Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 動物科學技術學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82163
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳明汝(Ming-Ju Chen)
dc.contributor.authorWan-Yu Chanen
dc.contributor.author詹皖伃zh_TW
dc.date.accessioned2022-11-25T06:33:02Z-
dc.date.copyright2021-11-09
dc.date.issued2021
dc.date.submitted2021-08-19
dc.identifier.citation吳藝璐。2018。自食品中分離鑑定可產生脂肪酶之微生物應用於製造人造奶油。國立臺灣大學動物科學技術學研究所。碩士論文。 Aarti, C., A. Khusro, R. Varghese, M. V. Arasu, P. Agastian, N. A. Al-Dhabi, S. Ilavenil, and K. C. Choi. 2018. In vitro investigation on probiotic, anti-Candida, and antibiofilm properties of Lactobacillus pentosus strain LAP1. Arch. Oral Biol. 89:99-106. doi:10.1016/j.archoralbio.2018.02.014. Adam, D., D. Katarzyna, R. Dorota, M. Paweł, and M, Aleksandra. 2019. Lipid production from waste materials in seawater-based medium by the yeast Yarrowia lipolytica. Front Microbiol. 10. doi:10.3389/fmicb.2019.00547. Adrio, J. L., and A. L. Demain. 2014. Microbial enzymes: tools for biotechnological processes. Biomolecules. 4:117-139. doi:10.3390/biom4010117. Aloulou, A., J. A. Rodriguez, D. Puccinelli, N. Mouz, J. Leclaire, Y. Leblond, and F. Carrière. 2007. Purification and biochemical characterization of the LIP2 lipase from Yarrowia lipolytica. Biochim Biophys Acta Mol Cell Biol Lipids. 1771:228-237. doi:10.1016/j.bbalip.2006.12.006. Amaral, P. F. F., M. H. M. Rocha-Leão, I. M. Marrucho, J. A. P. Coutinho, and M. A. Z. Coelho. 2006. Improving lipase production using a perfluorocarbon as oxygen carrier. J. Chem. Technol. Biotechnol. 81:1368-1374. doi:10.1002/jctb.1478. Andualema, B., and A. Gessesse. 2012. Microbial lipases and their industrial applications. Biotechnology. 11:100-118. doi:10.3923/biotech.2012.100.118. Angeles, A. G., and E. H. Marth. 1971. Growth and activity of lactic acid bacteria in soymilk. J. Milk Food Technol. 34:69-73. doi:10.4315/0022-2747-34.2.69. Aravindan, R., P. Anbumathi, and T. Viruthagiri. 2007. Lipase applications in food industry. Indian J Biotechnol. 6:141-158. Barth, G., and C. Gaillardin. 2013. Yarrowia lipolytica. 10.1007/978-3-642-38320-5 Bharathi, D., and G. Rajalakshmi. 2019. Microbial lipases: an overview of screening, production and purification. Biocatal Agric Biotechnol 22: 101368. doi:10.1016/j.bcab.2019.101368. Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254. doi:10.1006/abio.1976.9999. Braga, A., N. Gomes, I. Belo, and J. Am. 2011. Lipase induction in Yarrowia lipolytica for castor oil hydrolysis and its effect on γ-decalactone production. Oil Chem. 89:1041-1047. doi:10.1007/s11746-011-1987-5. Brígida, A. I. S., P. F. F. Amaral, M. A. Z. Coelho, and L. R.B. Gonçalves. 2014. Lipase from Yarrowia lipolytica: Production, characterization and application as an industrial biocatalyst. J Mol Catal B Enzym. 101:148-158. doi:10.1016/j.molcatb.2013.11.016. Bussamara, R., A. M. Fuentefria, E. S. de Oliveira, L. Broetto, M. Simcikova, P. Valente, A. Schrank, and M. H. Vainstein. 2010. Isolation of a lipase-secreting yeast for enzyme production in a pilot-plant scale batch fermentation. Bioresource Technol. 101:268-275. doi:10.1016/j.biortech.2008.10.063. Cai, D., J. P. Klinman. 1994. Copper amine oxidase: heterologous expression, purification, and characterization of an active enzyme in Saccharomyces cerevisiae. Biochem. 33:7647-7653. doi:10.1021/bi00190a019. Carly, F., M. Vandermies, S. Telek, S. Steels, S. Thomas, J. M. Nicaud, and P. Fickers. 2017. Enhancing erythritol productivity in Yarrowia lipolytica using metabolic engineering. Metab Eng. 42:19-24. doi:10.1016/j.ymben.2017.05.002. Caroline, P., L. Sophie, J. Frédéric, T. Pauline, B. M, G. Sarrah, and F. Fernanda. 2014. Physiological and biochemical responses of Yarrowia lipolytica to dehydration induced by air-drying and freezing. PloS one. 9. e111138. doi:10.1371/journal.pone.0111138. Celligoi, M., C. Baldo, M. R. de Melo, F. Gasparin, and T. Marques. 2017. Lipase M. Properties, functions and food applications. Microbial enzyme technology in food applications. 214-240. Chandra, P., Enespa, R. Singh, and P. K. Arora. 2020. Microbial lipases and their industrial applications: a comprehensive review. Microb Cell Fact. 19:169-210. doi:10.1186/s12934-020-01428-8. Chen, M. J., H. Y. Tang, M. L. Chiang. 2017. Effects of heat, cold, acid and bile salt adaptations on the stress tolerance and protein expression of kefir-isolated probiotic Lactobacillus kefiranofaciens M1. Food Microbiol. 66: 20-27. doi:10.1016/j.fm.2017.03.020. Cheng, H. R., J. Y. Lu, B. Wang, and Z. Deng. 2015. Yarrowia lipolytica strain and method thereof for synthesizing erythritol. CN103374534B Chinedu, S. N., V. I. Okochi, and O. Omidiji. 2011. Cellulase production by wild strains of Aspergillus niger, Penicillium chrysogenum and Trichoderma harzianum grown on waste cellulosic materials. Ife J Sci. 13:57-62. Chou, C. C., and J. W. Hou. 2000. Growth of bifidobacteria in soymilk and their survival in the fermented soymilk drink during storage. Int J Food Microbiol. 56:113-121. doi:10.1016/S0168-1605(99)00201-9. Colonia, B.S.O., A. L. Woiciechowski, R. Malanski, L. A. J. Letti, and C. R. Soccol. 2019. Pulp improvement of oil palm empty fruit bunches associated to solid-state biopulping and biobleaching with xylanase and lignin peroxidase cocktail produced by Aspergillus sp. LPB-5. Bioresour. Technol. 285:121361. doi:0.1016/j.biortech.2019.121361 Corzo G., and S. Revah. 1999. Production and characteristics of the lipase from Yarrowia lipolytica 681. Bioresour Technol 70: 173-180. doi:10.1016/S0960-8524(99)00024-3. Cox, S., A. Sandall, L. Smith, M. Rossi, and K. Whelan. 2020. Food additive emulsifiers: a review of their role in foods, legislation and classifications, presence in food supply, dietary exposure, and safety assessment. Nutr Rev. 0:1-16. doi:10.1093/nutrit/nuaa038 Darvishi, F., Iraj Nahvi, H. Zarkesh-Esfahani, and F. Momenbeik. 2009. Effect of plant oils upon lipase and citric acid production in Yarrowia lipolytica Yeast. BioMed Research International. 2009:562943. doi:10.1155/2009/562943. de Almeida, A. F., K. B. Dias, A. C. C. da Silva, C. R. F. Terrasan, S. M. Tauk-Tornisielo, and E. C. Carmona. 2016. Agroindustrial wastes as alternative for lipase production by Candida viswanathii under solid-state cultivation: purification, biochemical properties, and its potential for poultry fat hydrolysis', Enzyme Res. 2016:1353497. doi:10.1155/2016/1353497. de Souza, C.E.C., B. D. Ribeiro, and M. A. Z. Coelho. 2019. Characterization and application of Yarrowia lipolytica lipase obtained by solid-state fermentation in the synthesis of different esters used in the food industry. Appl. Biochem. Biotechnol. 189:933-959. doi:0.1007/s12010-019-03047-5. Deive, F. J., M. A. Sanromán, M. A. Longo. 2010. A comprehensive study of lipase production by Yarrowia lipolytica CECT 1240 (ATCC 18942): from shake flask to continuous bioreactor. J. Chem. Technol. Biotechnol. 85:258-266. doi:10.1002/jctb.2301. Dinçer, E., and M. Kıvanç. 2018. Lipolytic activity of lactic acid bacteria isolated from Turkish pastırma. Anadolu University Journal of Science and Technology C - Life Sciences and Biotechnology. 7:12-19. doi:10.18036/aubtdc.306292. Drouault, S., G. Corthier, S. Dusko Ehrlich, and P. Renault. 2000. Expression of the Staphylococcus hyicus lipase in Lactococcus lactis. Genet. Mol. Biol. 66:588-598. doi:10.1128/AEM.66.2.588-598.2000. Dutra, J. C. V., S. C. Terzi, J. V. Bevilaqua, M. C. T. Damaso, S. Couri, M. A. P. Langone, and L. F. Senna. 2008. Lipase production in solidstate fermentation monitoring biomass growth of Aspergillus niger using digital image processing. Appl Biochem Biotechnol. 147:63-75. doi:10.1007/s12010-007-8068-0. Fabiszewska, A. U., and E. Białecka-Florjańczyk. 2014. Factors influencing synthesis of extracellular lipases by Yarrowia lipolytica in medium containing vegetable oils. J Microbiol Biotech Food Sci. 4:231-237. doi:10.15414/jmbfs.2014-15.4.3.231-237. Farag, S., and N. A. Soliman. 2011. Biodegradation of crude petroleum oil and environmental pollutants by Candida tropicalis strain. Brazil Arch Biol Tech. 54:821-830. doi:10.1590/S1516-89132011000400023. Ferrer, P., and C. Solà. 1992. Lipase production by immobilized Candida rugosa cells. Appl Microbiol Biotechnol. 37:737-741. doi:10.1007/BF00174838. Fickers, P,. P. H. Benetti, Y. Waché, A. Marty, S. Mauersberger, M. S. Smit, and J. M. Nicaud. 2005. Hydrophobic substrate utilisation by the yeast Yarrowia lipolytica, and its potential applications. FEMS Yeast Res. 5:527-543. doi:10.1016/j.femsyr.2004.09.004. Fickers, P., A. Marty, and J. M. Nicaud. 2011. The lipases from Yarrowia lipolytica: Genetics, production, regulation, biochemical characterization and biotechnological applications. Biotechnol Adv. 29:632-644. doi:10.1016/j.biotechadv.2011.04.005. Fickers, P., J. Destain, and P. Thonart. 2009. Improvement of Yarrowia lipolytica lipase production by fed-batch fermentation. J. Basic Microbiol. 49:212-215. doi:10.1002/jobm.200800186. Gemperlein, K., D. Dietrich, M. Kohlstedt, G. Zipf, H. S. Bernauer, C. Wittmann, S. C. Wenzel, and R. Müller. 2019. Polyunsaturated fatty acid production by Yarrowia lipolytica employing designed myxobacterial PUFA synthases. Nat Commun 10:4055. doi:10.1038/s41467-019-12025-8. Ghori, M. I., M. J. Iqbal, and A. Hameed. 2011. Characterization of a novel lipase from Bacillus sp. isolated from tannery wastes. Brazil J Microb. 42:22-29. doi:10.1590/S1517-83822011000100003. Gonçalves, F. A. G., G. Colen, and J. A. Takahashi. 2014. Yarrowia lipolytica and its multiple applications in the biotechnological industry. Scientific World Journal. 2014:476207. doi:10.1155/2014/476207. Groenewald, M.,T. Boekhout, C. Neuvéglise, C. Gaillardin, P. W. M. van Dijck, and M. Wyss. 2014. Yarrowia lipolytica: Safety assessment of an oleaginous yeast with a great industrial potential. Crit Rev Microbiol. 40: 187-206. doi:10.3109/1040841X.2013.770386 Guerrand, D. 2017. Lipases industrial applications: focus on food and agroindustries. OCL. 24. doi:10.1051/ocl/2017031. Hares Júnior, S. J., J. N. R. Ract, L. A. Gioielli, and M. Vitolo. 2017. Conversion of triolein into mono- and diacylglycerols by immobilized lipase. Arab J Sci Eng 43:2247-2255. doi:10.1007/s13369-017-2635-7. Harrigan, W. F. 1998. Sampling methods for selection and examination of microbial colonies. In: Harrigan, W. F., editor, Laboratory methods in food microbiology. Academic Press, San Diego, CA, USA. p. 89-91. Heard, G. M., G. H. Fleet. 1999. Yarrowia (Candida) lipolytica. Encyclopedia of Food Microbiology. 360-365. doi:10.1006/rwfm.1999.0285. Holland, R., and T. Coolbear. 1996. Purification of tributyrin esterase from Lactococcus lactis subsp. cremoris E8. J. Dairy Res. 63:131-140. doi:10.1017/S0022029900031605. Hou, J. W., R. C. Yu, C. C. Chou. 2000. Changes in some components of soymilk during fermentation with bifidobacteria. Food Research International. 33:393-397. doi:10.1016/S0963-9969(00)00061-2. Houde, A., A. Kademi, and D. Leblanc. 2004. Lipases and their industrial applications: an overview. Appl Biochem Biotechnol. 118:155-170. doi:10.1385/abab:118:1-3:155. Hřibová, E., J. Čížková, P. Christelová, S. Taudien, E.de Langhe, and J. Doležel. 2011. The ITS1-5.8S-ITS2 sequence region in the Musaceae: Structure, diversity and use in molecular phylogeny. PLoS ONE 6:e17863. doi:org/10.1371/journal.pone.0017863. Jaekel, T., and W. Ternes. 2009. Changes in rheological behaviour and functional properties of hen’s egg yolk induced by processing and fermentation with phospholipases. Int J Food Sci Technol. 44: 567-573. doi:10.1111/j.1365-2621.2008.01847.x Jiang, S., L. Cai, L. Lv, and L. Li. 2021. Pediococcus pentosaceus, a future additive or probiotic candidate. Microb Cell Fact. 20. doi:10.1186/s12934-021-01537-y. Kamzolova, S.V., I. G. Morgunov, A. Aurich, O. A. Perevoznikova, N.V. Shishkanova, U. Stottmeister, and T.V. Finogenova. 2005. Lipase secretion and citric acid production in Yarrowia lipolytica Yeast Grown on animal and vegetable fat. Food Technol Biotechnol. 43:113-122. Kamzolova, S.V., T. V. Finogenova, Y. N. Lunina, O. A. Perevoznikova, L. N. Minachova, and I. G. Morgunov. 2007. Characteristics of the growth on rapeseed oil and synthesis of citric and isocitric acids by Yarrowia lipolytica yeasts. Microbiology 76:20-24. doi:10.1134/S0026261707010031. Katz, M., R. Medina, S. Gonzelez, and G. Oliver. 2002. Esterolytic and Lipolytic Activities of Lactic Acid Bacteria Isolated from ewe's milk and cheese. J Food Prot. 65:1997-2001. doi:10.4315/0362-028X-65.12.1997. Khalid, N. M., and E. H. Marth. 1990. Lactobacilli — Their Enzymes and Role in Ripening and Spoilage of Cheese: A Review. J Dairy Sci. 73:2669-2684. doi:10.3168/jds.S0022-0302(90)78952-7. Khumalo, L. W., L. Majoko, J. S. Read, and I. Ncube. 2002. Characterisation of some underutilised vegetable oils and their evaluation as starting materials for lipase-catalysed production of cocoa butter equivalents. Ind Crop Prod. 16:237-44. doi:10.1016/S0926-6690(02)00051-1. Khumalo, L. W., L. Majoko, J. S. Read, I. Ncube. 2002. Characterisation of some underutilised vegetable oils and their evaluation as starting materials for lipase-catalysed production of cocoa butter equivalents. Ind Crop Prod. 16:237-244. doi:10.1016/S0926-6690(02)00051-1. Kiamarsi, Z., M. Soleimani, A. Nezami, and M. Kafi. 2019. Biodegradation of n-alkanes and polycyclic aromatic hydrocarbons using novel indigenous bacteria isolated from contaminated soils. Int J Environ Sci Technol.16:6805-6816. doi:10.1007/s13762-018-2087-y. Kim, S. J., S. Park, and H. K. Kim. 2019. Characterization of organic solvent-tolerant lipolytic enzyme from Marinobacter lipolyticus isolated from the Antarctic Ocean. Appl Biochem Biotechnol. 187:1046-1060. doi:10.1007/s12010-018-2865-5. Kobayashi, N., T. Saito, T. Uematsu, K. Kishi, M. Toba, N. Kohda, and T. Suzuki. 2011. Oral administration of heat-killed Lactobacillus pentosus strain b240 augments protection against influenza virus infection in mice. Int Immunopharmacol. 11:199-203. doi:10.1016/j.intimp.2010.11.019. Koehler, A. P., K. Chu, E. T. S. Houang, and A. F. B. Cheng. 1999. Simple, reliable, and cost-effective yeast identification scheme for the clinical laboratory. J. Clin. Microbiol. 37:422-426. Kulkarni, N., and R. V. Gadre. 2002. Production and properties of an alkaline, thermophilic lipase from Pseudomonas fluorescens NS2W. J Ind Microbiol Biotechnol. 28: 344-348. doi:10.1038/sj/jim/7000254. Kumari, A., V. V. Verma, and R. Gupta. 2012. Comparative biochemical characterization and in silico analysis of novel lipases Lip11 and Lip12 with Lip2 from Yarrowia lipolytica. World J Microbiol Biotechnol. 28:3103-3111. doi:10.1007/s11274-012-1120-4 Larios, A., H. S. García, R. M. Oliart, and G. Valerio-Alfaro. 2004. Synthesis of flavor and fragrance esters using Candida antarctica lipase. Appl Microbiol Biotechnol. 65:373-376. doi:10.1007/s00253-004-1602-x. Lee, B. H., Y. H. Lo, and T. M. Pan. 2013. Anti-obesity activity of Lactobacillus fermented soy milk products. J. Funct. Foods. 5:905-913. doi:10.1016/j.jff.2013.01.040. Lee, M. K., J. K. Kim, and S. Y. Lee. 2018. Effects of fermentation on SDS-PAGE patterns, total peptide, isoflavone contents and antioxidant activity of freeze-thawed tofu fermented with Bacillus subtilis. Food Chem. 249:60-65. doi:10.1016/j.foodchem.2017.12.045. Li, N., and M. H. Zong. 2010. Lipases from the genus Penicillium: production, purification, characterization and applications. J Mol Catalysis B: Enzym. 66:43-54. doi:10.1016/j.molcatb.2010.05.004. Li, X., and H. Y. Yu. 2014. Characterization of an organic solvent-tolerant lipase from Haloarcula sp. G41 and its application for biodiesel production. Folia Microbiol. 59:455-463. doi:10.1007/s12223-014-0320-8. Liu, J. R., and C. W. Lin. 2008. Production of kefir from soymilk with or without added glucose, lactose, or sucrose. J. Food Sci. 65:716-719. doi:10.1111/j.1365-2621.2000.tb16078.x. Liu, H., Y. Song, X. Fan, C. Wang, X. Lu, and Y. Tian. 2021. Yarrowia lipolytica as an Oleaginous Platform for the Production of Value-Added Fatty Acid-Based Bioproducts. Front. microbiol. 11:3249-3262. doi=10.3389/fmicb.2020.608662. Lopes, M., A. S. Gomes, C. M. Silva, and I. Belo. 2018. Microbial lipids and added value metabolites production by Yarrowia lipolytica from pork lard. J. Biotechnol. 265:76-85. doi:10.1016/j.jbiotec.2017.11.007. Magnan, C., J. Yu, I. Chang, E. Jahn, Y. Kanomata, J. Wu, M. Zeller, M. Oakes, P. Baldi, and S. Sandmeyer. 2016. Sequence assembly of Yarrowia lipolytica strain W29/CLIB89 shows transposable element diversity. PLoS One. 11:162-189. doi:10.1371/journal.pone.0162363. Maldonado-Barragán. A., B. Caballero-Guerrero, H. Lucena-Padrós, and J. L. Ruiz-Barba. 2011. Genome sequence of Lactobacillus pentosus IG1, a strain isolated from spanish-style green olive fermentations. J. Bacteriol. 193:5605. doi:10.1128/JB.05736-11. Martha, R. B., A. Erika, and A. Carlos. 2021. Probiotic and immunomodulatory activity of marine yeast Yarrowia lipolytica strains and response against vibrio parahaemolyticus in fish. Probiotics Antimicrob Proteins 13. doi:10.1007/s12602-021-09769-5. Mba, O. I., M. Dumont, and M. Ngadi. 2015. Palm oil: Processing, characterization and utilization in the food industry - A review. Food Biosci. 10:26-41. doi:org/10.1016/j.fbio.2015.01.003. Mekouar, M., I. Blanc-Lenfle, C. Ozanne, C. D. Silva, C. Cruaud, P. Wincker, C. Gaillardin, and C. Neuvéglise. 2010. Detection and analysis of alternative splicing in Yarrowia lipolytica reveal structural constraints facilitating nonsense-mediated decay of intron-retaining transcripts. Genome Biol. 11:R65. doi:10.1186/gb-2010-11-6-r65. Messias, J. M., B. Z. Costa, V. M.G. de Lima, R. F.H. Dekker, M. I. Rezende, N. Krieger, and A. M. Barbosa. 2009. Screening Botryosphaeria species for lipases: production of lipase by Botryosphaeria ribis EC-01 grown on soybean oil and other carbon sources. Enzym. Microb. Technol. 45:426-431. doi:10.1016/j.enzmictec.2009.08.013. Miller, G. L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31:426-428. doi:10.1021/ac60147a030 Miller, R. 2016. Emulsifiers: types and uses. Encyclopedia of Food and Health. 1:498-502. doi:10.1016/B978-0-12-384947-2.00249-X. Mnif, I., S. Besbes, R. Ellouze, S. Ellouze-Chaabouni, and D. Ghribi. 2012. Improvement of bread quality and bread shelf-life by Bacillus subtilis biosurfactant addition. Food Sci Biotech. 21:1105-1112. doi:10.1007/s10068-012-0144-8. Mohammad, R., G. Sobhan, B. Fatimah Abu. 2013. Metabolic engineering of Lactococcus lactis influence of the overproduction of lipase enzyme. J. Dairy Res. 80:490-495. doi:10.1017/S0022029913000435. Monié, A., A. David, K. Clemens, M. Malet-Martino, S. Balayssac, E. Perez, S. Franceschi, M. Crepin, and M. Delample. 2021. Enzymatic hydrolysis of rapeseed oil with a non-GMO lipase: A strategy to substitute mono- and diglycerides of fatty acids and improve the softness of sponge cakes. Lwt-food Sci Technol. 137:110405. doi:10.1016/j.lwt.2020.110405. Mori, M., E. Ali, D. Du, and E.Y. Park. 2009. Characterization and optimization of extracellular alkaline lipase production by Alcaligenes sp. Using stearic acid as carbon source. Biotechnol Bioproc E. 14:193-201. doi:10.1007/s12257-008-0178-1. Naik, K. M., S. Naik, and S. Mohanty. 2013. Enzymatic glycerolysis for conversion of sunflower oil to food based emulsifiers. Catal. Today. 23:145-149. doi:10.1016/j.cattod.2013.11.005. Najjar, A., S. Robert, C. Guérin, M. Violet-Asther, and F. Carrière. 2011. Quantitative study of lipase secretion, extracellular lipolysis, and lipid storage in the yeast Yarrowia lipolytica grown in the presence of olive oil: analogies with lipolysis in humans. Appl. Microbiol. Biotechnol. 89:1947-1962. doi:0.1007/s00253-010-2993-5. Nicaud, J. M. 2012. Yarrowia lipolytica. Yeast. 29:409-418. doi:10.1002/yea.2921. Nitschke, M., S. Costa, R. Haddad, L. A. G. Gonçalves, M. N. Eberlin, and J. Contiero. 2005. Oil wastes as unconventional substrates for rhamnolipid biosurfactant production by Pseudomonas aeruginosa LBI. Biotechnol Prog. 21:1562-566. doi:10.1021/bp050198x. Nonaka, Y., T. Izumo, F. Izumi, T. Maekawa, H. Shibata, A. Nakano, A. Kishi, K. Akatani, and Y. Kiso. 2008. Antiallergiceffects of Lactobacillus pentosus strain S-PT84 mediated by modulation of Th1/Th2 immunobalance and induction of IL-10 production. Int Arch Allergy Immunol. 145:249-257. doi:10.1159/000109294. O’Bryan, C. A., O. K. Koo, M. L. Sostrin, S. C. Ricke, P. G. Crandall, and M. G. Johnson. 2018. Characteristics of Bacteriocins and Use as Food Antimicrobials in the United States. Food and Feed Safety Systems and Analysis. 273-286. doi:10.1016/B978-0-12-811835-1.00015-4. Oliveira, F., C. Moreira, J. M. Salgado, L. Abrunhosa, A. Venâncio, and I. Belo. 2016. Olive pomace valorization by Aspergillus species: lipase production using solid-state fermentation. J. Sci. Food Agric. 96:3583-3589. doi:10.1002/jsfa.7544. Oterholm, A., Z. J. Ordal, and L. D. Witter. 1968.Glycerol ester hydrolase activity of lactic acid bacteria. mBio. 16:524-527. doi:10.1128/am.16.3.524-527.1968. Pandey, N., K. Dhakar, R. Jain, and A. Pandey. 2016. Temperature dependent lipase production from cold and pH tolerant species of Penicillium. Mycosphere 7:1533-1545. doi:10.5943/mycosphere/si/3b/5. Pereira, A. S., G. C. Fontes-Sant’Ana, and P. F. F. Amaral. 2019. Mango agro-industrial wastes for lipase production from Yarrowia lipolytica and the potential of the fermented solid as a biocatalyst. Food and Bioproducts Processing 115:68-77. doi:0.1016/j.fbp.2019.02.002. Pereira-Meirelles, M. H. M. Rocha-Leão, and G. L. Sant'Anna Jr. 2000. Lipase location in Yarrowia lipolytica cells. Biotechnol. Lett. 22:71-75. doi:10.1023/A:1005672731818. Pignède, G., H. Wang, F. Fudalej, C. Gaillardin, M. Seman, and J. M. Nicaud. 2000. Characterization of an Extracellular Lipase Encoded by LIP2 in Yarrowia lipolytica. Journal of Bacteriology 182:2802-2810. doi:10.1128/JB.182.10.2802-2810.2000. Prieto, S. F., J. Smets, B. E. Gil, J. F. Celades, and V. J. Carda. 2012. Fluid detergent compositions comprising a di-amido gellant, and processes for making. United States patent US 8,168,579. Priya, K. U., and B. I. Reddy. 2015. Isolation, optimization and partial purification of lipase enzyme. Biotechnol Appl Biochem. 6:2156-2171. Rekha, C. R., and G. Vijayalakshmi. 2010. Bioconversion of isoflavone glycosides to aglycones, mineral bioavailability and vitamin B complex in fermented soymilk by probiotic bacteria and yeast. J. Appl. Microbiol. 109:1198-1208. doi:10.1111/j.1365-2672.2010.04745.x. Rodriguez, J.A., J.C. Mateos, J. Nungaray, V. González, T. Bhagnagar, S. Roussos, J. Cordova, and J. Baratti. 2006. Improving lipase production by nutrient source modification using Rhizopus homothallicus cultured in solid state fermentation. Process Biochem. 41:2264-2269. doi:10.1016/j.procbio.2006.05.017. Röttig, A., L. Wenning, D. Bröker ,and A. Steinbüchel. 2010. Fatty acid alkyl esters: perspectives for production of alternative biofuels. Appl Microbiol Biotechnol. 85:1713-1733. doi:10.1007/s00253-009-2383-z. Ruchi, G., G. Anshu, and S.K. Khare. 2008. Lipase from solvent tolerant Pseudomonas aeruginosa strain: Production optimization by response surface methodology and application. Bioresour. Technol. 99:4796-4802. doi:10.1016/j.biortech.2007.09.053. Rzechonek, D., D. Alison, Q. Janet, M. Aleksandra. 2018. Influence of ylHog1 MAPK kinase on Yarrowia lipolytica stress response and erythritol production. Scientific Reports. doi:10.1038/s41598-018-33168-6. Schaffarczyk, M., H. Østdal, and P. Koehler. 2014. Lipases in wheat breadmaking: analysis and functional effects of lipid reaction products. J Agric Food Chem. 62:8229-8237. doi:10.1021/jf5022434. Sethi, B.K., P. K. Nandab, and S. Sahooa. 2016. Characterization of biotechnologically relevant extracellular lipase produced by Aspergillus terreus NCFT 4269.10. Braz. J. Microbiol. 47:143-149. doi:10.1016/j.bjm.2015.11.026. Sharma, R., Y. Chisti, and U. C. Banerjee. 2001. Production, purification, characterization, and applications of lipases. Biotechnol Adv. 19:627-662. doi:10.1016/S0734-9750(01)00086-6. Singh, A. K., and M. Mukhopadhyay. 2012. Overview of fungal lipase: a review. Appl Biochem Biotechnol. 166:486-520. doi:10.1007/s12010-011-9444-3. Singh, P., R. Kumar, S. N. Sabapathy, and A. S. Bawa. 2008. Functional and edible uses of soy protein products. Compr Rev Food Sci Food Saf. 7:14-28. doi:10.1111/j.1541-4337.2007.00025.x Sirisha, E., N. Rajaseker, and M. L. Narasu. 2010. Isolation and Optimization of lipase producing Bacteria from oil contaminated soils. Adv Biol Res 4:249-252. Souza, C.E.C., M. A. Farias, B.D. Ribeiro, and M. A. Z. Coelho. 2017. Adding value to agro-industrial co-products from canola and soybean oil extraction through lipase production using Yarrowia lipolytica in solid-state fermentation. Waste Biomass Valor. 8:1163-1176. doi:10.1007/s12649-016-9690-2. Spagnuolo, M., M. S. Hussain, L. Gambill, and M. Blenner. 2018. Alternative substrate metabolism in Yarrowia lipolytica. Front. microbiol. 9:1077-1090. doi=10.3389/fmicb.2018.01077. Sutherland, J. B., C. Cornelison, and S. A. Crow. 2014. Yarrowia lipolytica (Candida lipolytica). Encyclopedia of Food Microbiology (Second Edition). 374-378. doi:10.1016/B978-0-12-384730-0.00056-2. Tanasupawat, S., M. Phoottosavako, and S. Keeratipibul. 2015. Characterization and lipolytic activity of lactic acid bacteria isolated from Thai fermented meat. J. Appl. Pharm. Sci. 5:006-012. doi:10.7324/JAPS.2015.50302. Taskin, M., M. H. Ucar, Y. Unver, A. A. Kara, M. Ozdemir, and S. Ortucu. 2016. Lipase production with free and immobilized cells of cold-adapted yeast Rhodotorula glutinis HL25. Biocatal. Agric. Biotechnol. 8:97-103. doi:10.1016/j.bcab.2016.08.009. Tecelão, C., M. Guillén, F. Valero, and S. Ferreira-Dias. 2012. Immobilized heterologous Rhizopus oryzae lipase: a feasible biocatalyst for the production of human milk fat substitutes. Biochem Eng J. 67:104-110. doi:10.1016/j.bej.2012.06.001. Thakur, S. 2012. Lipases, its sources, properties and applications: a review. Int J Sci Eng Res. 3:771-799. Timoumi, A., S. E. Guillouet, C. Molina-Jouve, L. Fillaudeau, and N. Gorret. 2018. Impacts of environmental conditions on product formation and morphology of Yarrowia lipolytica. Appl Microbiol Biotechnol. 102:3831-3848. doi:10.1007/s00253-018-8870-3. Tomaszewska, L., A. Rywińska, and W. Gładkowski. 2012. Production of erythritol and mannitol by Yarrowia lipolytica yeast in media containing glycerol. J Ind Microbiol Biotechnol. 39:1333-1343. doi:0.1007/s10295-012-1145-6. Tsakalidou, E., and G. Kalantzopoulos. 1992. Purification and partial characterization of an esterase from Lactococcus lactis ssp lactis strain ACA-DC 127. Le Lait 72:533 - 543. doi:10.1051/lait:1992638. Turati, D.F.M., A. F. Almeida, C. C. Terrone, J. M.F. Nascimento, C. R.F. Terrasan, G. Fernandez-Lorente, B. C. Pessela, J. M. Guisan, and E. C. Carmona. 2019. Thermotolerant lipase from Penicillium sp. section Gracilenta CBMAI 1583: effect of carbon sources on enzyme production, biochemical properties of crude and purified enzyme and substrate specificity. Biocatal. Agric. Biotechnol. 17: 15-24. doi:10.1016/j.bcab.2018.10.002. Tzanetakis, N., and E. Litopoulou-Tzanetaki. 1989. Biochemical activities of Pediococcus pentosaceus isolates of dairy origin. J Dairy Sci. 72: 859-863. doi:10.3168/jds.S0022-0302(89)79178-5. Ugo, A. K., A. V. Amara, I. CN, and U. Kenechuwku. 2017. Microbial lipases: a prospect for biotechnological industrial catalysis for green products: a review. Ferment Technol. 06:144-155. doi:10.4172/2167-7972.1000144. Valério, A., K. G. Fiametti, S. Rovani, E. Franceschi, M. L. Corazza, H. Treichel, D. Oliveira, and J. V. Oliveira. 2009. Enzymatic production of mono- and diglycerides in compressed n-butane and AOT surfactant. J Supercrit Fluids 49:216-220. doi:10.1016/j.supflu.2009.02.001. Vasilievna, F. T., S. N. Vasilievna, S. Paolo, and M. Enrico. 1997. Yeast strain Yarrowia lipolytica - producer of citric acid and method of citric acid production. Russia agency for patent and trademarks. RU2096461C1. Veerapagu M, S. A. Narayanan, K. Ponmurugan, K. R. Jeya. 2013. Screening, selection, identification and optimization of bacterial lipase from oil spilled soil. Asian J Pharm Clin Res. 6:63-67. Ventura, M., V. Meylan, and R. Zink. 2003. Identification and tracking of Bifidobacterium species by use of enterobacterial repetitive intergenic consensus sequences. Appl. Environ. Microb. 69:4296-4301. doi:10.1128/AEM.69.7.4296-4301.2003. Wang, Y. C., R. C. Yu, and C. C. Chou. 2006. Antioxidative activities of soymilk fermented with lactic acid bacteria and bifidobacterial. Food Microbiol. 23:128-135. doi:10.1016/j.fm.2005.01.020. Wang, Y. C., R. C. Yu, H. Y. Yang, and C. C. Chou. 2003. Sugar and acid contents in soymilk fermented with lactic acid bacteria alone or simultaneously with bifidobacterial. Food Microbiol. 20:333-338. doi:0.1016/S0740-0020(02)00125-9. Watanabe, K., J. Fujimoto, M. Sasamoto, J. Dugersuren, T. Tumursuh, and S. Demberel 2008. Diversity of lactic acid bacteria and yeasts in Airag and Tarag, traditional fermented milk products of Mongolia. World J. Microbiol. Biotechnol. 24:1313-1325. doi:10.1007/s11274-007-9604-3. Weese, J. S., and J. Rousseau. 2005. Evaluation of Lactobacillus pentosus WE7 for prevention of diarrhea in neonatal foals. J Am Vet Med Assoc. 226:2031-2034. doi:10.2460/javma.2005.226.2031. Woodley, J. M. 2008. New opportunities for biocatalysis: making pharmaceutical processes greener. Trend Biotechnol. 26:321-327. doi:10.1016/j.tibtech.2008.03.004. Yu, M., S. Qin, and T. Tan. 2007. Purification and characterization of the extracellular lipase Lip2 from Yarrowia lipolytica. Process Biochem. 42: 384-391. doi:10.1016/j.procbio.2006.09.019. Zarevúcka, M. 2012. Olive Oil as Inductor of Microbial Lipase. Olive Oil-Constituents, Quality, Health Properties and Bioconversions. 457-470. doi:10.5772/30109. Zarinviarsagh, M., G. Ebrahimipour, and H. 2017. Sadeghi Lipase and biosurfactant from Ochrobactrum intermedium strain MZV101 isolated by washing powder for detergent application. Lipid Health Dis. 16:177. doi:10.1186/s12944-017-0565-8. "………
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82163-
dc.description.abstract"近年來隨著潔淨標章的潮流興起,消費者逐漸傾向於少添加、低加工之食品,但許多如冰淇淋、乳粉及烘焙油脂等產品,仍需要乳化劑穩定其中之油脂及水分。而利用微生物生產之脂肪酶已有研究證實其可以用來生產最常用於食品中之乳化劑──單酸及雙酸甘油酯,但目前用於生產商業脂肪酶之菌株多數都不屬於可直接添加於食品中之菌株,因此本研究希望能篩選具高脂肪酶活性又可食之菌株,取代乳化劑以減少食品中之化學添加劑。 本研究分為兩部分,第一部分為篩選具脂肪酶活性之微生物,自發酵食品中以3種不同之選擇性培養基將菌株分離及純化,篩選出具有優勢脂肪酶活性之菌株進行後續之菌株鑑定。細菌之鑑定以16S rRNA基因序列進行分析,酵母菌則以使用內轉錄間隔區1 (internal transcribed spacers 1)、5.8S rRNA及內轉錄間隔區2區域序列進行菌株鑑定。第一部分之結果顯示,自原住民生醃肉、過期奶油、切片乾酪以及自釀奇異果醋中共分離出77株菌株,保留其中43株革蘭氏陽性菌以及22株酵母菌。經過兩輪之脂肪酶活性檢測,篩選出8株細菌和3株酵母菌,經鑑定後屬於食品級之菌株為Lactobacillus pentosus M4、Lactobacillus pentosus M5-2、Pediococcus pentosaceus M7 以及 Lactococcus lactis M11,經比較其脂肪酶活性都顯著低於Yarrowia lipolytica CC05。Y. lipolytica CC05 為實驗室前人自康門貝爾乾酪中分離之酵母菌,而Y. lipolytica於 2019年通過歐盟食品安全局 (European Food Safety Authority, EFSA) 之認定為新穎性食品 (novel food),可以應用於食品之中。因此研究之第二部分以Y. lipolytica CC05為目標進行研究及分析。 研究之第二部分為優化Y. lipolytica CC05之脂肪酶生產及了解其特性,將培養基中之碳源以及氮源替換成不同成分,並分析Y. lipolytica CC05於培養基中之最適培養時間,以優化脂肪酶之分泌。Y. lipolytica CC05以阿拉伯膠作為培養基碳源,分離大豆蛋白作為氮源,表現出最佳之脂肪酶活性。而本試驗因此評估了使用豆漿作為培養基的可能性,結果顯示在Y. lipolytica CC05培養於豆漿中之脂肪酶活性為培養於YPD中之6倍,最佳培養時間為 20 小時。後續對Y. lipolytica CC05進行全基因定序,定序結果確認Y. lipolytica CC05擁有全部20種Y. lipolytica推測擁有之脂肪酶序列,而與其他Y. lipolytica菌株比較,其脂肪酶活性以及水解棕櫚油之能力顯著高於其他菌株。且培養於豆漿中影響脂肪酶活性之可能原因,經探討後推測主要與豆漿中之醣類有關。 綜上所述,Y. lipolytica CC05是獨特且具有高脂肪酶活性之食品級酵母菌。經脂肪酶活性之優化以及了解其特性,十分有潛力應用於食品中,減少化學乳化劑之使用。 "zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-25T06:33:02Z (GMT). No. of bitstreams: 1
U0001-1808202121273300.pdf: 3483743 bytes, checksum: 3f609b17c7b5f063a0fd52fa864cc880 (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents"誌謝 I 中文摘要 III Abstract V 目錄 VII 圖目錄 IX 表目錄 XI 壹、文獻探討 1 一、食品乳化劑 1 (一) 乳化液 (emulsion) 及乳化劑 1 (二) 脂肪酸甘油酯 (mono- and diglycerides, MDG) 7 二、脂肪酶 (lipase, triacylglycerol acylhydrolases) 9 (一) 微生物脂肪酶 9 三、Yarrrowia lipolytica 17 (一) 特性 18 (二) 基因 20 (三) Y. lipolytica分泌之脂肪酶 22 (四) Y. lipolytica之應用與專利 26 研究動機及目的 29 貳、材料與方法 30 一、試驗設計 30 二、材料方法 31 (一) 篩選具脂肪酶活性之微生物 31 (二) Y. lipolytica CC05生產脂肪酶之最適化培養條件 40 (三) Y. lipolytica CC05之特性與脂肪酶生產可能因素探討 42 (四) 統計分析 50 參、結果 51 一、篩選具脂肪酶活性之微生物 51 (一) 菌株分離、革蘭氏染色及脂肪酶活性試驗 51 (二) API ZYM商業套組分析菌株酵素 51 (三) ERIC-PCR分類結果 51 (四) 菌種鑑定 59 二、Y. lipolytica CC05生產脂肪酶之最適培養條件 67 (一) 最適化培養基 67 (二) 最佳培養時間 72 三、Y. lipolytica CC05之特性與脂肪酶生產可能因素探討 74 (一) 全基因定序 74 (二) 脂肪酶活性之比較 78 (三) 脂肪酶生產之可能因素探討 81 肆、討論 89 一、篩選具脂肪酶活性之微生物 89 二、Y. lipolytica CC05生產脂肪酶之最適培養條件 93 三、影響Y. lipolytica CC05脂肪酶生產可能因素探討 96 伍、結論 102 陸、參考文獻 103 "
dc.language.isozh-TW
dc.subject乳化劑zh_TW
dc.subject脂肪酶zh_TW
dc.subjectYarrowia lipolyticazh_TW
dc.subject豆漿zh_TW
dc.subjectlipaseen
dc.subjectsoymilken
dc.subjectemulsifieren
dc.subjectYarrowia lipolyticaen
dc.title篩選具脂肪酶活性之微生物與Yarrowia lipolytica CC05脂肪酶分泌之特性分析zh_TW
dc.titleScreening microorganisms with lipase activity and characterizing the lipase production of Yarrowia lipolytica CC05en
dc.date.schoolyear109-2
dc.description.degree碩士
dc.contributor.oralexamcommittee何尚哲(Hsin-Tsai Liu),葉安義(Chih-Yang Tseng), 賀端華,王聖耀
dc.subject.keywordYarrowia lipolytica,脂肪酶,乳化劑,豆漿,zh_TW
dc.subject.keywordYarrowia lipolytica,lipase,emulsifier,soymilk,en
dc.relation.page121
dc.identifier.doi10.6342/NTU202102491
dc.rights.note未授權
dc.date.accepted2021-08-20
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept動物科學技術學研究所zh_TW
dc.date.embargo-lift2026-08-18-
顯示於系所單位:動物科學技術學系

文件中的檔案:
檔案 大小格式 
U0001-1808202121273300.pdf
  未授權公開取用
3.4 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved