Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82165
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor蕭浩明(Hao-Ming Hsiao)
dc.contributor.authorTing-Wei Changen
dc.contributor.author張廷瑋zh_TW
dc.date.accessioned2022-11-25T06:33:05Z-
dc.date.copyright2021-11-11
dc.date.issued2021
dc.date.submitted2021-08-17
dc.identifier.citation[1] '108年死因統計結果分析,' 衛生福利部, 2020. [Online]. Available: https://dep.mohw.gov.tw/dos/cp-4927-54466-113.html, Accessed on Mar 11, 2021. [2] 'National Kidney Foundation's Kidney Disease Outcomes Quality Initiative (NKF-KDOQI)™ Guidelines,' NationalKidneyFoundation, 2002. [Online]. Available: https://kidneyfoundation.cachefly.net/professionals/KDOQI/guidelines_ckd/p4_class_g1.htm, Accessed on Apr 24, 2021. [3] 'Prevalence of treated ESRD, by country or region, 2018,' UnitedStatesRenalDataSystem(USRDS), 2020. [Online]. Available: https://adr.usrds.org/2020/end-stage-renal-disease/11-international-comparisons, Accessed on May 3, 2021. [4] '108年全民健康保險統計,' 衛生福利部中央健康保險署, 2020. [Online]. Available: https://www.nhi.gov.tw/Content_List.aspx?n=1DC932474FBD87D5 topn=23C660CAACAA159D, Accessed on Jan 23, 2021. [5] '108年國人全民健康保險就醫疾病資訊,' 衛生福利部中央健康保險署, 2020. [Online]. Available: https://www.nhi.gov.tw/Content_List.aspx?n=806314145D8E1187 topn=23C660CAACAA159D, Accessed on Feb 27, 2021. [6] 'Peritoneal dialysis,' MayoClinic, 2019. [Online]. Available: https://www.mayoclinic.org/tests-procedures/peritoneal-dialysis/about/pac-20384725, Accessed on May 24, 2021. [7] 'Schematic of a hemodialysis circuit,' YassineMrabet, 2008. [Online]. Available: https://commons.wikimedia.org/wiki/File:Hemodialysis-en.svg, Accessed on Mar 6, 2021. [8] 'Dialyzer,' MMGTECHS, 2008. [Online]. Available: https://mmgtechs.com/Dialyzer.html, Accessed on Feb 27, 2021. [9] 'Diagram showing AV fistula for hemodialysis PI,' UpToDate, 2018. [Online]. Available: https://www.uptodate.com/contents/image?imageKey=PI%2F71644, Accessed on Mar 16, 2021. [10] 'Diagram showing AV graft for hemodialysis PI,' UpToDate, 2018. [Online]. Available: https://www.uptodate.com/contents/image?imageKey=PI%2F59794, Accessed on May 11, 2021. [11] L. Salman, and G. Beathard, 'Interventional nephrology: Physical examination as a tool for surveillance for the hemodialysis arteriovenous access,' Clinical Journal of the American Society of Nephrology, vol. 8, no. 7, pp. 1220-1227, 2013. [12] V. A. W. Group, 'Clinical practice guidelines for vascular access,' American journal of kidney diseases: the official journal of the National Kidney Foundation, vol. 48, pp. S248-S273, 2006. [13] 'Peripheral arterial duplex scanning,' VascularCenterUCDavisHealth, 2006. [Online]. Available: https://health.ucdavis.edu/vascular/lab/exams/peripheral_arterial.html, Accessed on Feb 22, 2021. [14] T. Wang, S. Wang, J. Gu, et al., 'Transcatheter thrombolysis with percutaneous transluminal angioplasty using a trans-brachial approach to treat thrombosed arteriovenous fistulas,' Medical science monitor: international medical journal of experimental and clinical research, vol. 25, p. 2727, 2019. [15] N. J. Cuper, R. M. Verdaasdonk, R. De Roode, et al., 'Visualizing veins with near-infrared light to facilitate blood withdrawal in children,' Clinical pediatrics, vol. 50, no. 6, pp. 508-512, 2011. [16] C. Liukui, L. Zuojin, W. Ying, and X. Yi, 'A design of infrared finger vein image acquisition terminal,' 2011 International Conference on Business Management and Electronic Information, vol. 4, pp. 626-629, 2011. [17] M. Marathe, N. S. Bhatt, and R. Sundararajan, 'A novel wireless vein finder,' International Conference on Circuits, Communication, Control and Computing, pp. 277-280, 2014. [18] T. Chakravorty, D. Sonawane, S. D. Sharma, and T. Patil, 'Low-cost subcutaneous vein detection system using ARM9 based single board computer,' 2011 3rd International Conference on Electronics Computer Technology, vol. 2, pp. 339-343, 2011. [19] Y. Ayoub, S. Serhal, B. Farhat, et al., 'Diagnostic Superficial Vein Scanner,' 2018 International Conference on Computer and Applications (ICCA), pp. 321-325, 2018. [20] C. Kauba, and A. Uhl, 'Shedding light on the veins-reflected light or transillumination in hand-vein recognition,' 2018 International Conference on Biometrics (ICB), pp. 283-290, 2018. [21] F. F. Jobsis, 'Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters,' Science, vol. 198, no. 4323, pp. 1264-1267, 1977. [22] R. Fuksis, M. Greitans, O. Nikisins, and M. Pudzs, 'Infrared imaging system for analysis of blood vessel structure,' Elektronika ir Elektrotechnika, vol. 97, no. 1, pp. 45-48, 2010. [23] D. M. Mancini, L. Bolinger, H. Li, et al., 'Validation of near-infrared spectroscopy in humans,' Journal of Applied Physiology, vol. 77, no. 6, pp. 2740-2747, 1994. [24] 'Optical Absorption of Hemoglobin,' S. Prahl, 1999. [Online]. Available: https://omlc.org/spectra/hemoglobin/, Accessed on Jun 11, 2021. [25] G. M. Hale, and M. R. Querry, 'Optical constants of water in the 200-nm to 200-μm wavelength region,' Applied optics, vol. 12, no. 3, pp. 555-563, 1973. [26] G. C. Meng, A. Shahzad, N. Saad, et al., 'Prototype design for wearable veins localization system using near infrared imaging technique,' 2015 IEEE 11th International Colloquium on Signal Processing Its Applications (CSPA), pp. 112-115, 2015. [27] M. Dhakshayani, and S. Yacin, 'Economically Affordable and Clinically Reliable Vein Finder,' Proceedings of the 30th Indian Engineering Congress, the 21st Century Engineering: The Make in India Pathway, Guwahati, India, pp. 17-20, 2015. [28] K. Kimori, J. Sugama, T. Nakatani, et al., 'An observational study comparing the prototype device with the existing device for the effective visualization of invisible veins in elderly patients in Japan,' SAGE open medicine, vol. 3, p. 2050312115615365, 2015. [29] A. Shahzad, M. N. Saad, N. Walter, et al., 'Hyperspectral venous image quality assessment for optimum illumination range selection based on skin tone characteristics,' Biomedical engineering online, vol. 13, no. 1, pp. 1-13, 2014. [30] P. Amipongongctrch, K. Khaosomboon, and T. Keawgun, 'Design and construction of median cubital vein transillumination device by using LED,' 2015 8th Biomedical Engineering International Conference (BMEiCON), pp. 1-4, 2015. [31] F. Wang, A. Behrooz, and M. Morris, 'High-contrast subcutaneous vein detection and localization using multispectral imaging,' Journal of biomedical optics, vol. 18, no. 5, p. 050504, 2013. [32] A. Chen, K. Nikitczuk, J. Nikitczuk, et al., 'Portable robot for autonomous venipuncture using 3D near infrared image guidance,' Technology, vol. 1, no. 01, pp. 72-87, 2013. [33] R. Carlsen, S. Zyhier, and A. Sirinterlikci, 'Project-based learning: Engaging biomedical engineering sophomores through a collaborative vein-finder device project with nursing,' Proceedings of the 2018 ASEE Annual Conference Exposition, Salt Lake City, UT, USA, vol. 23, 2018. [34] S. Juric, and B. Zalik, 'An innovative approach to near-infrared spectroscopy using a standard mobile device and its clinical application in the real-time visualization of peripheral veins,' BMC medical informatics and decision making, vol. 14, no. 1, pp. 1-9, 2014. [35] K. K. Nundy, and S. Sanyal, 'A low cost vein detection system using integrable mobile camera devices,' 2010 Annual IEEE India Conference (INDICON), pp. 1-3, 2010. [36] A. Vesalius, 'De humani corporis fabrica libri septem [On the Fabric of the Human Body], translated by WF Richardson and JB Carman. 5 vols,' San Francisco and Novato: Norman Publishing, 2009. [37] S. Black,'', All that remains: A Life in Death: Random House, 2018. [38] H. Luo, F.-X. Yu, J.-S. Pan, et al., 'A survey of vein recognition techniques,' Information Technology Journal, vol. 9, no. 6, pp. 1142-1149, 2010. [39] S. Kharabe, and C. Nalini, 'Survey on finger-vein segmentation and authentication,' Int J Eng Technol, vol. 7, no. 1-2, pp. 9-14, 2018. [40] A. Uhl, 'State of the art in vascular biometrics,' in Handbook of Vascular Biometrics: Springer, Cham, 2020, pp. 3-61. [41] J. B. Mazumdar, and S. Nirmala, 'RETINA BASED BIOMETRIC AUTHENTICATION SYSTEM: A REVIEW,' International Journal of Advanced Research in Computer Science, vol. 9, no. 1, 2018. [42] A. Das, U. Pal, M. Blumenstein, and M. A. F. Ballester, 'Sclera recognition-a survey,' 2013 2nd IAPR Asian Conference on Pattern Recognition, pp. 917-921, 2013. [43] H. Zeman, G. Lovhoiden, and C. Vrancken, 'The clinical evaluation of vein contrast enhancement,' The 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, vol. 1, pp. 1203-1206, 2004. [44] M. Kono, H. Ueki, and S.-i. Umemura, 'Near-infrared finger vein patterns for personal identification,' Applied Optics, vol. 41, no. 35, pp. 7429-7436, 2002. [45] J. Yang, and J. Yang, 'Multi-channel gabor filter design for finger-vein image enhancement,' 2009 Fifth International Conference on Image and Graphics, pp. 87-91, 2009. [46] S. Yihua, and J. Yang, 'Image restoration and enhancement for finger-vein recognition,' IEEE 11th International Conference on Signal Processing (ICSP), 2012. [47] J. Yang, and Y. Shi, 'Towards finger-vein image restoration and enhancement for finger-vein recognition,' Information Sciences, vol. 268, pp. 33-52, 2014. [48] K. I. Ahmed, M. H. Habaebi, M. R. Islam, and N. A. B. Zainal, 'Enhanced vision based vein detection system,' 2017 IEEE 4th International Conference on Smart Instrumentation, Measurement and Application (ICSIMA), pp. 1-6, 2017. [49] P. Gupta, and P. Gupta, 'An accurate finger vein based verification system,' Digital Signal Processing, vol. 38, pp. 43-52, 2015. [50] J. Wang, G. Wang, M. Li, and W. Du, 'Hand vein recognition based on PCET,' Optik, vol. 127, no. 19, pp. 7663-7669, 2016. [51] K. Premalatha, and A. Natarajan, 'Hand vein pattern recognition using natural image statistics,' Defence Science Journal, vol. 65, no. 2, p. 150, 2015. [52] L. Wang, and G. Leedham, 'A thermal hand vein pattern verification system,' International Conference on Pattern Recognition and Image Analysis, pp. 58-65, 2005. [53] S. Qiu, Y. Liu, Y. Zhou, et al., 'Finger-vein recognition based on dual-sliding window localization and pseudo-elliptical transformer,' Expert Systems with Applications, vol. 64, pp. 618-632, 2016. [54] 'C Arm,' OperativeNeurosurgery, 2019. [Online]. Available: https://operativeneurosurgery.com/doku.php?id=c_arm, Accessed on Mar 26, 2021. [55] C.-T. Pan, M. D. Francisco, C.-K. Yen, et al., 'Vein pattern locating technology for cannulation: A review of the low-cost vein finder prototypes utilizing near infrared (NIR) light to improve peripheral subcutaneous vein selection for phlebotomy,' Sensors, vol. 19, no. 16, p. 3573, 2019. [56] 'Liquid Lens Features, Applications, and Technology,' EdmundOptics, 2018. [Online]. Available: https://www.edmundoptics.com/knowledge-center/application-notes/imaging/liquid-lenses-in-imaging/, Accessed on Mar 3, 2021. [57] A. F. Frangi, W. J. Niessen, K. L. Vincken, and M. A. Viergever, 'Multiscale vessel enhancement filtering,' International conference on medical image computing and computer-assisted intervention, pp. 130-137, 1998. [58] I. Cruz-Aceves, F. Oloumi, R. M. Rangayyan, et al., 'Automatic segmentation of coronary arteries using Gabor filters and thresholding based on multiobjective optimization,' Biomedical Signal Processing and Control, vol. 25, pp. 76-85, 2016. [59] B. Obara, M. Fricker, D. Gavaghan, and V. Grau, 'Contrast-independent curvilinear structure detection in biomedical images,' IEEE Transactions on Image Processing, vol. 21, no. 5, pp. 2572-2581, 2012. [60] R. Su, C. Sun, C. Zhang, and T. D. Pham, 'A new method for linear feature and junction enhancement in 2D images based on morphological operation, oriented anisotropic Gaussian function and Hessian information,' Pattern Recognition, vol. 47, no. 10, pp. 3193-3208, 2014. [61] E. D. Pisano, S. Zong, B. M. Hemminger, et al., 'Contrast limited adaptive histogram equalization image processing to improve the detection of simulated spiculations in dense mammograms,' Journal of Digital imaging, vol. 11, no. 4, p. 193, 1998. [62] C. Blondel, G. Malandain, R. Vaillant, and N. Ayache, 'Reconstruction of coronary arteries from a single rotational X-ray projection sequence,' IEEE Transactions on Medical Imaging, vol. 25, no. 5, pp. 653-663, 2006. [63] P. T. Truc, M. A. Khan, Y.-K. Lee, et al., 'Vessel enhancement filter using directional filter bank,' Computer Vision and Image Understanding, vol. 113, no. 1, pp. 101-112, 2009. [64] Y. Yuan, Y. Luo, and A. C. Chung, 'VE-LLI-VO: Vessel enhancement using local line integrals and variational optimization,' IEEE transactions on image processing, vol. 20, no. 7, pp. 1912-1924, 2010. [65] M. E. Tenekeci, H. Pehlivan, and Y. Kaya, 'Improving performance of coronary artery segmentation using calculated vessel location from the angiogram,' 2018. [66] 'Histograms of an image before and after equalization.,' Zefram, 2006. [Online]. Available: https://commons.wikimedia.org/wiki/File:Histogrammeinebnung.png, Accessed on Apr 28 2021. [67] 'Illustration of pixel neighbourhoods for adaptive histogram equalisation,' Vswitchs, 2011. [Online]. Available: https://commons.wikimedia.org/wiki/File:AHE-neighbourhoods.svg, Accessed on May 13, 2021. [68] K. Zuiderveld, 'Contrast limited adaptive histogram equalization,' Graphics gems, pp. 474-485, 1994. [69] S. M. Pizer, E. P. Amburn, J. D. Austin, et al., 'Adaptive histogram equalization and its variations,' Computer vision, graphics, and image processing, vol. 39, no. 3, pp. 355-368, 1987. [70] 'Excess redistribution in contrast-limited adaptive histogram equalization.,' Vswitchs, 2011. [Online]. Available: https://commons.wikimedia.org/wiki/File:Clahe-redist.svg, Accessed on Mar 15, 2021. [71] 'Illustration of tile-based interpolation for the efficient computation of adaptive histogram equalization.,' Vswitchs, 2011. [Online]. Available: https://commons.wikimedia.org/wiki/File:Clahe-tileinterpol.svg, Accessed on May 13, 2021. [72] T. Jerman, F. Pernuš, B. Likar, and Ž. Špiclin, 'Enhancement of vascular structures in 3D and 2D angiographic images,' IEEE transactions on medical imaging, vol. 35, no. 9, pp. 2107-2118, 2016. [73] T. Jerman, F. Pernuš, B. Likar, and Ž. Špiclin, 'Beyond Frangi: an improved multiscale vesselness filter,' Medical Imaging 2015: Image Processing, vol. 9413, p. 94132A, 2015. [74] M. Shams, M. A. Salem, S. Hamad, and H. A. Shedeed, 'Coronary artery tree segmentation in computed tomography angiography using Otsu method,' 2017 Eighth International Conference on Intelligent Computing and Information Systems (ICICIS), pp. 416-420, 2017. [75] J. Brieva, E. Gonzalez, F. Gonzalez, et al., 'A level set method for vessel segmentation in coronary angiography,' 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference, pp. 6348-6351, 2006. [76] F. Akhbardeh, and H. Demirel, 'Coronary Stenosis Measurements Using K-Means Clustering,' Frontiers in Biomedical Devices, vol. 40789, p. V001T01A019, 2018. [77] M. Sezgin, and B. Sankur, 'Survey over image thresholding techniques and quantitative performance evaluation,' Journal of Electronic imaging, vol. 13, no. 1, pp. 146-165, 2004. [78] N. Otsu, 'A threshold selection method from gray-level histograms,' IEEE transactions on systems, man, and cybernetics, vol. 9, no. 1, pp. 62-66, 1979. [79] D. Liu, and J. Yu, 'Otsu method and K-means,' 2009 Ninth International Conference on Hybrid Intelligent Systems, vol. 1, pp. 344-349, 2009. [80] P.-S. Liao, T.-S. Chen, and P.-C. Chung, 'A fast algorithm for multilevel thresholding,' J. Inf. Sci. Eng., vol. 17, no. 5, pp. 713-727, 2001. [81] D.-Y. Huang, and C.-H. Wang, 'Optimal multi-level thresholding using a two-stage Otsu optimization approach,' Pattern Recognition Letters, vol. 30, no. 3, pp. 275-284, 2009. [82] J. Kittler, and J. Illingworth, 'On threshold selection using clustering criteria,' IEEE transactions on systems, man, and cybernetics, no. 5, pp. 652-655, 1985. [83] S. U. Lee, S. Y. Chung, and R. H. Park, 'A comparative performance study of several global thresholding techniques for segmentation,' Computer Vision, Graphics, and Image Processing, vol. 52, no. 2, pp. 171-190, 1990. [84] J. Canny, 'A computational approach to edge detection,' IEEE Transactions on pattern analysis and machine intelligence, no. 6, pp. 679-698, 1986. [85] S. Tu, N. R. Holm, G. Koning, et al., 'Fusion of 3d qca and ivus/oct,' The international journal of cardiovascular imaging, vol. 27, no. 2, pp. 197-207, 2011. [86] L. S. Athanasiou, C. V. Bourantas, P. K. Siogkas, et al., '3D reconstruction of coronary arteries using frequency domain optical coherence tomography images and biplane angiography,' 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 2647-2650, 2012. [87] C. Shi, X. Luo, J. Guo, et al., 'Three-dimensional intravascular reconstruction techniques based on intravascular ultrasound: a technical review,' IEEE journal of biomedical and health informatics, vol. 22, no. 3, pp. 806-817, 2017. [88] A. Zifan, P. Liatsis, P. Kantartzis, et al., 'Automatic 3D reconstruction of coronary artery centerlines from monoplane X-ray angiogram images,' International Journal of Biological and Medical Sciences, vol. 2, no. 3, pp. 105-110, 2008. [89] A. Andriotis, A. Zifan, M. Gavaises, et al., 'A new method of three‐dimensional coronary artery reconstruction from X‐ray angiography: Validation against a virtual phantom and multislice computed tomography,' Catheterization and cardiovascular interventions, vol. 71, no. 1, pp. 28-43, 2008. [90] C. Oueslati, S. Mabrouk, F. Ghorbel, and M. Hedi Bedoui, '3D reconstruction of coronary arteries from rotational X-ray angiography,' 2018. [91] F. Galassi, M. Alkhalil, R. Lee, et al., '3D reconstruction of coronary arteries from 2D angiographic projections using non-uniform rational basis splines (NURBS) for accurate modelling of coronary stenoses,' PloS one, vol. 13, no. 1, p. e0190650, 2018. [92] F. Auricchio, M. Conti, C. Ferrazzano, and G. A. Sgueglia, 'A simple framework to generate 3D patient-specific model of coronary artery bifurcation from single-plane angiographic images,' Computers in biology and medicine, vol. 44, pp. 97-109, 2014.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82165-
dc.description.abstract當慢性腎臟病患者的腎功能衰退至不可逆的最後階段,便會成為末期腎臟病而無法維持體內代謝的恆定,臨床上主要的治療方式便是藉由血液透析來維持患者生命。在接受長期且定期的血液透析前,須先於手臂處建立動靜脈瘻管,方能以高血流量來維持體外循環。對於動靜脈瘻管而言最常見的併發症為血管阻塞,若此情形發生,便無法進行有效的血液透析。因此,對於瘻管阻塞情形的長期追蹤與檢測,無疑是血液透析患者的一大課題。目前常見的臨床檢查方式有理學檢查、周邊血管超音波與血管攝影三種,其各有優點但也有其侷限性。隨著透析治療的患者數量不斷增加,追蹤瘻管健康狀況的需求也大增,大量依靠醫事人員經驗和昂貴醫療檢查設備的傳統檢查方法不再適合用於日常追蹤管理。 近年來,應用光學檢測作為非侵入性的疾病檢測方法蔚為大宗,但使用非侵入性光學方法,且針對血液透析動靜脈瘻管的研究卻為數不多。本研究構建一套三維多角度量測系統,硬體搭載近紅外光成像技術,並可由多種角度拍攝手臂影像。擷取之影像可進行後續分析以可視化皮下血管,建立三維血管模型。本研究之演算法框架可分為三大部分,血管影像增強、像素分類骨架提取以及三維立體建模,其中包括多種影像處理技術。經由近紅外攝影裝置擷取之影像,先進行血管影像增強以提升影像對比度並去除背景雜訊。接著進行像素的分類,藉由找出適合的閾值將血管與背景作區分,以此對影像進行二值化並進行血管骨架提取。最後藉由三維建模的方法,透過選擇兩個不同拍攝角度的影像計算血管中心線,擬合後便能建立三維血管模型。此系統可作為動靜脈瘻管狀況的判斷依據,期望能實現動靜脈瘻管阻塞的早期檢測,並達成日常監測的目標。zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-25T06:33:05Z (GMT). No. of bitstreams: 1
U0001-1708202121563300.pdf: 5083912 bytes, checksum: 5c05702219a661b221498a3f10621645 (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents"口試委員審定書-----------------------------------------------------i 誌謝-------------------------------------------------------------ii 摘要------------------------------------------------------------iii Abstract--------------------------------------------------------iv 目錄-------------------------------------------------------------vi 圖目錄---------------------------------------------------------viii 表目錄-----------------------------------------------------------xi 第一章 緒論------------------------------------------------------1 1.1. 前言----------------------------------------------------1 1.2. 動靜脈瘻管簡介-------------------------------------------3 1.2.1. 自體動靜脈瘻管(Arteriovenous Fistula, AVF)---------------3 1.2.2. 人工瘻管(Arteriovenous Graft, AVG)-----------------------5 1.2.3. 血管阻塞-------------------------------------------------5 1.3. 臨床處置方式與標準指引--------------------------------------6 1.3.1. 理學檢查(Physical Examination)---------------------------6 1.3.2. 周邊血管超音波(Peripheral Vascular Ultrasound)------------9 1.3.3. 血管攝影(Angiography)-----------------------------------9 1.4. 研究目的-------------------------------------------------10 1.5. 研究內容與本文架構----------------------------------------11 第二章 文獻探討-------------------------------------------------12 2.1. 靜脈血管定位技術(Vein Pattern Locating Technology)--------12 2.2. 生物血管特徵識別(Vascular Biometrics)---------------------16 第三章 硬體端之多角度影像擷取設備--------------------------------18 3.1. 硬體機構設計---------------------------------------------18 3.2. 近紅外光源-----------------------------------------------24 3.3. 影像擷取設備規格------------------------------------------26 第四章 軟體端之影像後處理與分析建模-------------------------------31 4.1. 演算法框架介紹--------------------------------------------31 4.2. 血管影像增強----------------------------------------------32 4.2.1. CLAHE--------------------------------------------------33 4.2.2. Hessian Based Frangi Vesselness Filter-----------------39 4.2.3. 數學形態學(Mathematical Morphology)---------------------44 4.3. 像素分類骨架提取-------------------------------------------46 4.3.1. 大津演算法(Otsu’s Method)-------------------------------47 4.3.2. Canny邊緣檢測器(Canny Edge Detector)--------------------50 4.3.3. Morphological Skeleton---------------------------------54 4.4. 三維立體建模----------------------------------------------56 4.4.1. 多項式曲線擬合------------------------------------------57 4.4.2. 血管三維重建--------------------------------------------59 第五章 實驗測試與結果討論----------------------------------------62 5.1. 硬體端影像擷取方法-----------------------------------------62 5.2. 軟體端分析後處理流程---------------------------------------63 5.3. 二維血管可視化可行性討論-----------------------------------66 5.4. 三維血管建模可行性討論-------------------------------------69 第六章 結論與未來展望--------------------------------------------71 6.1. 結論------------------------------------------------------71 6.2. 未來展望--------------------------------------------------71 參考文獻---------------------------------------------------------73"
dc.language.isozh-TW
dc.subject動靜脈瘻管zh_TW
dc.subject血管三維建模zh_TW
dc.subject血液透析zh_TW
dc.subject影像處理zh_TW
dc.subjectHemodialysisen
dc.subjectImage Processingen
dc.subject3D Reconstruction of Blood Vesselsen
dc.subjectArteriovenous Fistula/ Graften
dc.title近紅外光攝影之血管三維建模系統開發zh_TW
dc.titleDevelopment of 3D Vascular Modeling System Based on Near-Infrared Photographyen
dc.date.schoolyear109-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳湘鳳(Hsin-Tsai Liu),楊士進(Chih-Yang Tseng)
dc.subject.keyword動靜脈瘻管,血液透析,影像處理,血管三維建模,zh_TW
dc.subject.keywordArteriovenous Fistula/ Graft,Hemodialysis,Image Processing,3D Reconstruction of Blood Vessels,en
dc.relation.page83
dc.identifier.doi10.6342/NTU202102446
dc.rights.note未授權
dc.date.accepted2021-08-18
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept機械工程學研究所zh_TW
dc.date.embargo-lift2026-08-18-
Appears in Collections:機械工程學系

Files in This Item:
File SizeFormat 
U0001-1708202121563300.pdf
  Restricted Access
4.96 MBAdobe PDFView/Open
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved