillus subtilis is essential for cellular growth and for efficient protein synthesis at optimal and low temperatures. Molecular Microbiology, 25(4), 741-756. Graumann, P. L., Marahiel, M. A. (1998). A superfamily of proteins that contain the cold-shock domain. Trends in Biochemical Sciences, 23(8), 286-290. Gray, A. (1982). Taxonomy and evolution of broccoli (Brassica oleracea var. italica). Economic Botany, 36(4), 397-410. Gu, S., Xu, D., Zhou, F., Gao, H., Hu, W., Gao, X., Jiang, A. (2020). Cold shock treatment maintains quality and induces relative expression of cold shock domain protein (CSDPs) in postharvest sweet cherry. Scientia Horticulturae, 262, 109058. Haristoy, X., Angioi-Duprez, K., Duprez, A., Lozniewski, A. (2003). Efficacy of sulforaphane in eradicating Helicobacter pylori in human gastric xenografts implanted in nude mice. Antimicrobial Agents and Chemotherapy, 47(12), 3982-3984. Heo, I., Joo, C., Cho, J., Ha, M., Han, J., Kim, V. N. (2008). Lin28 mediates the terminal uridylation of let-7 precursor MicroRNA. Molecular Cell, 32(2), 276-284. Hu, K. H., Liu, E., Dean, K., Gingas, M., DeGraff, W., Trun, N. J. (1996). Overproduction of three genes leads to camphor resistance and chromosome condensation in Escherichia coli. Genetics, 143(4), 1521-1532. Hunt, S. L., Hsuan, J. J., Totty, N., Jackson, R. J. (1999). unr, a cellular cytoplasmic RNA-binding protein with five cold-shock domains, is required for internal initiation of translation of human rhinovirus RNA. Genes Development, 13(4), 437-448. Inaba, M., Crandall, P. G. (1986). Cold-shock treatment of mature green tomatoes to delay color development and increase shelf-life during room temperature storage. In Proceedings of the Annual Meeting of the Florida State Horticulture Society (USA)). Jacquemin-Sablon, H., Triqueneaux, G., Deschamps, S., le Maire, M., Doniger, J., Dautry, F. (1994). Nucleic acid binding and intracellular localization of unr, a protein with five cold shock domains. Nucleic Acids Research, 22(13), 2643-2650. Jiang, W., Hou, Y., Inouye, M. (1997). CspA, the major cold-shock protein of Escherichia coli, is an RNA chaperone. Journal of Biological Chemistry, 272(1), 196-202. Jones, P. G., VanBogelen, R. A., Neidhardt, F. C. (1987). Induction of proteins in response to low temperature in Escherichia coli. Journal of Bacteriology, 169(5), 2092-2095. Karlson, D., Nakaminami, K., Toyomasu, T., Imai, R. (2002). A cold-regulated nucleic acid-binding protein of winter wheat shares a domain with bacterial cold shock proteins. Journal of Biological Chemistry, 277(38), 35248-35256. Kim, J. S., Jung, H. J., Lee, H. J., Kim, K. A., Goh, C. H., Woo, Y., Oh, S. H., Han, Y. S., Kang, H. (2008). Glycine‐rich RNA‐binding protein7 affects abiotic stress responses by regulating stomata opening and closing in Arabidopsis thaliana. The Plant Journal, 55(3), 455-466. Kim, J. S., Park, S. J., Kwak, K. J., Kim, Y. O., Kim, J. Y., Song, J., Jang, B., Jung, C.-H., Kang, H. (2007). Cold shock domain proteins and glycine-rich RNA-binding proteins from Arabidopsis thaliana can promote the cold adaptation process in Escherichia coli. Nucleic Acids Research, 35(2), 506-516. Kim, J. Y., Park, S. J., Jang, B., Jung, C. H., Ahn, S. J., Goh, C. H., Cho, K., Han, O., Kang, H. (2007). Functional characterization of a glycine‐rich RNA‐binding protein 2 in Arabidopsis thaliana under abiotic stress conditions. The Plant Journal, 50(3), 439-451. Kim, M.-H., Sonoda, Y., Sasaki, K., Kaminaka, H., Imai, R. (2013). Interactome analysis reveals versatile functions of Arabidopsis COLD SHOCK DOMAIN PROTEIN 3 in RNA processing within the nucleus and cytoplasm. Cell Stress and Chaperones, 18(4), 517-525. King, G. A., Morris, S. C. (1994). Early compositional changes during postharvest senescence of broccoli. Journal of the American Society for Horticultural Science, 119(5), 1000-1005. Kloks, C. P., Spronk, C. A., Lasonder, E., Hoffmann, A., Vuister, G. W., Grzesiek, S., Hilbers, C. W. (2002). The solution structure and DNA-binding properties of the cold-shock domain of the human Y-box protein YB-1. Journal of Molecular Biology, 316(2), 317-326. Kwak, K. J., Kim, Y. O., Kang, H. (2005). Characterization of transgenic Arabidopsis plants overexpressing GR-RBP4 under high salinity, dehydration, or cold stress. Journal of Experimental Botany, 56(421), 3007-3016. Le, T. N., Sakulsataporn, N., Chiu, C.-H., Hsieh, P.-C. (2020). Polyphenolic profile and varied bioactivities of processed taiwanese grown broccoli: A comparative study of edible and non-edible parts. Pharmaceuticals, 13(5), 82. Lemoine, M. L., Civello, P., Chaves, A., Martínez, G. (2009). Hot air treatment delays senescence and maintains quality of fresh-cut broccoli florets during refrigerated storage. LWT-Food Science and Technology, 42(6), 1076-1081. Lemoine, M. L., Civello, P. M., Chaves, A. R., Martínez, G. A. (2010). Influence of a combined hot air and UV‐C treatment on quality parameters of fresh‐cut broccoli florets at 0° C. International Journal of Food Science Technology, 45(6), 1212-1218. Lemoine, M. L., Civello, P. M., Martínez, G. A., Chaves, A. R. (2007). Influence of postharvest UV‐C treatment on refrigerated storage of minimally processed broccoli (Brassica oleracea var. Italica). Journal of the Science of Food and Agriculture, 87(6), 1132-1139. Liu, M., Zhang, L., Ser, S. L., Cumming, J. R., Ku, K.-M. (2018). Comparative phytonutrient analysis of broccoli by-products: The potentials for broccoli by-product utilization. Molecules, 23(4), 900. Lorentzen, E., Basquin, J., Tomecki, R., Dziembowski, A., Conti, E. (2008). Structure of the active subunit of the yeast exosome core, Rrp44: diverse modes of substrate recruitment in the RNase II nuclease family. Molecular Cell, 29(6), 717-728. Lu, Z. H., Books, J. T., Ley, T. J. (2005). YB-1 is important for late-stage embryonic development, optimal cellular stress responses, and the prevention of premature senescence. Molecular and Cellular Biology, 25(11), 4625-4637. Mangeon, A., Junqueira, R. M., Sachetto-Martins, G. (2010). Functional diversity of the plant glycine-rich proteins superfamily. Plant Signaling Behavior, 5(2), 99-104. Morgan, H. P., Wear, M. A., McNae, I., Gallagher, M. P., Walkinshaw, M. D. (2009). Crystallization and X-ray structure of cold-shock protein E from Salmonella typhimurium. Acta Crystallographica Section F: Structural Biology and Crystallization Communications, 65(12), 1240-1245. Moss, E. G., Lee, R. C., Ambros, V. (1997). The cold shock domain protein LIN-28 controls developmental timing in C. elegans and is regulated by the lin-4 RNA. Cell, 88(5), 637-646. Murray, M. T., Schiller, D. L., Franke, W. W. (1992). Sequence analysis of cytoplasmic mRNA-binding proteins of Xenopus oocytes identifies a family of RNA-binding proteins. Proceedings of the National Academy of Sciences, 89(1), 11-15. Nakaminami, K., Karlson, D. T., Imai, R. (2006). Functional conservation of cold shock domains in bacteria and higher plants. Proceedings of the National Academy of Sciences, 103(26), 10122-10127. Newkirk, K., Feng, W., Jiang, W., Tejero, R., Emerson, S. D., Inouye, M., Montelione, G. T. (1994). Solution NMR structure of the major cold shock protein (CspA) from Escherichia coli: identification of a binding epitope for DNA. Proceedings of the National Academy of Sciences, 91(11), 5114-5118. Noodén, L. D., Guiamét, J. J., John, I. (2004). Whole plant senescence. In Plant Cell Death processes, (pp. 227-244): Elsevier. Ogata, K. (1979). Cold-shock effect on keeping quality of Japanese apricot (Mume, Prunus mume Sieb. et Zucc.) fruits and tomato fruits. St. Inst. Hort. Kyoto Univ., 9, 146-150. Page, T., Griffiths, G., Buchanan-Wollaston, V. (2001). Molecular and biochemical characterization of postharvest senescence in broccoli. Plant Physiology, 125(2), 718-727. Park, S. J., Kwak, K. J., Jung, H. J., Lee, H. J., Kang, H. (2010). The C-terminal zinc finger domain of Arabidopsis cold shock domain proteins is important for RNA chaperone activity during cold adaptation. Phytochemistry, 71(5-6), 543-547. Parrott, D. L., Downs, E. P., Fischer, A. M. (2012). Control of barley (Hordeum vulgare L.) development and senescence by the interaction between a chromosome six grain protein content locus, day length, and vernalization. Journal of experimental botany, 63(3), 1329-1339. Perini, M. A., Sin, I. N., Jara, A. M. R., Lobato, M. E. G., Civello, P. M., Martínez, G. A. (2017). Hot water treatments performed in the base of the broccoli stem reduce postharvest senescence of broccoli (Brassica oleracea L. var. italica) heads stored at 20 C. LWT, 77, 314-322. Phadtare, S. (2004). Recent developments in bacterial cold-shock response. Current Issues in Molecular Biology, 6(2), 125-136. Plumb, G. W., Price, K. R., Modes, M. J., Williamson, G. (1997). Antioxidant properties of the major polyphenolic compounds in broccoli. Free Radical Research, 27(4), 429-435. PngAAA Home Page. Available online: https://www.pngaaa.com/detail/1258447. (Accessed on 8 July 2021). Richards, M., Tan, S. P., Tan, J. H., Chan, W. K., Bongso, A. (2004). The transcriptome profile of human embryonic stem cells as defined by SAGE. Stem Cells, 22(1), 51-64. Rose, P., Huang, Q., Ong, C. N., Whiteman, M. (2005). Broccoli and watercress suppress matrix metalloproteinase-9 activity and invasiveness of human MDA-MB-231 breast cancer cells. Toxicology and Applied Pharmacology, 209(2), 105-113. Sachetto-Martins, G., Franco, L. O., de Oliveira, D. E. (2000). Plant glycine-rich proteins: a family or just proteins with a common motif? Biochimica et Biophysica Acta (BBA)-Gene Structure and Expression, 1492(1), 1-14. Sasaki, K., Imai, R. (2012). Pleiotropic roles of cold shock domain proteins in plants. Frontiers in Plant Science, 2, 116. Sasaki, K., Kim, M.-H., Imai, R. (2007). Arabidopsis COLD SHOCK DOMAIN PROTEIN2 is a RNA chaperone that is regulated by cold and developmental signals. Biochemical and Biophysical Research Communications, 364(3), 633-638. Schöning, J. C., Streitner, C., Meyer, I. M., Gao, Y., Staiger, D. (2008). Reciprocal regulation of glycine-rich RNA-binding proteins via an interlocked feedback loop coupling alternative splicing to nonsense-mediated decay in Arabidopsis. Nucleic Acids Research, 36(22), 6977-6987. Schindelin, H., Jiang, W., Inouye, M., Heinemann, U. (1994). Crystal structure of CspA, the major cold shock protein of Escherichia coli. Proceedings of the National Academy of Sciences, 91(11), 5119-5123. Schmid, B., Klumpp, J., Raimann, E., Loessner, M. J., Stephan, R., Tasara, T. (2009). Role of cold shock proteins in growth of Listeria monocytogenes under cold and osmotic stress conditions. Applied and Environmental Microbiology, 75(6), 1621-1627. Schneider, C., Leung, E., Brown, J., Tollervey, D. (2009). The N-terminal PIN domain of the exosome subunit Rrp44 harbors endonuclease activity and tethers Rrp44 to the yeast core exosome. Nucleic Acids Research, 37(4), 1127-1140. Schröder, K., Graumann, P., Schnuchel, A., Holak, T. A., Marahiel, M. A. (1995). Mutational analysis of the putative nucleic acid‐binding surface of the cold‐shock domain, CspB, revealed an essential role of aromatic and basic residues in binding of single‐stranded DNA containing the Y‐box motif. Molecular Microbiology, 16(4), 699-708. Serrano, M., Martinez-Romero, D., Guillen, F., Castillo, S., Valero, D. (2006). Maintenance of broccoli quality and functional properties during cold storage as affected by modified atmosphere packaging. Postharvest Biology and Technology, 39(1), 61-68. Shurtleff, M. J., Temoche-Diaz, M. M., Karfilis, K. V., Ri, S., Schekman, R. (2016). Y-box protein 1 is required to sort microRNAs into exosomes in cells and in a cell-free reaction. Elife, 5, e19276. Singh, M. K., Chand, T., Kumar, M., Singh, K., Lodhi, S., Singh, V., Sirohi, V. S. (2015). Response of different doses of NPK and boron on growth and yield of broccoli (Brassica oleracea L. var. italica). International Journal of Bio-resource and Stress Management, 6(1), 108-112. Sommerville, J., Ladomery, M. (1996). Masking of mRNA by Y‐box proteins. The FASEB Journal, 10(4), 435-443. Staiger, D., Zecca, L., Kirk, D. A. W., Apel, K., Eckstein, L. (2003). The circadian clock regulated RNA‐binding protein AtGRP7 autoregulates its expression by influencing alternative splicing of its own pre‐mRNA. The Plant Journal, 33(2), 361-371. Streitner, C., Danisman, S., Wehrle, F., Schöning, J. C., Alfano, J. R., Staiger, D. (2008). The small glycine‐rich RNA binding protein AtGRP7 promotes floral transition in Arabidopsis thaliana. The Plant Journal, 56(2), 239-250. Thieringer, H. A., Jones, P. G., Inouye, M. (1998). Cold shock and adaptation. Bioessays, 20(1), 49-57. Vig, A. P., Rampal, G., Thind, T. S., Arora, S. (2009). Bio-protective effects of glucosinolates–A review. LWT-Food Science and Technology, 42(10), 1561-1572. Viswanathan, S. R., Daley, G. Q., Gregory, R. I. (2008). Selective blockade of microRNA processing by Lin28. Science, 320(5872), 97-100. Wei, S.S., Wang, X.Y., Peng, L., Zhang, J.W., Bin, Z., Dong, S.T. (2016). Comparative proteomic analysis provides new insights into ear leaf senescence of summer maize (Zea mays L.) under field condition. Journal of Integrative Agriculture, 15(5), 1005-1016 Yamanaka, K., Fang, L., Inouye, M. (1998). The CspA family in Escherichia coli: multiple gene duplication for stress adaptation. Molecular Microbiology, 27(2), 247-255. Yamanaka, K., Inouye, M. (1997). Growth-phase-dependent expression of cspD, encoding a member of the CspA family in Escherichia coli. Journal of Bacteriology, 179(16), 5126-5130. Yamanaka, K., Mitani, T., Ogura, T., Niki, H., Hiraga, S. (1994). Cloning, sequencing, and characterization of multicopy suppressors of a mukB mutation in Escherichia coli. Molecular Microbiology, 13(2), 301-312. Yang, D.-H., Moss, E. G. (2003). Temporally regulated expression of Lin-28 in diverse tissues of the developing mouse. Gene Expression Patterns, 3(6), 719-726. Yang, Y., Karlson, D. (2013). AtCSP1 regulates germination timing promoted by low temperature. FEBS Letters, 587(14), 2186-2192. Yang, Y., Karlson, D. T. (2011). Overexpression of AtCSP4 affects late stages of embryo development in Arabidopsis. Journal of Experimental Botany, 62(6), 2079-2091. Zhang, X., Ju, H.W., Chung, M.S., Huang, P., Ahn, S.J., Kim, C.S. (2011). The RR-type MYB-like transcription factor, AtMYBL, is involved in promoting leaf senescence and modulates an abiotic stress response in Arabidopsis. Plant and Cell Physiology, 52(1), 138-148. Zhang, H., Yang, S., Joyce, D. C., Jiang, Y., Qu, H., Duan, X. (2010). Physiology and quality response of harvested banana fruit to cold shock. Postharvest Biology and Technology, 55(3), 154-159. Zhipeng, S., Tiejin, Y., Yangguang, W. (2002). Effects of cold shock on postharvest physiology of tomato. Journal of Nanjing Agricultural University, 25(2), 97-100. Zhuang, H., Hildebrand, D. F., Barth, M. M. (1995). Senescence of broccoli buds is related to changes in lipid peroxidation. Journal of Agricultural and Food Chemistry, 43(10), 2585-2591.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82199-
dc.description.abstract"青花菜 (Brassica oleracea var. italica) 採收後於20℃儲放2至3日即老化並失去商品價值。首先分析青花菜之蛋白質體,發現RNA結合蛋白GR-RBP2 (glycine-rich RNA binding-protein 2) 可能與青花菜採後老化相關,此外,除了GR-RBP2外,冷休克結構域蛋白 (cold shock domain containing-protein,CSP) 也同為富含甘胺酸之蛋白質 (glycine-rich protein),兩者於阿拉伯芥被證實具有RNA伴護蛋白 (RNA chaperone) 活性且其表現皆受低溫所誘導,因此該兩種蛋白質可能皆參與青花菜老化過程之生理反應。另一方面在採後處理技術中,冷休克處理 (cold shock treatment,CST) 被發現能夠延緩部分蔬果老化,故假設CST造成之低溫能誘導此類蛋白質產生,以穩定mRNA結構及轉譯進而延緩採後老化。本研究欲分析青花菜CSP及GR-RBP2與老化之關聯性,並分析其表現是否受CST所誘導,以說明CST誘導CSP及GR-RBP2表現而延緩採後老化之可能性。利用次世代定序建立青花菜轉錄體資料庫,其中45,051個特定基因 (unigenes) 分別有6個註解到CSP基因 (BoCSPs),2個註解到GR-RBP2 (BoGR-RBP2s)。將青花菜小花貯藏於20℃下3天、5℃及0℃下15天,以青花菜花苞葉綠素損失率作為老化指標,分析其與上述8個基因表現量之相關性。結果顯示BoCSP1_1、BoCSP3、BoCSP4_1、BoGR-RBP2_1及BoGR-RBP2_2與老化呈現負相關。將青花菜小花浸泡0℃冰水浴30分鐘進行CST後放置於5℃貯藏,並於第0、16、24、40及48小時收樣,分析BoCSPs與BoGR-RBP2s之表現量是否受CST所誘導,結果顯示BoCSP2、BoCSP3、BoCSP4_1及BoCSP4_2表現量可受CST所提升。前述兩項實驗結果顯示,BoCSP3與BoCSP4_1與老化呈負相關,且其表現量受CST所提升,說明冷休克處理可能經由誘導CSP之產生,得以延緩青花菜老化。未來可深入探討其受CST調控之訊息傳遞路徑及其於採後生理之作用機制。"zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-25T06:33:33Z (GMT). No. of bitstreams: 1
U0001-1207202114494200.pdf: 4150333 bytes, checksum: b45cfdb0511d081bbd32db9b2512a7bc (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents誌謝 I 摘要 II ABSTRACT III CONTENTS V LIST OF TABLES VII LIST OF FIGURES VIII CHAPTER 1 INTRODUCTION 1 1.1 Cold shock domain-containing proteins in prokaryotes 1 1.2 Cold shock domain-containing protein in eukaryotes 2 1.2.1 UNR protein and Rrp44 protein 3 1.2.2 Y-box protein family 3 1.2.3 Lin28 protein family 4 1.3 Cold shock domain-containing protein in plant kingdom 4 1.3.1 Cold shock domain-containing protein in Arabidopsis thaliana 5 1.3.2 Cold shock domain-containing protein in wheat 6 1.3.3 Cold shock domain-containing protein in Oryza sativa 6 1.4 Glycine-rich proteins with RNA recognition motif in plants 7 1.5 Cold shock treatment in postharvest 9 1.6 Introduction of broccoli (Brassica oleracea var. italica) 10 1.7 Postharvest senescence of broccoli 12 1.8 Aim of this study 13 CHAPTER 2 MATERIALS AND METHODS 15 2.1 Plant materials and treatments 15 2.2 Total RNA purification for transcriptome analysis and qPCR 15 2.3 RNA sequencing and assembly of broccoli transcriptome 16 2.4 Functional annotation of de novo assembled contigs 16 2.5 Determination of total chlorophyll loss in flower buds 17 2.6 Gene expression analysis using qPCR 17 2.7 Statistical analysis and correlation analysis 18 CHAPTER 3 RESULTS 19 3.1 Preliminary proteomic analysis of fresh and senesced broccolis 19 3.2 Sequencing and assembly of B. oleracea var. italica transcriptome 20 3.3 Annotation of unigenes to explore BoCSPs and BoGR-RBP2s 20 3.4 Correlation analysis among chlorophyll loss and gene expression of BoCSPs and BoGR-RBP2s 22 3.5 Relative gene expression of BoCSPs and BoGR-RBP2s after CST 24 CHAPTER 4 DISCUSSION 27 4.1 BoCSPs and BoGR-RBP2s expression during florets senescence 27 4.1.1 Negative correlation among five genes and floret senescence 27 4.1.2 Probable cold-regulated BoCSPs and BoGR-RBP2s 28 4.1.3 Non-senescence-related BoCSPs 29 4.2 Response of BoCSPs and BoGR-RBP2s to CST 29 4.2.1 Expression of four CST-induced genes 29 4.2.2 Four non-CST -inducible genes 30 4.3 Regulation and functions of CSPs in postharvest senescence and CST 32 4.4 Conclusion 33 REFERENCE 34 TABLES 45 FIGURES 51 APPENDIX 62
dc.language.isoen
dc.subject富含甘胺酸之蛋白質zh_TW
dc.subjectRNA伴護蛋白zh_TW
dc.subject冷休克處理zh_TW
dc.subject冷休克結構域zh_TW
dc.subjectRNA辨識超二級結構zh_TW
dc.subjectCold shock treatmenten
dc.subjectRNA recognition motifen
dc.subjectGlycine-rich proteinen
dc.subjectCold shock domainen
dc.subjectRNA chaperoneen
dc.title探討青花菜冷休克蛋白CSPs與RNA結合蛋白GR-RBP2基因及其表現zh_TW
dc.titleExploration of Cold Shock Domain-Containing Proteins and Glycine-Rich RNA Binding Protein 2 Genes in Brassica oleracea var. italica and Investigation of Their Expressionsen
dc.date.schoolyear109-2
dc.description.degree碩士
dc.contributor.oralexamcommittee蘇南維(Hsin-Tsai Liu),周志輝(Chih-Yang Tseng),官彥州
dc.subject.keywordRNA辨識超二級結構,富含甘胺酸之蛋白質,冷休克結構域,RNA伴護蛋白,冷休克處理,zh_TW
dc.subject.keywordRNA recognition motif,Glycine-rich protein,Cold shock domain,RNA chaperone,Cold shock treatment,en
dc.relation.page73
dc.identifier.doi10.6342/NTU202101405
dc.rights.note未授權
dc.date.accepted2021-07-15
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept園藝暨景觀學系zh_TW
dc.date.embargo-lift2024-07-01-
顯示於系所單位:園藝暨景觀學系

文件中的檔案:
檔案 大小格式 
U0001-1207202114494200.pdf
  未授權公開取用
4.05 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved