Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82166Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 郭彥彬(Yen-Ping Kuo) | |
| dc.contributor.author | Yun-Jia Huang | en |
| dc.contributor.author | 黃雲佳 | zh_TW |
| dc.date.accessioned | 2022-11-25T06:33:05Z | - |
| dc.date.copyright | 2021-10-01 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-08-18 | |
| dc.identifier.citation | 1. Weatherspoon, D.J., et al., Oral cavity and oropharyngeal cancer incidence trends and disparities in the United States: 2000-2010. Cancer Epidemiol, 2015. 39(4): p. 497-504. 2. Sankaranarayanan, R., et al., Effect of screening on oral cancer mortality in Kerala, India: a cluster-randomised controlled trial. Lancet, 2005. 365(9475): p. 1927-33. 3. Swango, P.A., Cancers of the oral cavity and pharynx in the United States: an epidemiologic overview. J Public Health Dent, 1996. 56(6): p. 309-18. 4. Neville, B.W., et al., Oral and maxillofacial pathology. 2015: Elsevier Health Sciences. 5. Silverman, S., Oral cancer. Vol. 1. 2003: PMPH-USA. 6. Murti, P.R., et al., Etiology of oral submucous fibrosis with special reference to the role of areca nut chewing. J Oral Pathol Med, 1995. 24(4): p. 145-52. 7. Pindborg, J.J., et al., Oral submucous fibrosis as a precancerous condition. Scand J Dent Res, 1984. 92(3): p. 224-9. 8. Boucher, B.J. and N. Mannan, Metabolic effects of the consumption of Areca catechu. Addict Biol, 2002. 7(1): p. 103-10. 9. Ko, Y.C., et al., Betel quid chewing, cigarette smoking and alcohol consumption related to oral cancer in Taiwan. Journal of oral pathology medicine, 1995. 24(10): p. 450-453. 10. Ali, H., et al., Oral cancer incidence and survival rates in the Republic of Ireland, 1994-2009. BMC cancer, 2016. 16(1): p. 1-7. 11. Markopoulos, A.K., Current aspects on oral squamous cell carcinoma. Open Dent J, 2012. 6: p. 126-30. 12. Miller, C.S. and D.K. White, Human papillomavirus expression in oral mucosa, premalignant conditions, and squamous cell carcinoma: a retrospective review of the literature. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 1996. 82(1): p. 57-68. 13. Mork, J., et al., Human papillomavirus infection as a risk factor for squamous-cell carcinoma of the head and neck. N Engl J Med, 2001. 344(15): p. 1125-31. 14. Mallet, Y., et al., Head and neck cancer in young people: a series of 52 SCCs of the oral tongue in patients aged 35 years or less. Acta oto-laryngologica, 2009. 129(12): p. 1503-1508. 15. Pitman, K.T., et al., Cancer of the tongue in patients less than forty. Head Neck: Journal for the Sciences and Specialties of the Head and Neck, 2000. 22(3): p. 297-302. 16. Bánóczy, J., Follow-up studies in oral leukoplakia. Journal of maxillofacial surgery, 1977. 5: p. 69-75. 17. Silverman, S. and R.D. Rozen, Observations on the clinical characteristics and natural history of oral leukoplakia. The Journal of the American Dental Association, 1968. 76(4): p. 772-777. 18. Chen, Y., et al., Primary oral squamous cell carcinoma: an analysis of 703 cases in southern Taiwan. Oral oncology, 1999. 35(2): p. 173-179. 19. Neville, B.W. and T.A. Day, Oral cancer and precancerous lesions. CA: a cancer journal for clinicians, 2002. 52(4): p. 195-215. 20. Scully, C. and J. Bagan, Oral squamous cell carcinoma: overview of current understanding of aetiopathogenesis and clinical implications. Oral diseases, 2009. 15(6): p. 388-399. 21. Edge, S.B., et al., AJCC cancer staging manual. Vol. 649. 2010: Springer New York. 22. Shah, J.P. and Z. Gil, Current concepts in management of oral cancer–surgery. Oral oncology, 2009. 45(4-5): p. 394-401. 23. Lee, K., et al., Role of combined modality treatment of buccal mucosa squamous cell carcinoma. Australian dental journal, 2005. 50(2): p. 108-113. 24. Spencer, K., J. Ferguson, and D. Wiesenfeld, Current concepts in the management of oral squamous cell carcinoma. Australian dental journal, 2002. 47(4): p. 284-289. 25. Humans, I.W.G.o.t.E.o.C.R.t., Betel-quid and areca-nut chewing and some areca-nut derived nitrosamines. IARC monographs on the evaluation of carcinogenic risks to humans, 2004. 85: p. 1. 26. Sinor, P.N., et al., A case-control study of oral submucous fibrosis with special reference to the etiologic role of areca nut. J Oral Pathol Med, 1990. 19(2): p. 94-8. 27. Angadi, P.V. and S.S. Rao, Areca nut in pathogenesis of oral submucous fibrosis: revisited. Oral Maxillofac Surg, 2011. 15(1): p. 1-9. 28. Soncrant, T.T., et al., Regional brain metabolic responsivity to the muscarinic cholinergic agonist arecoline is similar in young and aged Fischer-344 rats. Brain research, 1989. 487(2): p. 255-266. 29. Maiese, K., et al., Effect of acute and chronic arecoline treatment on cerebral metabolism and blood flow in the conscious rat. Brain research, 1994. 641(1): p. 65-75. 30. Mei, C.D., M.S. Feng, and W. Hai, Antithrombosis through activating endothelial target for acetylcholine and its molecular mechanism [J]. Chinese Pharmacological Bulletin, 2002. 5. 31. Duan, Z. and H. Wang, Regulation effect of arecoline on excess expression of adhesive molecules in endothelial cells injuried with high concentration of D-glucose. Chin J Clin Pharmacol Ther, 2006. 11: p. 27-32. 32. Calogero, A.E., et al., The muscarinic cholinergic agonist arecoline stimulates the rat hypothalamic-pituitary-adrenal axis through a centrally-mediated corticotropin-releasing hormone-dependent mechanism. Endocrinology, 1989. 125(5): p. 2445-2453. 33. Lee, S.-S., et al., Elevated snail expression mediates tumor progression in areca quid chewing-associated oral squamous cell carcinoma via reactive oxygen species. PloS one, 2013. 8(7): p. e67985. 34. Chen, P.-H., et al., The influence of monoamine oxidase variants on the risk of betel quid-associated oral and pharyngeal cancer. The scientific world journal, 2014. 2014. 35. Cheng, S.J., et al., Arecoline‐stimulated placenta growth factor production in gingival epithelial cells: modulation by curcumin. Oral diseases, 2013. 19(5): p. 513-518. 36. Deng, Y.-T., et al., Arecoline stimulated Cyr61 production in human gingival epithelial cells: inhibition by lovastatin. Oral oncology, 2011. 47(4): p. 256-261. 37. Jeng, J., et al., Genotoxic and non-genotoxic effects of betel quid ingredients on oral mucosal fibroblasts in vitro. Journal of Dental Research, 1994. 73(5): p. 1043-1049. 38. Sundqvist, K., et al., Cytotoxic and genotoxic effects of areca nut-related compounds in cultured human buccal epithelial cells. Cancer research, 1989. 49(19): p. 5294-5298. 39. Trivedy, C., et al., Copper content in Areca catechu (betel nut) products and oral submucous fibrosis. Lancet, 1997. 349(9063): p. 1447. 40. Lian, I.-B., et al., Progression of precancerous lesions to oral cancer: results based on the Taiwan National Health Insurance Database. Oral oncology, 2013. 49(5): p. 427-430. 41. Wang, Y.-Y., et al., Malignant transformation in 5071 southern Taiwanese patients with potentially malignant oral mucosal disorders. BMC Oral Health, 2014. 14(1): p. 1-9. 42. Chang, M.C., et al., Toxicity of areca nut ingredients: Activation of CHK1/CHK2, induction of cell cycle arrest, and regulation of MMP‐9 and TIMPs production in SAS epithelial cells. Head neck, 2013. 35(9): p. 1295-1302. 43. Ho, W.H., et al., Effects of areca nut extract on the apoptosis pathways in human neutrophils. Journal of periodontal research, 2010. 45(3): p. 412-420. 44. Lee, P.-H., et al., Prolonged exposure to arecoline arrested human KB epithelial cell growth: regulatory mechanisms of cell cycle and apoptosis. Toxicology, 2006. 220(2-3): p. 81-89. 45. Lu, S.-Y., et al., Ripe areca nut extract induces G 1 phase arrests and senescence-associated phenotypes in normal human oral keratinocyte. Carcinogenesis, 2006. 27(6): p. 1273-1284. 46. Chang, M.-C., et al., Areca nut components affect COX-2, cyclin B1/cdc25C and keratin expression, PGE2 production in keratinocyte is related to reactive oxygen species, CYP1A1, Src, EGFR and Ras signaling. PLoS One, 2014. 9(7): p. e101959. 47. Chang, M.-C., et al., The induction of prostaglandin E2 production, interleukin-6 production, cell cycle arrest, and cytotoxicity in primary oral keratinocytes and KB cancer cells by areca nut ingredients is differentially regulated by MEK/ERK activation. Journal of Biological Chemistry, 2004. 279(49): p. 50676-50683. 48. Illeperuma, R.P., et al., Areca nut exposure increases secretion of tumor‐promoting cytokines in gingival fibroblasts that trigger DNA damage in oral keratinocytes. International journal of cancer, 2015. 137(11): p. 2545-2557. 49. Nieto, M.A., et al., EMT: 2016. Cell, 2016. 166(1): p. 21-45. 50. Sisto, M., S. Lisi, and D. Ribatti, The role of the epithelial-to-mesenchymal transition (EMT) in diseases of the salivary glands. Histochemistry and cell biology, 2018. 150(2): p. 133-147. 51. Scheel, C. and R.A. Weinberg. Cancer stem cells and epithelial–mesenchymal transition: concepts and molecular links. in Seminars in cancer biology. 2012. Elsevier. 52. Tseng, Y.H., et al., Areca nut extract upregulates vimentin by activating PI3K/AKT signaling in oral carcinoma. Journal of oral pathology medicine, 2011. 40(2): p. 160-166. 53. Tseng, Y.-H., et al., Areca nut extract treatment down-regulates involucrin in normal human oral keratinocyte through P13K/AKT activation. Oral oncology, 2007. 43(7): p. 670-679. 54. Wang, T.Y., et al., Acquisition cancer stemness, mesenchymal transdifferentiation, and chemoresistance properties by chronic exposure of oral epithelial cells to arecoline. Oncotarget, 2016. 7(51): p. 84072. 55. Medema, J.P., Cancer stem cells: the challenges ahead. Nature cell biology, 2013. 15(4): p. 338-344. 56. Sugihara, E. and H. Saya, Complexity of cancer stem cells. International journal of cancer, 2013. 132(6): p. 1249-1259. 57. Li, Y.C., et al., Areca nut contributes to oral malignancy through facilitating the conversion of cancer stem cells. Molecular carcinogenesis, 2016. 55(5): p. 1012-1023. 58. Liao, C.-T., et al., Clinical evidence of field cancerization in patients with oral cavity cancer in a betel quid chewing area. Oral oncology, 2014. 50(8): p. 721-731. 59. Yang, T.L., et al., Association of tumor satellite distance with prognosis and contralateral neck recurrence of tongue squamous cell carcinoma. Head Neck: Journal for the Sciences and Specialties of the Head and Neck, 2008. 30(5): p. 631-638. 60. Hogan, R., J. Hogan, and B.W. Roberts, Personality measurement and employment decisions: Questions and answers. American psychologist, 1996. 51(5): p. 469. 61. Kingsley, D.M., The TGF-beta superfamily: new members, new receptors, and new genetic tests of function in different organisms. Genes development, 1994. 8(2): p. 133-146. 62. Bascom, C., et al., Complex regulation of transforming growth factor beta 1, beta 2, and beta 3 mRNA expression in mouse fibroblasts and keratinocytes by transforming growth factors beta 1 and beta 2. Molecular and Cellular Biology, 1989. 9(12): p. 5508. 63. Sporn, M. and A. Roberts, The multifunctional nature of peptide growth factors, in Peptide growth factors and their receptors I. 1990, Springer. p. 3-15. 64. Gordon, K.J. and G.C. Blobe, Role of transforming growth factor-β superfamily signaling pathways in human disease. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 2008. 1782(4): p. 197-228. 65. Heldin, C.-H., K. Miyazono, and P. Ten Dijke, TGF-β signalling from cell membrane to nucleus through SMAD proteins. Nature, 1997. 390(6659): p. 465-471. 66. Massagué, J., TGF-β signal transduction. Annual review of biochemistry, 1998. 67(1): p. 753-791. 67. Chen, R.-H. and R. Derynck, Homomeric interactions between type II transforming growth factor-beta receptors. Journal of Biological Chemistry, 1994. 269(36): p. 22868-22874. 68. Souchelnytskyi, S., et al., Phosphorylation of Ser165 in TGF‐beta type I receptor modulates TGF‐beta1‐induced cellular responses. The EMBO journal, 1996. 15(22): p. 6231-6240. 69. Miyazono, K., Positive and negative regulation of TGF-beta signaling. Journal of cell science, 2000. 113(7): p. 1101-1109. 70. Miyazono, K., TGF-β signaling by Smad proteins. Cytokine growth factor reviews, 2000. 11(1-2): p. 15-22. 71. Derynck, R., R.J. Akhurst, and A. Balmain, TGF-beta signaling in tumor suppression and cancer progression. Nat Genet, 2001. 29(2): p. 117-29. 72. Friedman, E., et al., High levels of transforming growth factor beta 1 correlate with disease progression in human colon cancer. Cancer Epidemiology and Prevention Biomarkers, 1995. 4(5): p. 549-554. 73. Kong, F., et al., Plasma transforming growth factor‐β1 level before radiotherapy correlates with long term outcome of patients with lung carcinoma. Cancer: Interdisciplinary International Journal of the American Cancer Society, 1999. 86(9): p. 1712-1719. 74. Kong, F.-M., et al., Plasma transforming growth factor-β1 reflects disease status in patients with lung cancer after radiotherapy: a possible tumor marker. Lung cancer, 1996. 16(1): p. 47-59. 75. Schroy, P., et al., Role of transforming growth factor β1 in induction of colon carcinoma differentiation by hexamethylene bisacetamide. Cancer research, 1990. 50(2): p. 261-265. 76. Hsu, S., et al., Colon Carcinoma Cells Switch Their Response to Transforming Growth Factor ~ 1 with Tumor Progression. Cell growth and differentiation, 1994. 5: p. 267-267. 77. Xu, J., et al., Elevated serum transforming growth factor β1 levels in Epstein-Barr virus-associated diseases and their correlation with virus-specific immunoglobulin A (IgA) and IgM. Journal of Virology, 2000. 74(5): p. 2443-2446. 78. Karcher, J., et al., Cytokine expression of transforming growth factor-beta2 and interleukin-10 in squamous cell carcinomas of the head and neck. Comparison of tissue expression and serum levels. Hno, 1999. 47(10): p. 879-884. 79. Moustakas, A. and C.H. Heldin, Signaling networks guiding epithelial–mesenchymal transitions during embryogenesis and cancer progression. Cancer science, 2007. 98(10): p. 1512-1520. 80. Fuxe, J., T. Vincent, and A. Garcia de Herreros, Transcriptional crosstalk between TGFβ and stem cell pathways in tumor cell invasion: role of EMT promoting Smad complexes. Cell cycle, 2010. 9(12): p. 2363-2374. 81. Chou, J.Y., Molecular genetics of hepatic methionine adenosyltransferase deficiency. Pharmacology therapeutics, 2000. 85(1): p. 1-9. 82. Timp, W. and A.P. Feinberg, Cancer as a dysregulated epigenome allowing cellular growth advantage at the expense of the host. Nature Reviews Cancer, 2013. 13(7): p. 497-510. 83. Lu, S.C. and J.M. Mato, S-adenosylmethionine in liver health, injury, and cancer. Physiological reviews, 2012. 92(4): p. 1515-1542. 84. Murray, B., et al., Structure and function study of the complex that synthesizes S-adenosylmethionine. IUCrJ, 2014. 1(4): p. 240-249. 85. Huang, Z.Z., et al., Differential effect of thioacetamide on hepatic methionine adenosyltransferase expression in the rat. Hepatology, 1999. 29(5): p. 1471-1478. 86. Huang, Z.-Z., et al., Changes in methionine adenosyltransferase during liver regeneration in the rat. American Journal of Physiology-Gastrointestinal and Liver Physiology, 1998. 275(1): p. G14-G21. 87. Mato, J.M., et al., S‐Adenosylmethionine: a control switch that regulates liver function. The FASEB journal, 2002. 16(1): p. 15-26. 88. Martínez-Chantar, M.L., et al., Methionine adenosyltransferase II β subunit gene expression provides a proliferative advantage in human hepatoma. Gastroenterology, 2003. 124(4): p. 940-948. 89. Yang, H., et al., The role of c‐Myb and Sp1 in the up‐regulation of methionine adenosyltransferase 2A gene expression in human hepatocellular carcinoma. The FASEB journal, 2001. 15(9): p. 1507-1516. 90. Liu, Q., et al., Silencing MAT2A gene by RNA interference inhibited cell growth and induced apoptosis in human hepatoma cells. Hepatology Research, 2007. 37(5): p. 376-388. 91. Wang, Q., et al., Inhibition of hepatocelluar carcinoma MAT2A and MAT2beta gene expressions by single and dual small interfering RNA. Journal of Experimental Clinical Cancer Research, 2008. 27(1): p. 1-9. 92. Wang, Z., et al., Methionine is a metabolic dependency of tumor-initiating cells. Nature medicine, 2019. 25(5): p. 825-837. 93. Liu, Q., et al., The X protein of hepatitis B virus inhibits apoptosis in hepatoma cells through enhancing the methionine adenosyltransferase 2A gene expression and reducing S-adenosylmethionine production. Journal of Biological Chemistry, 2011. 286(19): p. 17168-17180. 94. Zhang, T., et al., Overexpression of methionine adenosyltransferase II alpha (MAT2A) in gastric cancer and induction of cell cycle arrest and apoptosis in SGC-7901 cells by shRNA-mediated silencing of MAT2A gene. Acta histochemica, 2013. 115(1): p. 48-55. 95. Ito, K., et al., Correlation between the expression of methionine adenosyltransferase and the stages of human colorectal carcinoma. Surgery today, 2000. 30(8): p. 706-710. 96. Yang, H., et al., Insulin-like growth factor 1 activates methionine adenosyltransferase 2A transcription by multiple pathways in human colon cancer cells. Biochemical Journal, 2011. 436(2): p. 507-516. 97. Chen, H., et al., Role of methionine adenosyltransferase 2A and S-adenosylmethionine in mitogen-induced growth of human colon cancer cells. Gastroenterology, 2007. 133(1): p. 207-218. 98. An, J., et al., Histological expression of methionine adenosyl transferase (MAT) 2A as a post‐surgical prognostic surrogate in patients with hepatocellular carcinoma. Journal of surgical oncology, 2018. 117(5): p. 892-901. 99. Yang, H., et al., Induction of human methionine adenosyltransferase 2A expression by tumor necrosis factor α: role of NF-κB and AP-1. Journal of Biological Chemistry, 2003. 278(51): p. 50887-50896. 100. Granado-Serrano, A.B., et al., Quercetin induces apoptosis via caspase activation, regulation of Bcl-2, and inhibition of PI-3-kinase/Akt and ERK pathways in a human hepatoma cell line (HepG2). The Journal of nutrition, 2006. 136(11): p. 2715-2721. 101. Zhang, W., et al., Fluorinated N, N-dialkylaminostilbenes repress colon cancer by targeting methionine S-adenosyltransferase 2A. ACS chemical biology, 2013. 8(4): p. 796-803. 102. Strekalova, E., et al., S-adenosylmethionine biosynthesis is a targetable metabolic vulnerability of cancer stem cells. Breast cancer research and treatment, 2019. 175(1): p. 39-50. 103. Jeselsohn, R., et al., Embryonic transcription factor SOX9 drives breast cancer endocrine resistance. Proceedings of the National Academy of Sciences, 2017. 114(22): p. E4482-E4491. 104. Khan, I., et al., Activation of TGF-β pathway by areca nut constituents: a possible cause of oral submucous fibrosis. PloS one, 2012. 7(12): p. e51806. 105. Shirname, L.P., M.M. Menon, and S.V. Bhide, Mutagenicity of betel quid and its ingredients using mammalian test systems. Carcinogenesis, 1984. 5(4): p. 501-503. 106. Naik, P.P., P.K. Panda, and S.K. Bhutia, Oral cancer stem cells microenvironment, in Stem Cell Microenvironments and Beyond. 2017, Springer. p. 207-233. 107. Sierra, J., et al., The APC tumor suppressor counteracts beta-catenin activation and H3K4 methylation at Wnt target genes. Genes Dev, 2006. 20(5): p. 586-600. 108. Finkelstein, J.D., Methionine metabolism in mammals. The Journal of nutritional biochemistry, 1990. 1(5): p. 228-237. 109. Ying, Y. and Q. Tao, Epigenetic disruption of the WNT/ß-catenin signaling pathway in human cancers. Epigenetics, 2009. 4(5): p. 307-312. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82166 | - |
| dc.description.abstract | 根據我國衛福部108年國人十大死因統計,惡性腫瘤為十大死因中的首位,而口腔癌為十大癌症發生率的第五位。在台灣,口腔癌的發生與抽菸、喝酒、嚼食檳榔有密切的關係,檳榔中所含的檳榔鹼Arecoline是造成口腔癌主要的致病因子,但其致病機轉仍未詳細闡述。文獻指出甲硫胺酸腺苷轉移酶2A (methionine adenosyltransferase 2A (MAT2A))在許多癌症中都有過度表現的情況,包括肝癌、乳癌、結腸癌等,但其在口腔癌中的相關表現及機轉均還未被探討。MAT2A可催化生物體中S-adenosylmethionine (SAM)的合成,參與甲硫胺酸循環,於生物體代謝至關重要。實驗室初步研究發現口腔癌檢體有MAT2A過度表現。 本研究中發現Arecoline會誘導口腔癌SAS及CA922細胞株中的MAT2A表現。TGF-β1中和抗體、ALK5抑制劑 (SB431542)及Smad3抑制劑(SIS3)可降低Arecoline所誘導的SAS及CA922細胞中MAT2A表現,顯示Arecoline是經由TGF-β1訊息傳遞路徑誘導口腔上皮細胞中MAT2A的表現。MAT2A siRNA抑制MAT2A表現量高的SAS細胞株的MAT2A表現,發現抑制MAT2A 會使SAS細胞轉移與侵襲性降低,並下調由TGF-β1所引起的癌幹細胞標誌(stemness marker)上升。文獻指出,癌幹細胞會參與腫瘤維持、轉移及復發,是使其對化療、放療產生抗性的原因之一,而聚球體(sphere)細胞是一種能表現較多幹細胞的特性的細胞,本研究針對SAS細胞及SAS sphere細胞進行比較,結果顯示SAS sphere細胞有較高的MAT2A表現量。通過sphere forming assay觀察MAT2A siRNA抑制的 SAS sphere細胞,可發現SAS sphere細胞形成聚球體的能力降低,且同時會下調部分癌幹細胞標誌,包括: CD133、CD44、KLF4、OCT4A和Nanog的表現。本實驗也以MAT2A抑制劑FIDAS-5處理SAS細胞,並透過transwell migration assay與invasion assay觀察,可發現其侵襲與轉移能力均降低。若是使用FIDAS-5處理SAS sphere,可發現其也可降低SAS sphere細胞形成聚球體的能力,並下調癌幹細胞標誌,包括包括: CD133、CD44、KLF4、OCT4A、SOX2和Nanog的表現,顯示FIDAS-5具有治療口腔癌的潛力。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-25T06:33:05Z (GMT). No. of bitstreams: 1 U0001-1708202110481100.pdf: 3747337 bytes, checksum: d75f741c450d24adf593578c98afb08e (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | 口試委員會審定書 I 謝誌 II 中文摘要 III Abstract IV 目錄 V 第一章 導論 1 1.1口腔癌 1 1.2 檳榔鹼 4 1.3 轉型生長因子Transforming growth factor-β1 (TGF-β1) 6 1.4 Methionine Adenosyltransferase 2A (MAT2A) 8 第二章、研究動機與目的 12 第三章 材料與方法 13 3.1 細胞株與細胞培養 13 3.1.1細胞株的培養 13 3.1.2繼代培養 13 3.2 藥物處理 13 3.2.1 種細胞以及starvation 13 3.2.2抑制劑、中和抗體使用資料 14 3.3 西方墨點法(western blot) 14 3.3.1 蛋白質萃取 14 3.3.2 配置膠體 14 3.3.3 電泳分析 15 3.3.4 蛋白質轉漬 15 3.3.5 抗體使用 15 3.3.6 顯影呈色 16 3.4 SAS細胞株MAT2A基因knockdown實驗 17 3.5 細胞增生速率測試 (Cell proliferation assay) 17 3.6 細胞存活率試驗 (MTT assay) 17 3.7 移動性試驗 (Migration assay) 18 3.8 侵襲性試驗 (Invasion assay) 18 3.9細胞聚球體形成試驗 (Sphere forming assay) 18 3.10 細胞聚球體MAT2A基因knockdown實驗 19 3.11 質體轉殖與建立過表現MAT2A的Ca922細胞株 19 第四章 結果 20 4.1 Arecoline 誘導SAS及Ca922細胞MAT2A蛋白質表現 20 4.2 Arecoline經由TGF-β路徑誘導SAS及Ca922細胞MAT2A蛋白質表現 20 4.3 TGF-β1誘導SAS及Ca922細胞MAT2A蛋白質表現 20 4.4 knockdown MAT2A可降低TGF-β1 induced的stemness markers表現 21 4.5 knockdown MAT2A蛋白可降低SAS細胞株移動與侵襲能力 21 4.6 MAT2A overexpression會增強Ca922細胞株的生長速度 21 4.7 SAS細胞聚球體(SAS spheres)中MAT2A蛋白表現量較高 22 4.8 knockdown MAT2A蛋白可降低SAS細胞形成聚球體的能力與幹細胞特性 22 4.9 MAT2A overexpression並不會增強stemness 及EMT markers的表現 23 4.10 使用MAT2A抑制劑 FIDAS-5可降低SAS細胞移動與侵襲能力 23 4.11 FIDAS-5可降低SAS細胞形成聚球體的能力與SAS sp細胞幹細胞特性 24 第五章、討論 25 第六章 圖與表 28 Reference 52 | |
| dc.language.iso | zh-TW | |
| dc.subject | 口腔癌 | zh_TW |
| dc.subject | 檳榔鹼 | zh_TW |
| dc.subject | 甲硫胺酸腺苷轉移酶2A | zh_TW |
| dc.subject | 轉化生長因子 | zh_TW |
| dc.subject | FIDAS-5 | zh_TW |
| dc.subject | 癌幹性 | zh_TW |
| dc.subject | FIDAS-5 | en |
| dc.subject | TGF-β1 | en |
| dc.subject | Arecoline | en |
| dc.subject | MAT2A | en |
| dc.subject | Oral cancer | en |
| dc.subject | Cancer stemness | en |
| dc.title | 口腔鱗狀上皮細胞癌幹細胞特性依賴MAT2A表現 | zh_TW |
| dc.title | MAT2A is required for stemness in oral squamous cell carcinoma | en |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 鄭世榮(Hsin-Tsai Liu),張瑞青(Chih-Yang Tseng) | |
| dc.subject.keyword | 口腔癌,甲硫胺酸腺苷轉移酶2A,檳榔鹼,轉化生長因子,FIDAS-5,癌幹性, | zh_TW |
| dc.subject.keyword | Oral cancer,MAT2A,Arecoline,TGF-β1,FIDAS-5,Cancer stemness, | en |
| dc.relation.page | 61 | |
| dc.identifier.doi | 10.6342/NTU202102421 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2021-08-18 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 口腔生物科學研究所 | zh_TW |
| dc.date.embargo-lift | 2026-08-16 | - |
| Appears in Collections: | 口腔生物科學研究所 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| U0001-1708202110481100.pdf Restricted Access | 3.66 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
