Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82194Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 張芳嘉(Fang-Chia Chang) | |
| dc.contributor.author | Mi Lee | en |
| dc.contributor.author | 李宓 | zh_TW |
| dc.date.accessioned | 2022-11-25T06:33:29Z | - |
| dc.date.copyright | 2021-08-18 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-07-19 | |
| dc.identifier.citation | 1. Castro-Gomez, S., J. Binder, and M.T. Heneka, [Neuroinflammation as motor of Alzheimer's disease]. Nervenarzt, 2019. 90(9): p. 898-906. 2. Whitson, J.S., D.J. Selkoe, and C.W. Cotman, Amyloid beta protein enhances the survival of hippocampal neurons in vitro. Science, 1989. 243(4897): p. 1488-90. 3. Kadavath, H., et al., Folding of the Tau Protein on Microtubules. Angew Chem Int Ed Engl, 2015. 54(35): p. 10347-51. 4. Fossati, S., et al., Plasma tau complements CSF tau and P-tau in the diagnosis of Alzheimer's disease. Alzheimers Dement (Amst), 2019. 11: p. 483-492. 5. Bloom, G.S., Amyloid-beta and tau: the trigger and bullet in Alzheimer disease pathogenesis. JAMA Neurol, 2014. 71(4): p. 505-8. 6. Mota, S.I., I.L. Ferreira, and A.C. Rego, Dysfunctional synapse in Alzheimer's disease - A focus on NMDA receptors. Neuropharmacology, 2014. 76 Pt A: p. 16-26. 7. Dickson, D.W., Apoptotic mechanisms in Alzheimer neurofibrillary degeneration: cause or effect? J Clin Invest, 2004. 114(1): p. 23-7. 8. Santos, T.O., et al., Early and late neurodegeneration and memory disruption after intracerebroventricular streptozotocin. Physiol Behav, 2012. 107(3): p. 401-13. 9. Lin, X., et al., Contributions of DNA Damage to Alzheimer's Disease. Int J Mol Sci, 2020. 21(5). 10. Wang, W., et al., Mitochondria dysfunction in the pathogenesis of Alzheimer's disease: recent advances. Mol Neurodegener, 2020. 15(1): p. 30. 11. Heneka, M.T., et al., Neuroinflammation in Alzheimer's disease. The Lancet Neurology, 2015. 14(4): p. 388-405. 12. Persson, T., B.O. Popescu, and A. Cedazo-Minguez, Oxidative stress in Alzheimer's disease: why did antioxidant therapy fail? Oxid Med Cell Longev, 2014. 2014: p. 427318. 13. Wirths, O. and S. Zampar, Neuron Loss in Alzheimer's Disease: Translation in Transgenic Mouse Models. Int J Mol Sci, 2020. 21(21). 14. Hampel, H., et al., The cholinergic system in the pathophysiology and treatment of Alzheimer's disease. Brain, 2018. 141(7): p. 1917-1933. 15. Ferreira-Vieira, T.H., et al., Alzheimer's disease: Targeting the Cholinergic System. Curr Neuropharmacol, 2016. 14(1): p. 101-15. 16. Ballinger, E.C., et al., Basal Forebrain Cholinergic Circuits and Signaling in Cognition and Cognitive Decline. Neuron, 2016. 91(6): p. 1199-1218. 17. Mitsushima, D., A. Sano, and T. Takahashi, A cholinergic trigger drives learning-induced plasticity at hippocampal synapses. Nat Commun, 2013. 4: p. 2760. 18. Grothe, M.J., et al., Atrophy of the cholinergic basal forebrain in dementia with Lewy bodies and Alzheimer's disease dementia. J Neurol, 2014. 261(10): p. 1939-48. 19. Grothe, M., H. Heinsen, and S.J. Teipel, Atrophy of the cholinergic Basal forebrain over the adult age range and in early stages of Alzheimer's disease. Biol Psychiatry, 2012. 71(9): p. 805-13. 20. Davies, P. and A.J. Maloney, Selective loss of central cholinergic neurons in Alzheimer's disease. Lancet, 1976. 2(8000): p. 1403. 21. Lloret, M.A., et al., Is Sleep Disruption a Cause or Consequence of Alzheimer's Disease? Reviewing Its Possible Role as a Biomarker. Int J Mol Sci, 2020. 21(3). 22. Song, J.Z., et al., Dysfunction of GABAergic neurons in the parafacial zone mediates sleep disturbances in a streptozotocin-induced rat model of sporadic Alzheimer's disease. Metab Brain Dis, 2018. 33(1): p. 127-137. 23. Mander, B.A., et al., β-amyloid disrupts human NREM slow waves and related hippocampus-dependent memory consolidation. Nat Neurosci, 2015. 18(7): p. 1051-7. 24. Lucey, B.P., et al., Reduced non-rapid eye movement sleep is associated with tau pathology in early Alzheimer's disease. Sci Transl Med, 2019. 11(474). 25. Lucey, B.P., It's complicated: The relationship between sleep and Alzheimer's disease in humans. Neurobiology of Disease, 2020. 144. 26. Ning, S. and M. Jorfi, Beyond the sleep-amyloid interactions in Alzheimer's disease pathogenesis. J Neurophysiol, 2019. 122(1): p. 1-4. 27. Gorgoni, M., et al., Parietal Fast Sleep Spindle Density Decrease in Alzheimer's Disease and Amnesic Mild Cognitive Impairment. Neural Plast, 2016. 2016: p. 8376108. 28. Moran, M., et al., Sleep disturbance in mild to moderate Alzheimer's disease. Sleep Med, 2005. 6(4): p. 347-52. 29. Musiek, E.S., D.D. Xiong, and D.M. Holtzman, Sleep, circadian rhythms, and the pathogenesis of Alzheimer disease. Exp Mol Med, 2015. 47: p. e148. 30. Iqbal, K. and I. Grundke-Iqbal, Alzheimer's disease, a multifactorial disorder seeking multitherapies. Alzheimers Dement, 2010. 6(5): p. 420-4. 31. Lanoiselée, H.M., et al., APP, PSEN1, and PSEN2 mutations in early-onset Alzheimer disease: A genetic screening study of familial and sporadic cases. PLoS Med, 2017. 14(3): p. e1002270. 32. Ryan, N.S., et al., Clinical phenotype and genetic associations in autosomal dominant familial Alzheimer's disease: a case series. Lancet Neurol, 2016. 15(13): p. 1326-1335. 33. Piaceri, I., B. Nacmias, and S. Sorbi, Genetics of familial and sporadic Alzheimer's disease. Front Biosci (Elite Ed), 2013. 5: p. 167-77. 34. Stefanova, N.A., et al., The Rat Prefrontal-Cortex Transcriptome: Effects of Aging and Sporadic Alzheimer's Disease-Like Pathology. J Gerontol A Biol Sci Med Sci, 2019. 74(1): p. 33-43. 35. Chen, Y., et al., A non-transgenic mouse model (icv-STZ mouse) of Alzheimer's disease: similarities to and differences from the transgenic model (3xTg-AD mouse). Mol Neurobiol, 2013. 47(2): p. 711-25. 36. Kitazawa, M., R. Medeiros, and F.M. Laferla, Transgenic mouse models of Alzheimer disease: developing a better model as a tool for therapeutic interventions. Curr Pharm Des, 2012. 18(8): p. 1131-47. 37. Kim, H.Y., et al., Intracerebroventricular Injection of Amyloid-β Peptides in Normal Mice to Acutely Induce Alzheimer-like Cognitive Deficits. J Vis Exp, 2016(109). 38. Elder, G.A., M.A. Gama Sosa, and R. De Gasperi, Transgenic mouse models of Alzheimer's disease. Mt Sinai J Med, 2010. 77(1): p. 69-81. 39. O'Brien, R.J. and P.C. Wong, Amyloid precursor protein processing and Alzheimer's disease. Annu Rev Neurosci, 2011. 34: p. 185-204. 40. Singh, A. and A. Kumar, Comparative Analysis of Intrahippocampal Amyloid Beta (1-42) and Intracerbroventricular Streptozotocin Models of Alzheimer's Disease: Possible Behavioral, Biochemical, Mitochondrial, Cellu lar and Histopathological Evidences. Journal of Alzheimer's Disease Parkinsonism, 2016. 06(01). 41. Zhang, L., et al., Curcumin Improves Amyloid beta-Peptide (1-42) Induced Spatial Memory Deficits through BDNF-ERK Signaling Pathway. PLoS One, 2015. 10(6): p. e0131525. 42. Hu, X., et al., Tau pathogenesis is promoted by Aβ1-42 but not Aβ1-40. Mol Neurodegener, 2014. 9: p. 52. 43. Kamat, P.K., Streptozotocin induced Alzheimer's disease like changes and the underlying neural degeneration and regeneration mechanism. Neural Regen Res, 2015. 10(7): p. 1050-2. 44. Kamat, P.K., et al., Streptozotocin Intracerebroventricular-Induced Neurotoxicity and Brain Insulin Resistance: a Therapeutic Intervention for Treatment of Sporadic Alzheimer's Disease (sAD)-Like Pathology. Mol Neurobiol, 2016. 53(7): p. 4548-62. 45. Ishrat, T., et al., Coenzyme Q10 modulates cognitive impairment against intracerebroventricular injection of streptozotocin in rats. Behav Brain Res, 2006. 171(1): p. 9-16. 46. Kellar, D. and S. Craft, Brain insulin resistance in Alzheimer's disease and related disorders: mechanisms and therapeutic approaches. Lancet Neurol, 2020. 19(9): p. 758-766. 47. Diehl, T., R. Mullins, and D. Kapogiannis, Insulin resistance in Alzheimer's disease. Transl Res, 2017. 183: p. 26-40. 48. De Felice, F.G., Alzheimer's disease and insulin resistance: translating basic science into clinical applications. J Clin Invest, 2013. 123(2): p. 531-9. 49. Banks, W.A., J.B. Jaspan, and A.J. Kastin, Selective, physiological transport of insulin across the blood-brain barrier: novel demonstration by species-specific radioimmunoassays. Peptides, 1997. 18(8): p. 1257-62. 50. Banks, W.A., et al., Transport of insulin across the blood-brain barrier: saturability at euglycemic doses of insulin. Peptides, 1997. 18(9): p. 1423-9. 51. Skeberdis, V.A., et al., Insulin promotes rapid delivery of N-methyl-D- aspartate receptors to the cell surface by exocytosis. Proc Natl Acad Sci U S A, 2001. 98(6): p. 3561-6. 52. Kopf, S.R. and C.M. Baratti, Effects of posttraining administration of insulin on retention of a habituation response in mice: participation of a central cholinergic mechanism. Neurobiol Learn Mem, 1999. 71(1): p. 50-61. 53. Figlewicz, D.P., et al., Insulin reduces norepinephrine transporter mRNA in vivo in rat locus coeruleus. Brain Res, 1993. 602(1): p. 161-4. 54. De Felice, F.G., M.V. Lourenco, and S.T. Ferreira, How does brain insulin resistance develop in Alzheimer's disease? Alzheimers Dement, 2014. 10(1 Suppl): p. S26-32. 55. Gasparini, L., et al., Does insulin dysfunction play a role in Alzheimer's disease? Trends Pharmacol Sci, 2002. 23(6): p. 288-93. 56. Ordóñez, P., et al., Insulin sensitivity in streptozotocin-induced diabetic rats treated with different doses of 17beta-oestradiol or progesterone. Exp Physiol, 2007. 92(1): p. 241-9. 57. de la Monte, S.M., Type 3 diabetes is sporadic Alzheimer׳s disease: mini-review. Eur Neuropsychopharmacol, 2014. 24(12): p. 1954-60. 58. Haskó, G., et al., Adenosine receptor signaling in the brain immune system. Trends Pharmacol Sci, 2005. 26(10): p. 511-6. 59. de Mendonça, A. and J.A. Ribeiro, Adenosine and neuronal plasticity. Life Sci, 1997. 60(4-5): p. 245-51. 60. Huang, Z.L., Y. Urade, and O. Hayaishi, The role of adenosine in the regulation of sleep. Curr Top Med Chem, 2011. 11(8): p. 1047-57. 61. Liu, Y.J., et al., Research progress on adenosine in central nervous system diseases. CNS Neurosci Ther, 2019. 25(9): p. 899-910. 62. Stockwell, J., E. Jakova, and F.S. Cayabyab, Adenosine A1 and A2A Receptors in the Brain: Current Research and Their Role in Neurodegeneration. Molecules, 2017. 22(4). 63. Costenla, A.R., R.A. Cunha, and A. de Mendonça, Caffeine, adenosine receptors, and synaptic plasticity. J Alzheimers Dis, 2010. 20 Suppl 1: p. S25-34. 64. Gomes, C.V., et al., Adenosine receptors and brain diseases: neuroprotection and neurodegeneration. Biochim Biophys Acta, 2011. 1808(5): p. 1380-99. 65. Dunwiddie, T.V. and S.A. Masino, The role and regulation of adenosine in the central nervous system. Annu Rev Neurosci, 2001. 24: p. 31-55. 66. Daly, J.W. and W.L. Padgett, Agonist activity of 2- and 5'-substituted adenosine analogs and their N6-cycloalkyl derivatives at A1- and A2-adenosine receptors coupled to adenylate cyclase. Biochem Pharmacol, 1992. 43(5): p. 1089-93. 67. Dixon, A.K., et al., Tissue distribution of adenosine receptor mRNAs in the rat. Br J Pharmacol, 1996. 118(6): p. 1461-8. 68. Chen, Z., et al., Prolonged adenosine A1 receptor activation in hypoxia and pial vessel disruption focal cortical ischemia facilitates clathrin-mediated AMPA receptor endocytosis and long-lasting synaptic inhibition in rat hippocampal CA3-CA1 synapses: differential regulation of GluA2 and GluA1 subunits by p38 MAPK and JNK. J Neurosci, 2014. 34(29): p. 9621-43. 69. Brust, T.B., et al., p38 mitogen-activated protein kinase contributes to adenosine A1 receptor-mediated synaptic depression in area CA1 of the rat hippocampus. J Neurosci, 2006. 26(48): p. 12427-38. 70. Brust, T.B., F.S. Cayabyab, and B.A. MacVicar, C-Jun N-terminal kinase regulates adenosine A1 receptor-mediated synaptic depression in the rat hippocampus. Neuropharmacology, 2007. 53(8): p. 906-17. 71. Svenningsson, P., et al., Distribution of adenosine receptors in the postmortem human brain: an extended autoradiographic study. Synapse, 1997. 27(4): p. 322-35. 72. Chao, M.V., Neurotrophins and their receptors: a convergence point for many signalling pathways. Nat Rev Neurosci, 2003. 4(4): p. 299-309. 73. Tebano, M.T., et al., Adenosine A(2A) receptors are required for normal BDNF levels and BDNF-induced potentiation of synaptic transmission in the mouse hippocampus. J Neurochem, 2008. 104(1): p. 279-86. 74. Bozdagi, O., et al., The neurotrophin-inducible gene Vgf regulates hippocampal function and behavior through a brain-derived neurotrophic factor-dependent mechanism. J Neurosci, 2008. 28(39): p. 9857-69. 75. Lee, F.S. and M.V. Chao, Activation of Trk neurotrophin receptors in the absence of neurotrophins. Proc Natl Acad Sci U S A, 2001. 98(6): p. 3555-60. 76. Chien, T., et al., GSK3beta negatively regulates TRAX, a scaffold protein implicated in mental disorders, for NHEJ-mediated DNA repair in neurons. Mol Psychiatry, 2018. 23(12): p. 2375-2390. 77. Phillips, A.J.K., E.B. Klerman, and J.P. Butler, Modeling the adenosine system as a modulator of cognitive performance and sleep patterns during sleep restriction and recovery. PLoS Comput Biol, 2017. 13(10): p. e1005759. 78. Greene, R.W., T.E. Bjorness, and A. Suzuki, The adenosine-mediated, neuronal-glial, homeostatic sleep response. Curr Opin Neurobiol, 2017. 44: p. 236-242. 79. Oishi, Y., et al., Adenosine in the tuberomammillary nucleus inhibits the histaminergic system via A1 receptors and promotes non-rapid eye movement sleep. Proc Natl Acad Sci U S A, 2008. 105(50): p. 19992-7. 80. Gallopin, T., et al., The endogenous somnogen adenosine excites a subset of sleep-promoting neurons via A2A receptors in the ventrolateral preoptic nucleus. Neuroscience, 2005. 134(4): p. 1377-90. 81. King, A.E., et al., Nucleoside transporters: from scavengers to novel therapeutic targets. Trends Pharmacol Sci, 2006. 27(8): p. 416-25. 82. Kao, Y.H., et al., Targeting ENT1 and adenosine tone for the treatment of Huntington's disease. Hum Mol Genet, 2017. 26(3): p. 467-478. 83. Lee, C.C., et al., Adenosine Augmentation Evoked by an ENT1 Inhibitor Improves Memory Impairment and Neuronal Plasticity in the APP/PS1 Mouse Model of Alzheimer's Disease. Mol Neurobiol, 2018. 55(12): p. 8936-8952. 84. Lueptow, L.M., Novel Object Recognition Test for the Investigation of Learning and Memory in Mice. J Vis Exp, 2017(126). 85. Chan, D.W., et al., Autophosphorylation of the DNA-dependent protein kinase catalytic subunit is required for rejoining of DNA double-strand breaks. Genes Dev, 2002. 16(18): p. 2333-8. 86. Guardia de Souza, E.S.T., et al., Oral treatment with royal jelly improves memory and presents neuroprotective effects on icv-STZ rat model of sporadic Alzheimer's disease. Heliyon, 2020. 6(2): p. e03281. 87. Coras, R., et al., Differential influence of hippocampal subfields to memory formation: insights from patients with temporal lobe epilepsy. Brain, 2014. 137(Pt 7): p. 1945-57. 88. Cheignon, C., et al., Oxidative stress and the amyloid beta peptide in Alzheimer's disease. Redox Biol, 2018. 14: p. 450-464. 89. Taqatqeh, F., et al., More than a retrograde messenger: nitric oxide needs two cGMP pathways to induce hippocampal long-term potentiation. J Neurosci, 2009. 29(29): p. 9344-50. 90. Bon, C.L. and J. Garthwaite, On the role of nitric oxide in hippocampal long-term potentiation. J Neurosci, 2003. 23(5): p. 1941-8. 91. Picone, P., et al., Mitochondrial dysfunction: different routes to Alzheimer's disease therapy. Oxid Med Cell Longev, 2014. 2014: p. 780179. 92. Vítor, A.C., et al., Studying DNA Double-Strand Break Repair: An Ever-Growing Toolbox. Front Mol Biosci, 2020. 7: p. 24. 93. Kanungo, J., DNA-PK Deficiency in Alzheimer's Disease. J Neurol Neuromedicine, 2016. 1(3): p. 17-22. 94. Porter, A.G. and R.U. Jänicke, Emerging roles of caspase-3 in apoptosis. Cell Death Differ, 1999. 6(2): p. 99-104. 95. Chang, C.-P., et al., A novel equilibrative nucleoside transporter 1 inhibitor alleviates Tau-mediated neurodegeneration. bioRxiv, 2020: p. 2020.10.25.334201. 96. Barker, G.R. and E.C. Warburton, Critical role of the cholinergic system for object-in-place associative recognition memory. Learn Mem, 2009. 16(1): p. 8-11. 97. Bartus, R.T., On neurodegenerative diseases, models, and treatment strategies: lessons learned and lessons forgotten a generation following the cholinergic hypothesis. Exp Neurol, 2000. 163(2): p. 495-529. 98. Givens, B.S. and D.S. Olton, Cholinergic and GABAergic modulation of medial septal area: effect on working memory. Behav Neurosci, 1990. 104(6): p. 849-55. 99. Mizumori, S.J., et al., Reversible inactivation of the medial septum differentially affects two forms of learning in rats. Brain Res, 1990. 528(1): p. 12-20. 100. Yuliani, T., S. Lobentanzer, and J. Klein, Central cholinergic function and metabolic changes in streptozotocin-induced rat brain injury. J Neurochem, 2020. 101. Bussey, T.J., et al., Distinct patterns of behavioural impairments resulting from fornix transection or neurotoxic lesions of the perirhinal and postrhinal cortices in the rat. Behav Brain Res, 2000. 111(1-2): p. 187-202. 102. Cui, S.Y., et al., Intracerebroventricular streptozotocin-induced Alzheimer's disease-like sleep disorders in rats: Role of the GABAergic system in the parabrachial complex. CNS Neurosci Ther, 2018. 24(12): p. 1241-1252. 103. Girardeau, G., et al., Selective suppression of hippocampal ripples impairs spatial memory. Nat Neurosci, 2009. 12(10): p. 1222-3. 104. Boyce, R., et al., Causal evidence for the role of REM sleep theta rhythm in contextual memory consolidation. Science, 2016. 352(6287): p. 812-6. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82194 | - |
| dc.description.abstract | "阿茲海默症 (Alzheimer’s disease, AD) 為神經退化性疾病,其特徵伴隨著有病理學標誌物包含類澱粉斑塊 (Amyloid-beta plaques, Aβ) 和神經纖維纏結 (Neurofibrillary tangles, NFT)的堆積、神經元的丟失以及認知功能漸進式退化。阿茲海默症可被歸類為偶發型阿茲海默症 (Sporadic AD, sAD)以及家族性阿茲海默症 (Familial AD, fAD)。最主要的阿茲海默症病例為偶發型居多,其罹患原因可源於許多因素,包含環境以及老化問題。然而家族性阿茲海默症佔所有病例數少於百分之一。鏈脲佐菌素 (Streptozotocin, STZ) 為一類葡萄糖胺類化合物,近年來被發現以腦室內注射 (intra-cerebroventricular injection, icv) STZ可在齧齒類中樞神經系統干擾胰島素受體相關訊息傳遞路徑,並模擬類似於阿茲海默症的病理學癥狀。除了腦室內注射STZ可用來誘導偶發型阿茲海默症,海馬迴 (intra-hippocampal, ih)內注射Aβ1-42片段同樣也能表現出許多人類阿茲海默症的面向。腺苷 (Adenosine) 在中樞神經系統中能透過神經迴路來調節神經生理功能,包含參與學習及記憶能力還有睡眠的調控。平衡腺苷通道蛋白第一型 (Equilibrative nucleoside transporter 1, ENT1) 為調節胞內外腺苷濃度重要的穿膜通道蛋白。在本研究中,icv-STZ以及ih- Aβ1-42 被使用來建立可靠的偶發型動物模式,並用來評估 ENT1 抑制劑的效用。注射藥物過後十四天,在腹側海馬迴中有Aβ以及磷酸化tau蛋白累積。重複給予ENT1抑制劑後,在sAD小鼠海馬迴內一氧化氮 (Nitric oxide, NO)過高、活化態凋亡蛋白酶第三型 (cleaved-caspase 3)、組蛋白 (H2A histone family member X) 磷酸化程度以及DNA絲氨酸/蘇氨酸蛋白激酵素(DNA-dependent serine/threonine protein kinase, DNA-PKcs)的活性皆被校正回正常水準。另外在基底前腦medial septum-diagonal band of Broca (MS/DB) 核區內膽鹼神經元 (cholinergic neuron) 的丟失同樣也被ENT1 抑制劑減緩。新穎物體辨識 (Novel object recognition, NOR) 以及莫氏水迷津 (Morris water maze, MWM) 的結果顯示,學習和記憶能力的缺損能因為ENT1抑制劑而被改善。腦電圖分析結果表明,小鼠在Aβ以及STZ誘導後出現睡眠障礙,然而因為ENT1抑制劑而提高的胞外腺苷濃度則有助於改善睡眠恆定。總結以上結果,ENT1抑制劑應用於本研究中的疾病動物模式提供了潛在新穎的偶發型阿茲海默症治療方向。" | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-25T06:33:29Z (GMT). No. of bitstreams: 1 U0001-1507202113404600.pdf: 2949327 bytes, checksum: e743e4b7fe387bff206b8720c378a4ac (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | 致謝 II 中文摘要 III 英文摘要 V 目錄 VII 圖目錄 X 1. Introduction 1 2. Specific aims 11 3. Materials and methods 12 3.1 Reagents and drugs 12 3.2 Animals 12 3.3 Implantation of cannula and electroencephalography (EEG) 13 3.4 Electroencephalography recording and sleep analysis 14 3.5 Experimental designs 15 3.6 Behavioral assays 16 3.6.1 Novel object recognition (NOR) 16 3.6.2 Morris water maze (MWM) 17 3.7 Brain tissue preparation 19 3.8 Western blot 20 3.9 Immunofluorescence assay 21 3.10 Griess assay 22 3.11 Statistical analysis 22 4. Results 24 4.1 icv-STZ with ih-Aβ1-42 caused amyloid-beta plaques accumulation in the dorsal-hippocampus 24 4.2 STZ and Aβ1-42-infused-mice exhibited tau hyperphosphorylation in the hippocampus 26 4.3 Effects of the ENT1 inhibitor on expression of nitric oxide in icv-STZ and ih-Aβ1-42-infused mice 28 4.4 Effects of the ENT1 inhibitor on the expression of DNA damage marker and apoptosis in icv-STZ and ih-Aβ1-42-infused mice 30 4.5 Effects of the ENT1 inhibitor on the activation of DNA-PKcs in the hippocampus in icv-STZ and ih-Aβ1-42-infused mice 33 4.6 Effects of the ENT1 inhibitor on cholinergic neuronal loss in the MS/DB in icv-STZ and ih-Aβ1-42-infused mice 35 4.7 Effects of the ENT1 inhibitor on icv-STZ and ih-Aβ1-42-induced impairment of recognition memory in sAD mice 39 4.8 Effects of the ENT1 inhibitor on learning and spatial memory in icv-STZ and ih-Aβ1-42-induced mice 42 4.9 Effects of the ENT1 inhibitor on icv-STZ and ih- Aβ1-42-induced sleep disruption 46 5. Discussion 54 6. Conclusion 64 References 65 Fig. 1 Flow chart of experimental protocol. 16 Fig. 2 Experimental protocol of NOR. 17 Fig. 3 The icv-STZ with ih-Aβ1-42 resulted in amyloid-beta plaque accumulation in the dorsal hippocampus of mice. 25 Fig. 4 The effects of icv-STZ and ih-Aβ1-42 on tau protein phosphorylation. 27 Fig. 5 The ENT1 inhibitor attenuated the levels of nitric oxide in the hippocampal region in STZ and Aβ1-42-infused mice. 29 Fig. 6 ENT1 inhibitor alleviated the DNA damage and apoptosis in hippocampus in icv-STZ and ih-Aβ1-42-infused mice. 31 Fig. 7 Oral administration of the ENT1 inhibitor reversed the activity of phospho-DNA-PKcs in the hippocampus in icv-STZ and ih-Aβ1-42-infused mice. 34 Fig. 8 Oral-administration of the ENT1 inhibitor alleviated the loss of cholinergic neurons in MS/DB in icv-STZ and ih-Aβ1-42-infused mice. 37 Fig. 9 Oral-administration of the ENT1 inhibitor prevented the cognitive ability decline in icv-STZ and ih-Aβ1-42-infused mice. 41 Fig. 10 Oral-administration of the ENT1 inhibitor prevented the learning and spatial memory decline in icv-STZ and ih-Aβ1-42-infused mice. 45 Fig. 11 Oral administration of the ENT1 inhibitor diminished the disruptions of sleep pattern induced by icv-STZ and ih-Aβ1-42. 52 | |
| dc.language.iso | en | |
| dc.subject | ENT1抑制劑 | zh_TW |
| dc.subject | 偶發型阿茲海默症 | zh_TW |
| dc.subject | 類澱粉蛋白 | zh_TW |
| dc.subject | 鏈脲佐菌素 | zh_TW |
| dc.subject | 腺苷 | zh_TW |
| dc.subject | sporadic Alzheimer’s disease (sAD) | en |
| dc.subject | streptozotocin (STZ) | en |
| dc.subject | adenosine | en |
| dc.subject | ENT1 inhibitor | en |
| dc.subject | amyloid-beta (Aβ) | en |
| dc.title | ENT1抑制劑於鏈脲佐菌素及β-類澱粉蛋白斑塊誘導之偶發型阿茲海默症作用評估 | zh_TW |
| dc.title | The assessments of equilibrative nucleoside transporter 1 inhibitor in icv-STZ with ih-Aβ1-42-induced sporadic Alzheimer's disease | en |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 蕭逸澤(Yi-Tse Hsiao) | |
| dc.contributor.oralexamcommittee | 尹珮璐(Hsin-Tsai Liu),陳儀莊(Chih-Yang Tseng),周碩彬 | |
| dc.subject.keyword | 偶發型阿茲海默症,類澱粉蛋白,鏈脲佐菌素,腺苷,ENT1抑制劑, | zh_TW |
| dc.subject.keyword | sporadic Alzheimer’s disease (sAD),amyloid-beta (Aβ),streptozotocin (STZ),adenosine,ENT1 inhibitor, | en |
| dc.relation.page | 72 | |
| dc.identifier.doi | 10.6342/NTU202101485 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2021-07-19 | |
| dc.contributor.author-college | 獸醫專業學院 | zh_TW |
| dc.contributor.author-dept | 獸醫學研究所 | zh_TW |
| dc.date.embargo-lift | 2026-07-01 | - |
| Appears in Collections: | 獸醫學系 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| U0001-1507202113404600.pdf Restricted Access | 2.88 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
