Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 植物病理與微生物學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8218
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張雅君(Ya-Chun Chang)
dc.contributor.authorKe Leeen
dc.contributor.author李克zh_TW
dc.date.accessioned2021-05-20T00:50:16Z-
dc.date.available2020-08-20
dc.date.available2021-05-20T00:50:16Z-
dc.date.copyright2020-08-20
dc.date.issued2020
dc.date.submitted2020-08-14
dc.identifier.citationAbbink, T. E., Peart, J. R., Mos, T. N., Baulcombe, D. C., Bol, J. F., and Linthorst, H. J. 2002. Silencing of a gene encoding a protein component of the oxygen-evolving complex of photosystem II enhances virus replication in plants. Virology. 295: 307–319.
Alam, S. B. and Rochon, D. A. 2017. Evidence that Hsc70 is associated with Cucumber necrosis virus particles and plays a role in particle disassembly. J Virol. 91: e01555-16.
Alfenas-Zerbini, P., Maia, I. G., Fávaro, R. D., Cascardo, J. C., Brommonschenkel, S. H., and Zerbini, F. M. 2009. Genome-wide analysis of differentially expressed genes during the early stages of tomato infection by a potyvirus. Mol Plant Microbe Interact. 22: 352-361.
Amelunxen, F. 1958. Die Virus-Eiwei\spindeln der Kakteen. Darstellung, elektronenmikroskopische und biochemische Analyse des Virus. Protoplasma. 49: 140–178.
Banks, R. D., Blake, C. C., Evans, P. R., Haser, R., Rice, D. W., Hardy, G. W., Merrett, M., and Phillips, A. W. 1979. Sequence, structure and activity of phosphoglycerate kinase: a possible hinge-bending enzyme. Nature 279: 773–777.
Baratova, L. A., Grebenshchikov, N. I., Shishkov, A. V., Kashirin, I. A., Radavsky, J. L., Jarvekulg, L., and Saarma, M. 1992. The topography of the surface of Potato virus X: tritium planigraphy and immunological analysis. J. Gen. Virol. 73: 229-235. 
Bi, J. A., Yang, Y., Chen, B., Zhao, J., Chen, Z., Song, B., Chen, J., and Yan, F. 2019. Retardation of the Calvin cycle contributes to the reduced CO2 assimilation ability of rice stripe virus-infected N. benthamiana and suppresses viral infection. Front Microbiol. 10: 568.
Brandes, J., and Bercks, R. 1963. Untersuchungen zur Identifizierung und Klassifizierung des Kakteen-X-Virus (cactus virus X). J. Phytopathol. 46:291–300.
Chang,Y.-W. 2017. Study of two Cactus virus X infectious clones and establishment of pitaya protoplast system. National Taiwan University. Master thesis.
Chen, C., Wu, J., Hua, Q., Tel-Zur, N., Xie, F., Zhang, Z., Chen, J., Zhang, R., Hu, G., Zhao, J., and Qin, Y. 2019. Identification of reliable reference genes for quantitative real-time PCR normalization in pitaya. Plant methods. 15:70.
Chen, H., Cao, Y., Li, Y., Xia, Z., Xie, J., Carr, J. P., Wu, B., Fan, Z., and Zhou, T. 2017. Identification of differentially regulated maize proteins conditioning Sugarcane mosaic virus systemic infection. New Phytol. 215: 1156-1172.
Chen, I. H., Chiu, M. H., Cheng, S. F., Hsu, Y. H., and Tsai, C. H. 2013. The glutathione transferase of Nicotiana benthamiana NbGSTU 4 plays a role in regulating the early replication of Bamboo mosaic virus. New Phytol. 199:749-757.
Chen, M. J., and Tzeng, D. D.-S. 1996. Identification of cactus X potexvirus in Taiwan and localization of its existence and multiplication in infected cells. Plant Pathol. Bull. 5:63-67.
Chen, Z. R., Zhou T., Wu, X. H., Hong, Y. G., Fan, Z. F., and Li, H. F. 2008. Influence of cytoplasmic heat shock protein 70 on viral infection of Nicotiana benthamiana. Mol. Plant Pathol. 9:809-817.
Cheng, J. H., Ding, M. P., Hsu, Y. H., and Tsai, C. H. 2001. The partial purified RNA-dependent RNA polymerases from Bamboo mosaic potexvirus and Potato virus X infected plants containing the template-dependent activities. Virus Res. 80:41-52.
Cheng, S. F., Huang, Y. P., Chen, L. H., Hsu, Y. H., and Tsai, C. H. 2013a. Chloroplast phosphoglycerate kinase is involved in the targeting of Bamboo mosaic virus to chloroplasts in Nicotiana benthamiana plants. Plant Physiol. 163:1598-1608.
Cheng, S.-F., Tsai, M.-S., Huang, C.-L., Huang, Y.-P., Chen, I-H., Lin, N.-S., Hsu, Y.-H., Tsai, C.-H., and Cheng, C.-P. 2013b. Ser/Thr kinase-like protein of Nicotiana benthamiana is involved in the cell-to-cell movement of Bamboo mosaic virus. PLoS One. 8(4): e62907.
Cho, S. Y., Cho, W. K., Sohn, S. H., and Kim, K. H. 2012. Interaction of the host protein NbDnaJ with Potato virus X minus-strand stem-loop 1 RNA and capsid protein affects viral replication and movement. Biochem Biophys Res Commun. 417:451-456.
Chiu, M. H., Chen, I. H., Baulcombe, D. C., and Tsai, C. H. 2010. The silencing suppressor P25 of Potato virus X interacts with Argonaute1 and mediates its degradation through the proteasome pathway. Mol Plant Pathol. 11:641-649.
Chung, Y., Kwon, S. I., and Choe, S. 2014. Antagonistic regulation of Arabidopsis growth by brassinosteroids and abiotic stresses. Mol Cells. 37: 795-803.
Dardick, C. 2007. Comparative expression profiling of Nicotiana benthamiana leaves systemically infected with three fruit tree viruses. MPMI. 20:1004-1017.
Draghici, H. K., Pilot, R., Thiel, H., and Varrelmann, M. 2009. Functional mapping of PVX RNA-dependent RNA-replicase using pentapeptide scanning mutagenesis-identification of regions essential for replication and subgenomic RNA amplification. Virus Res. 143:114-124.
Finotello, F. and Di Camillo, B. 2015. Measuring differential gene expression with RNA-seq: challenges and strategies for data analysis. Brief Funct Genomics. 14:130-142.
Fridborg, I., Grainger, J., Page, A., Coleman, M., Findlay, K., and Angell, S. 2003. TIP, a novel host factor linking callose degradation with the cell-to-cell movement of Potato virus X. MPMI. 16(2): 132-140.
Garcia‐Ruiz, H. 2019. Host factors against plant viruses. Mol Plant Pathol. 20:1588-1601.
Gorovits, R., Moshe, A., Ghanim, M., and Czosnek, H. 2013. Recruitment of the host plant heat shock protein 70 by Tomato yellow leaf curl virus coat protein is required for virus infection. PloS one. 8: e70280.
Guillaumot, D., Guillon, S., Déplanque, T., Vanhee, C., Gumy, C., Masquelier, D., Morsommem P., and Batoko, H. 2009. The Arabidopsis TSPO‐related protein is a stress and abscisic acid‐regulated, endoplasmic reticulum–Golgi‐localized membrane protein. Plant J. 60: 242-256. 
Guimarães, D. D. A. B., De Castro, D. D. S. B., Oliveira, F. L. D., Nogueira, E. M., Silva, M. A. M. D., and Teodoro, A. J. 2017. Pitaya extracts induce growth inhibition and proapoptotic effects on human cell lines of breast cancer via downregulation of estrogen receptor gene expression. Oxid Med Cell Longev. 2017:7865073
Guo, S.-M. 2017. Interactions between Cymbidium mosaic virus and Odontoglossum ringspot virus in Nicotiana benthamiana. Department of Plant pathology and Microbiology. National Taiwan University. Master thesis.
Guo, Y., Jia, M. A., Yang, Y., Zhan, L., Cheng, X., Cai, J., Zhang J., Yang, J., Liu, T., Fu, Q., Zhao, J., and Shamsi, I. H. 2017. Integrated analysis of tobacco miRNA and mRNA expression profiles under PVY infection provids insight into tobacco-PVY interactions. Sci Rep. 7: 4895
Gupta, M., Yoshioka, H., Ohnishi, K., Mizumoto, H., Hikichi, Y., and Kiba, A. 2013. A translationally controlled tumor protein negatively regulates the hypersensitive response in Nicotiana benthamiana. Plant Cell Physiol. 54: 1403-1414.
Havelda, Z., Várallyay, É., Válóczi, A., and Burgyán, J. 2008. Plant virus infection‐induced persistent host gene downregulation in systemically infected leaves. Plant J. 55: 278-288.
Hsu, T. H. and Spindler, K. R. 2012. Identifying host factors that regulate viral infection. PLoS Pathog. 8: e1002772.
Hung, C.-J., Huang, Y.-W., Liou, M.-R., Lee, Y.-C., Lin, N.-S., Meng, M., Tsai, C.-H., Hu, C.-C., and Hsu, Y.-H. 2014. Phosphorylation of coat protein by protein kinase CK2 regulates cell-to-cell movement of Bamboo mosaic virus through modulating RNA binding. MPMI. 27:1211–1225.
Hua, Q., Chen, C., Chen, Z., Chen, P., Ma, Y., Wu, Y., Zheng, J., Hu, G., Zhao, J., and Qin, Y. 2016. Transcriptomic analysis reveals key genes related to betalain biosynthesis in pulp coloration of Hylocereus polyrhizus. Front Plant Sci. 6:1179.
Huang, C.-Y. 2017. Investigation of the interaction between Cactus virus X and Pitaya virus X. Department of Plant pathology and Microbiology. National Taiwan University. Master thesis.
Huang, D., Jaradat, M. R., Wu, W., Ambrose, S. J., Ross, A. R., Abrams, S. R., and Cutler, A. J. 2007. Structural analogs of ABA reveal novel features of ABA perception and signaling in Arabidopsis. Plant J. 50: 414-428.
Huang, Y.-P., Chen, I.-H., and Tsai, C.-H. 2017. Host Factors in the Infection Cycle of Bamboo mosaic virus. Front. Microbiol. 8:437
Huang, Y. P., Chen, J. S., Hsu, Y. H., and Tsai, C. H. 2013. A putative Rab-GTPase activation protein from Nicotiana benthamiana is important for Bamboo mosaic virus intercellular movement. Virology 447, 292–299
Huang, Y.-P., Jhuo, J.-H., Tsai, M.-S., Tsai, C.-H., Chen, H.-C., Lin, N.-S., et al. 2015. NbRABG3f, a member of Rab GTPase, is involved in Bamboo mosaic virus infection in Nicotiana benthamiana. Molecular Plant Pathology. 17:714–726.
Huang, Y. W., Hu, C. C., Liou, M. R., Chang, B. Y., Tsai, C. H., Meng, M., et al. 2012. Hsp90 interacts specifically with viral RNA and differentially regulates replication initiation of Bamboo mosaic virus and associated satellite RNA. PLoS Pathogens. 8 
Huang, Y. W., Hu, C. C., Tsai, C. H., Lin, N. S., and Hsu, Y. H. 2017. Chloroplast Hsp70 isoform is required for age-dependent tissue preference of Bamboo mosaic virus in mature Nicotiana benthamiana leaves. MPMI. 30:631-645.
Huang, Y. W., Hu, C. C., Tsai, C. H., Lin, N. S., and Hsu, Y. H. 2019. Nicotiana benthamiana Argonaute10 plays a pro‐viral role in Bamboo mosaic virus infection. New Phytol. 224:804-817.
Huisman, M. J., Linthorst, H. J., Bol, J. F., and Cornelissen, B. J. 1988. The complete nucleotide sequence of Potato virus X and its homologies at the amino acid level with various plus-stranded RNA viruses. J Gen Virol. 69:1789-1798.
Jang, C., Seo, E.-Y., Nam, J., Bae, H., Gim, Y. G., Kim, H. G., Cho, I. S., Lee, Z.-W., Bauchan, G. R., Hammond, J., and Lim, H.-S. 2013. Insights into Alternanthera mosaic virus TGB3 functions: Interactions with Nicotiana benthamiana PsbO correlate with chloroplast vesiculation and veinal necrosis caused by TGB3 over-expression. Frontiers in Plant Science. 4.
Jiang, Z., Zhou, X., Li, R., Michal, J. J., Zhang, S., Dodson, M. V., Zhang, Z., and Harland, R. M. 2015. Whole transcriptome analysis with sequencing: methods, challenges and potential solutions. Cell Mol Life Sci. 72:3425-3439.
Kalinina, N. O., Rakitina, D. V., Solovyev, A. G., Schiemann, J., and Morozov, S. Y. 2002. RNA helicase activity of the plant virus movement proteins encoded by the first gene of the triple gene block. Virology 296:321-329.
Kanno, Y., Oikawa, T., Chiba, Y., Ishimaru, Y., Shimizu, T., Sano, N., Koshiba, T., Kamiya, Y., Ueda, M., and Seo, M. 2016. AtSWEET13 and AtSWEET14 regulate gibberellin-mediated physiological processes. Nat Commun. 7: 13245.
Karpova, O. V., Zayakina, O. V., Arkhipenko, M. V., Sheval, E. V., Kiselyova, O. I., Poljakov, V. Y., Yaminsky, I. V., Rodionova, N. P., and Atabekov, J. G. 2006. Potato virus X RNA-mediated assembly of single-tailed ternary 'coat protein-RNA-movement protein' complexes. J. Gen. Virol. 87:2731-2740.
Koenig, R., and Lesemann, D.-E. (1978). Potexvirus group. Commonwealth Mycological Institute/Association of Applied Biologists (CMI/AAB) Descriptions of Plant Viruses, 200.
Koenig, R., Pleij, C. W., Loss, S., Burgermeister, W., Aust, H., and Schiemann, J. 2004. Molecular characterisation of potexviruses isolated from three different genera in the family Cactaceae. Arch. Virol. 149:903-914.
Kwon, S. J., and Kim, K. H. 2006. The SL1 stem-loop structure at the 5’-end of Potato virus X RNA is required for efficient binding to host proteins and for viral infectivity. Mol. Cells. 21:63-75.
Kozera, B. and Rapacz, M. 2013. Reference genes in real-time PCR. J Appl Genet. 54:391-406.
Le Bellec, F., Vaillant, F., and Imbert, E. 2006. Pitahaya (Hylocereus spp.): a new fruit crop, a market with a future. Fruits, 61:237-250.
Lee, C.-C., Lin, T.-L., Lin, J.-W., Han, Y.-T., Huang, Y.-T., Hsu, Y.-H., and Meng, M. 2016. Promotion of Bamboo mosaic virus accumulation in Nicotiana benthamiana by 5’→ 3’ exonuclease NbXRN4. Front. Microbiol. 6:1508. 
Li, K., Wu, G., Li, M., Ma, M., Du, J., Sun, M., Sun, X., and Qing, L. 2018. Transcriptome analysis of Nicotiana benthamiana infected by Tobacco curly shoot virus. Virol. J. 15:138.
Li, K., Wu, G., Li, M., Ma, M., Du, J., Sun, M., Sun, X., and Qing, L. 2018. Transcriptome analysis of Nicotiana benthamiana infected by Tobacco curly shoot virus. Virol J. 15: 138.
Li, Y.-S. 2010. Characterization, infectious clone construction and antiserum preparation of Pitaya virus X. Department of Plant pathology and Microbiology. National Taiwan University. Master thesis.
Lin, M. K., Chang, B. Y., Liao, J. T., Lin, N. S., and Hsu, Y. H. 2004. Arg-16 and Arg-21 in the N-terminal region of the triple-gene-block protein 1 of Bamboo mosaic virus are essential for virus movement. J. Gen. Virol. 85:251-259.
Lin, N. S., and Chen, C. C. 1991. Association of bamboo mosaic virus (BoMV) and BoMV-specific electron-dense crystalline bodies with chloroplasts. Phytopathology 81:1551-1555.
Lin, P.-Y. 2017. Infection and distribution of Cactus virus X and Pitaya virus X in pitaya plants. National Taiwan University. Master thesis.
Lin, R. and Wang, H. 2004. Arabidopsis FHY3/FAR1 gene family and distinct roles of its members in light control of Arabidopsis development. Plant Physiol. 136: 4010-4022.
Liou, M. K., Hu, C. C., Lin, N. S., Chang, B. Y., and Hsu, Y. H. 2006. Movement of potexviruses requires species-specific interactions among the cognate triple gene block proteins, as revealed by a trans-complementation assay based on the Bamboo mosaic virus satellite RNA-mediated expression system. J. Gen. Virol. 87:1357-1367.
Liou, D. Y., Hsu, Y. H., Wung, C. H., Wang, W. H., Lin, N. S., and Chang, B. Y. 2000. Functional analyses and identification of two arginine residues essential to the ATP-utilizing activity of the triple gene block protein 1 of Bamboo mosaic potexvirus. Virology 277:336-344.
Liou, M. R., Chen, Y. R., and Liou, R. F. 2001. First report of Cactus virus X on Hylocereus undatus (Cactaceae) in Taiwan. Plant Dis. 85:229.
Liu, L.-Y. D., Tseng, H.-I., Lin, C.-P., Lin, Y.-Y., Huang, Y.-H., Huang, C.-K., Chang, T.-H., and Lin, S.-S. 2014. High-throughput transcriptome analysis of the leafy flower transition of Catharanthus roseus induced by peanut witches’-broom phytoplasma infection. Plant Cell Physiol. 55:942–957.
Liu, Y., Sun, J., and Wu, Y. 2016. Arabidopsis ATAF1 enhances the tolerance to salt stress and ABA in transgenic rice. J Plant Res. 129: 955-962.
Lough, T. J., Lee, R. H., Emerson, S. J., Forster, R. L., and Lucas, W. J. 2006. Functional analysis of the 5' untranslated region of potexvirus RNA reveals a role in viral replication and cell-to-cell movement. Virology 351:455-465.
Lu, J., Du, Z.-X., Kong, J., Chen, L.-N., Qiu, Y.-H., Li, G.-F., Meng, X.-H., and Zhu, S.-F. 2012. Transcriptome analysis of Nicotiana tabacum infected by Cucumber mosaic virus during systemic symptom development. PLoS. ONE. 7: e43447
Lu, Z. S., Chen, Q. S., Zheng, Q. X., Shen, J. J., Luo, Z. P., Fan, K., Xu, S.-H., Shen, Q., and Liu, P.-P. 2019. Proteomic and phosphoproteomic analysis in Tobacco mosaic virus-infected tobacco (Nicotiana tabacum). Biomolecule. 9: 39. 
Mao, C.-H. 2008. Molecular Characterization and Detection of New Zygocactus virus X and Pitaya virus X from pitaya. Department of Plant pathology and Microbiology. National Taiwan University. Master thesis.
Mao, C. H., Lu, Y. C., Li, Y. S., Chang, Y. C., and Kuo, T. Y. 2018. Pitaya viral diseases and their detection methods in TAIWAN. Management of Pest and Disease. 303.
Mathioudakis, M. M., Rodríguez-Moreno, L., Sempere, R. N., Aranda, M. A., and Livieratos, I. 2014. Multifaceted capsid proteins: Multiple interactions suggest multiple roles for Pepino mosaic virus capsid protein. MPMI. 27:1356–1369
Mayer, M. P. and Bukau, B. 2005. Hsp70 chaperones: cellular functions and molecular mechanism. Cell Mol Life Sci. 62:670-684.
Miller, E. D., Plante, C. A., Kim, K. H., Brown, J. W., and Hemenway, C. 1998. Stem-loop structure in the 5' region of Potato virus X genome required for plus-strand RNA accumulation. J. Mol. Biol. 284:591-608.
Mine, A., Hyodo, K., Tajima, Y., Kusumanegara, K., Taniguchi, T., Kaido, M., Mise, K., Taniguchi, H., and Okuno, T. 2012. Differential roles of Hsp70 and Hsp90 in the assembly of the replicase complex of a positive-strand RNA plant virus. J Virol. 86:12091-12104.
Ni, H. F., Huang, C. W., Hsu, S. L., Lai, S. Y., and Yang, H. R. 2013. Pathogen characterization and fungicide screening of stem canker of pitaya. J. Taiwan Agric. Res. 62:225–234.
Ohama, N., Sato, H., Shinozaki, K., and Yamaguchi-Shinozaki, K. 2017. Transcriptional regulatory network of plant heat stress response. Trends Plant Sci. 22: 53-65.
Oliva, R., Ji, C., Atienza-Grande, G., Huguet-Tapia, J. C., Perez-Quintero, A., Li, T., Eom, J.-S., Li, C., Nguyen, H., Liu, B., Auguy, F., Sciallanno, C., Luu, V. T., Dossa, G., S., Cunnac, S., Schmidt, S. M., Slamet-Loedin, I. H., Cruz, C. V., Szurek, B., Frommer, W., B., White, F. F., and Yang, B. 2019. Broad-spectrum resistance to bacterial blight in rice using genome editing. Nat Biotechnol. 37: 1344-1350.
Park, M. R., Seo, J. K., and Kim, K. H. 2013. Viral and nonviral elements in potexvirus replication and movement and in antiviral responses. Adv Virus Res. 87:75-112
Pham, V. N., Kathare, P. K., and Huq, E. 2018. Phytochromes and phytochrome interacting factors. Plant Physiol. 176: 1025-1038.
Prasanth, K. R., Chuang, C., and Nagy, P. D. 2017. Co-opting ATP-generating glycolytic enzyme PGK1 phosphoglycerate kinase facilitates the assembly of viral replicase complexes. PLoS pathog. 13: e1006689.
Rami, N. S., Ismail, P., and Rahmat, A. 2016. Red pitaya juice supplementation ameliorates energy balance homeostasis by modulating obesity-related genes in high- carbohydrate, high-fat diet-induced metabolic syndrome rats. BMC Complement Altern Med. 16:243
Rea, M., Zheng, W., Chen, M., Braud, C., Bhangu, D., Rognan, T. N., and Xiao, W. 2012. Histone H1 affects gene imprinting and DNA methylation in Arabidopsis. Plant J. 71: 776-786.
Rodionova, N. P., Karpova, O. V., Kozlovsky, S. V., Zayakina, O. V., Arkhipenko, M. V., and Atabekov, J. G. 2003. Linear remodeling of helical virus by movement protein binding. J. Mol. Biol. 333:565-572.
Rombolá-Caldentey, B., Rueda-Romero, P., Iglesias-Fernández, R., Carbonero, P., and Oñate-Sánchez, L. 2014. Arabidopsis DELLA and two HD-ZIP transcription factors regulate GA signaling in the epidermis through the L1 box cis-element. Plant Cell. 26: 2905-2919.
Rouleau, M., Smith, R. J., Bancroft, J. B., and Mackie, G. A. 1995. Subcellular immunolocalization of the coat protein of two potexviruses in infected Chenopodium quinoa. Virology 214:314-318.
Söderman, E., Mattsson, J., and Engström, P. 1996. The Arabidopsis homeobox gene ATHB‐7 is induced by water deficit and by abscisic acid. Plant J. 10: 375-381.
Sonawane, M. S. 2017. Nutritive and medicinal value of dragon fruit. Asian J. Hort. 12:267–271.
Song, H., Zheng, Z., Wu, J., Lai, J., Chu, Q., and Zheng, X. 2016. White Pitaya (Hylocereus undatus) juice attenuates insulin resistance and hepatic steatosis in diet-induced obese mice. Plos. One. 11: e0149670.
Tian, H., Chen, S., Yang, W., Wang, T., Zheng, K., Wang, Y., Cheng, Y., Zhang, N., Liu, S., Li, D., Liu, B., and Wang, S. 2017. A novel family of transcription factors conserved in angiosperms is required for ABA signalling. Plant Cell Environ. 40: 2958-2971.
Voinnet, O., Lederer, C., and Baulcombe, D. C. 2000. A viral movement protein prevents spread of the gene silencing signal in Nicotiana benthamiana. Cell 103:157-167
Wang, X., Cao, X., Liu, M., Zhang, R., Zhang, X., Gao, Z., Zhao, X., Xu, K., Li, D., and Zhang, Y. 2018. Hsc70-2 is required for Beet black scorch virus infection through interaction with replication and capsid proteins. Sci Rep. 8:1-15.
Wang, X., Goregaoker, S. P., and Culver, J. N. 2009. Interaction of the Tobacco mosaic virus replicase protein with a NAC domain transcription factor is associated with the suppression of systemic host defenses. J Virol. 83: 9720-9730.
Wieczorek, K., Golecki, B., Gerdes, L., Heinen, P., Szakasits, D., Durachko, D. M., Crosgrove, D. J., Kreil, D. P., Puzio, P. S., Bohlmann, H., and Grundler, F. M. W. 2006. Expansins are involved in the formation of nematode‐induced syncytia in roots of Arabidopsis thaliana. Plant J. 48: 98-112.
Wu, Y.-M. 2019. Investigation of the synergistic interaction between Cactus virus X and Pitaya virus X. National Taiwan University. Master thesis.
Xu, M., Liu, C. L., Luo, J., Qi, Z., Yan, Z., Fu, Y., Wei, S.-S., and Tang, H. 2019. Transcriptomic de novo analysis of pitaya (Hylocereus polyrhizus) canker disease caused by Neoscytalidium dimidiatum. BMC genomics. 20:10.
Yoshida, T., Nishimura, N., Kitahata, N., Kuromori, T., Ito, T., Asami, T., Shinozaki, K., and Hirayama, T. 2006. ABA-hypersensitive germination3 encodes a protein phosphatase 2C (AtPP2CA) that strongly regulates abscisic acid signaling during germination among Arabidopsis protein phosphatase 2Cs. Plant physiol. 140: 115-126.
Zhuang, Y., Zhang, Y., and Sun, L. 2012. Characteristics of fibre-rich powder and antioxidant activity of pitaya (Hylocereus undatus) peels. Int. J. Food Sci. Technol. 47:1279–1285.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8218-
dc.description.abstract仙人掌科三角柱屬(Hylocereus spp.)的紅龍果是熱帶地區常見的水果作物。根據報告,目前台灣感染紅龍果的病毒有仙人掌X病毒(CVX)、紅龍果X病毒(PiVX)和蟹爪蘭X病毒(ZyVX)三種。田間調查顯示,在台灣主要紅龍果種植區中紅龍果植株均至少感染這三種Potexvirus屬病毒中的一種,且常見複合感染。因這些紅龍果病毒的分子感染機制仍待探討,本論文採用轉錄體與文獻搜尋的方法研究紅龍果與這些病毒之間的交互作用。熱休克蛋白70家族(Hsp70s)和葉綠體磷酸甘油酸激酶被已被報導為其他potexvirus的相關的寄主基因,以這些植物蛋白為對象,分析被CVX和PiVX感染的植物。半定量反轉錄聚合酶連鎖反應的結果顯示,Hsp70c-4的表現量在PiVX感染的圓葉菸草中被向下調控。至於初步的轉錄體分析,分別以對照組、感染CVX和PiVX的紅龍果(H. undatus)總RNA進行次世代定序,利用de-novo 組裝法,總共獲得60,510個片段重疊組(contig);之後使用阿拉伯芥(TAIR)和歐洲分子生物學實驗室(EMBL)的編碼序列(cds)資料庫,進行註解和開放閱讀框(ORF)預測。透過轉錄體表現量與文獻搜索,自差異表現基因中挑出11個主要研究目標。為驗證轉錄體資料的可信度,從中找出HSPRO2與BMY3作為參考基因,並以定量RT-PCR分析幾個差異表現基因的表現量,但結果與轉錄體資料不符。為了取得更有說服力的結果與資料,對另外兩批紅龍果RNA樣品進行定序,並結合之前的定序資料重新建構轉錄體。根據不同處理之間的基因表現量的變化和皮爾森相關係數,建構出基因網絡圖。PiVX感染網路圖的初步分析揭露數個與離層酸相關的基因被負調控,而參與在吉貝素訊息傳導路徑的基因也發現被調控;暗示PiVX感染可能會影響吉貝素訊息傳導路徑,並抑制離層酸訊息傳導路徑。CVX感染網路圖所包含的基因數量遠高於PiVX,其中幾個已被報導的potexvirus寄主因子與主要目標基因也在其中,但他們在CVX感染中扮演的角色仍待探討。CVX和PiVX感染的紅龍果網絡共享38個基因,其中heat shock transcription factor A2 (HSFA2.2)、outer membrane tryptophan-rich sensory protein-related gene (TSPO)和phytochrome interacting factor 3 (PIF3)的基因表現量皆顯著低於對照組,但這些基因對CVX與PiVX感染的貢獻仍屬未知。總而言之,本研究為我們解析CVX和PiVX感染如何影響其寄主紅龍果,提供了基礎資料與未來研究方向。zh_TW
dc.description.abstractPitaya (Hylocereus spp.), in the family Cactaceae, is a common fruit crop in tropical regions. Three potexviruses, Cactus virus X (CVX), Pitaya virus X (PiVX), and Zygocactus virus X (ZyVX), are reported to infect pitayas in Taiwan. Field surveys revealed that all pitayas at the major planting area of Taiwan are infected by at least one of the three potexviruses and mixed infections are commonly found. Because the molecular infection mechanisms of these potexviruses have not yet been revealed, in this study transcriptome approach and paper mining were applied to investigate the interaction between pitaya and its viruses. Among previously reported host genes related to potexviruses, heat shock protein 70 family and chloroplast phosphoglycerate kinase were selected and used to analyze the CVX and PiVX-infected plants. Semiquantitative RT-PCR revealed that expression level of Hsp70c-4 was down-regulated in PiVX-infected Nicotiana benthamiana. As for preliminary transcriptome analysis, purified total RNAs of mock, CVX- and PiVX-infected pitaya (H. undatus) plants were collected for next-generation sequencing. A total of 60,510 contigs were assembled using de novo assembly method followed by annotation and open reading frame prediction with TAIR and EMBL cds databases. We eventually selected 11 primary targets from differentially expressed genes (DEGs) based on their expression levels in transcriptome and literature review. To confirm transcriptome results, the expression levels of several DEGs were verified with quantitative RT-PCR using HSPRO2 and BMY3 as reference genes which were identified from the transcriptome data. The results of quantitative RT-PCR and transcriptome were different from each other. To obtained a more convincing result, another two sets of pitaya RNA samples were sequenced to construct a transcriptome combined with previous sequencing data. Gene-to-gene networks were generated based on fold changes between genes in each treatment and their calculated Pearson correlation coefficient value. Early analysis of PiVX infection network disclosed that several ABA-associated genes were down-regulated, while genes involved in GA signaling pathway were also found to be regulated, suggesting that PiVX infection may affect GA signaling pathway and influence ABA signaling pathway. Infection network of CVX contained a lot more genes than that of PiVX, and few reported potexvirus host genes and primary targets were found in the network, but their roles in the infection of CVX required more study. Network of CVX- and PiVX-infected pitayas shared 38 genes. Among them, the expression levels of heat shock transcription factor A2 (HSFA2.2), outer membrane tryptophan-rich sensory protein-related gene (TSPO.2) and phytochrome interacting factor 3 (PIF3) in CVX- and PiVX-infected treatments were significantly lower than mock treatment. Nevertheless, how these genes contribute to the infections of CVX and PiVX remain unclear. In short, this study improves our understanding of how CVX and PiVX infection affect their pitaya host, and provides the basic information and future research direction.en
dc.description.provenanceMade available in DSpace on 2021-05-20T00:50:16Z (GMT). No. of bitstreams: 1
U0001-1308202015213400.pdf: 9112676 bytes, checksum: 04223482bb17edcec0003237e3917716 (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents
誌謝 i
中文摘要 i
Abstract iii
Table of content v
Introduction 1
Pitaya and its viral diseases in Taiwan 1
Characteristics of the genus Potexvirus 2
Relationship between viruses and host genes 4
Transcriptome analysis as an approach to investigate potential host factors 5
Research motive and experimental design 7
Materials and methods 8
Plant cultivation 8
Agroinfiltration with binary vector clones 8
Isolation of plant total RNA and removal of DNA 9
Detection of Cactus virus X and Pitaya virus X by multiplex RT-PCR 10
Detection of CVX and PiVX by western blot 11
Semiquantitative RT-PCR 12
Virus inoculation, RNA isolation and RNA sequencing 13
De novo assembly 14
Differentially expressed gene identification and gene-to-gene network analysis 14
Validation of the expression level of potential host genes related to CVX and PiVX with quantitative RT-PCR 15
Results 17
Examination of heat shock protein 70s and chl-PGK as potential host genes of CVX and PiVX 17
1. Heat shock protein 70s and chloroplast phosphoglycerate kinase are selected as potential host genes due to similarity between CVX and other potexviruses 17
2. CVX or PiVX infection did not induce the expression of Hsp70cp-1 and chl-PGK, but downregulated Hsp70c-4 18
Preliminary transcriptome analysis 19
1. Transcriptome construction 19
2. Selection of pitaya primary targets 20
3. Attempts to validate few potential primary targets reveal the potential of HSPRO2 as a reference gene of qRT-PCR while the results were contradicted to the transcriptome data 22
Full transcriptome analysis 23
1. Construction of transcriptome 23
2. Expression levels of potential potexvirus host genes and previously identified primary targets in the full transcriptome 24
3. Gene-to-gene network of PiVX-infected treatments revealed ABA and GA signaling pathways may participate in PiVX infection 25
4. Gene-to-gene network of CVX-infected treatments shared a few genes with PiVX 27
Discussion 29
Function of Hsp70s and Chl-PGK in virus infection 29
Different viral regulation of Hsp70s between tobacco and pitaya 31
Low RNA extraction efficiency of pitaya 32
Construction and validation of preliminary transcriptome 32
Full transcriptome highlights different expression pattern between CVX, PiVX, and other potexviruses 34
Large proportion of unidentified genes in the transcriptomes 35
Network analysis revealed that PiVX infection may influence GA signaling pathway and inhibit ABA signaling pathway 35
Potential potexvirus host genes and primary targets presented in the CVX infected network 38
Common genes presented in both CVX and PiVX networks 39
Conclusions and Future works 40
References 42
Figures 56
Tables 79
Supplementary data 86
dc.language.isoen
dc.title探討受仙人掌X病毒與紅龍果X病毒感染影響之寄主基因
zh_TW
dc.titleInvestigation of host genes affected by Cactus virus X and Pitaya virus X infectionen
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.coadvisor林詩舜(Shih-Shun Lin)
dc.contributor.oralexamcommittee劉力瑜(Li-yu Daisy Liu)
dc.subject.keyword紅龍果,寄主因子,仙人掌X病毒,紅龍果X病毒,轉錄體分析,zh_TW
dc.subject.keywordpitaya,host factor,Cactus virus X,Pitaya virus X,transcriptome analysis,en
dc.relation.page89
dc.identifier.doi10.6342/NTU202003267
dc.rights.note同意授權(全球公開)
dc.date.accepted2020-08-17
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept植物病理與微生物學研究所zh_TW
顯示於系所單位:植物病理與微生物學系

文件中的檔案:
檔案 大小格式 
U0001-1308202015213400.pdf8.9 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved