Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 醫學工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82152
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林啟萬(Chii-Wann Lin)
dc.contributor.authorWei-Yin Linen
dc.contributor.author林瑋瑩zh_TW
dc.date.accessioned2022-11-25T06:32:54Z-
dc.date.copyright2021-11-11
dc.date.issued2021
dc.date.submitted2021-08-25
dc.identifier.citation[1] U.S. Centers For Disease Control and Prevention. (2020). How COVID-19 Spreads. U.S. Department of Health Human Services. Retrived from https://www.cdc.gov/coronavirus/2019-ncov/prevent-getting-sick/how-covid-spreads.html?CDC_AA_refVal=https%3A%2F%2Fwww.cdc.gov%2Fcoronavirus%2F2019-ncov%2Fprepare%2Ftransmission.html [2] Jayaweera, M., Perera, H., Gunawardana, B., Manatunge, J. (2020). Transmission of COVID-19 virus by droplets and aerosols: A critical review on the unresolved dichotomy. Environmental research, 109819. doi: 10.1016/j.envres.2020.109819 [3] Wang, J., Du, G. (2020). COVID-19 may transmit through aerosol. Irish Journal of Medical Science (1971-), 1-2. doi: 10.1007/s11845-020-02218-2 [4] Wurtz, N., Penant, G., Jardot, P., Duclos, N., La Scola, B. (2021). Culture of SARS-CoV-2 in a panel of laboratory cell lines, permissivity, and differences in growth profile. European Journal of Clinical Microbiology Infectious Diseases, 40(3), 477-484. doi: Culture of SARS-CoV-2 in a panel of laboratory cell lines, permissivity, and differences in growth profile [5] McAuley, J., Fraser, C., Paraskeva, E., Trajcevska, E., Sait, M., Wang, N., . . . Strugnell, R. (2021). Optimal preparation of SARS-CoV-2 viral transport medium for culture. Virology Journal, 18(1), 1-6. doi: 10.1186/s12985-021-01525-z [6] Calderaro, A., Arcangeletti, M. C., De Conto, F., Buttrini, M., Montagna, P., Montecchini, S., . . . Chezzi, C. (2020). SARS-CoV-2 infection diagnosed only by cell culture isolation before the local outbreak in an Italian seven-week-old suckling baby. International Journal of Infectious Diseases, 96, 387-389. doi: 10.1016/j.ijid.2020.05.035 [7] Perera, R. A., Tso, E., Tsang, O. T., Tsang, D. N., Fung, K., Leung, Y. W., . . . Poon, L. L. (2020). SARS-CoV-2 virus culture from the upper respiratory tract: Correlation with viral load, subgenomic viral RNA and duration of illness. medRxiv. doi: 10.1101/2020.07.08.20148783 [8] Park, W. B., Kwon, N.-J., Choi, S.-J., Kang, C. K., Choe, P. G., Kim, J. Y., . . . Kim, N. J. (2020). Virus isolation from the first patient with SARS-CoV-2 in Korea. Journal of Korean Medical Science, 35(7). doi: 10.3346/jkms.2020.35.e84 [9] Li, Z., Yi, Y., Luo, X., Xiong, N., Liu, Y., Li, S., . . . Chen, W. (2020). Development and clinical application of a rapid IgM‐IgG combined antibody test for SARS‐CoV‐2 infection diagnosis. Journal of medical virology, 92(9), 1518-1524. doi: 10.1002/jmv.25727 [10] Sethuraman, N., Jeremiah, S. S., Ryo, A. (2020). Interpreting diagnostic tests for SARS-CoV-2. Jama, 323(22), 2249-2251. doi: 10.1001/jama.2020.8259 [11] Lassaunière, R., Frische, A., Harboe, Z. B., Nielsen, A. C., Fomsgaard, A., Krogfelt, K. A., Jørgensen, C. S. (2020). Evaluation of nine commercial SARS-CoV-2 immunoassays. medRxiv. doi: 10.1101/2020.04.09.20056325 [12] Mak, G. C., Lau, S. S., Wong, K. K., Chow, N. L., Lau, C., Lam, E. T., . . . Tsang, D. N. (2020). Analytical sensitivity and clinical sensitivity of the three rapid antigen detection kits for detection of SARS-CoV-2 virus. Journal of Clinical Virology, 133, 104684. doi: 10.1016/j.jcv.2020.104684 [13] Krueger, L. J., Gaeddert, M., Koeppel, L., Bruemmer, L., Gottschalk, C., Miranda, I. B., . . . Nikolai, O. (2020). Evaluation of the accuracy, ease of use and limit of detection of novel, rapid, antigen-detecting point-of-care diagnostics for SARS-CoV-2. medRxiv. doi: 10.1101/2020.10.01.20203836 [14] Oh, S.-M., Jeong, H., Chang, E., Choe, P. G., Kang, C. K., Park, W. B., . . . Kim, N. J. (2021). Clinical Application of the Standard Q COVID-19 Ag Test for the Detection of SARS-CoV-2 Infection. Journal of Korean Medical Science, 36(14). doi: 10.3346/jkms.2021.36.e101 [15] Mak, G. C., Cheng, P. K., Lau, S. S., Wong, K. K., Lau, C., Lam, E. T., . . . Tsang, D. N. (2020). Evaluation of rapid antigen test for detection of SARS-CoV-2 virus. Journal of Clinical Virology, 129, 104500. doi: 10.1016/j.jcv.2020.104500 [16] Corman, V. M., Landt, O., Kaiser, M., Molenkamp, R., Meijer, A., Chu, D. K., . . . Schmidt, M. L. (2020). Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Eurosurveillance, 25(3), 2000045. doi: 10.2807/1560-7917.ES.2020.25.3.2000045 [17] U.S. Centers For Disease Control and Prevention. (2020). Research Use Only 2019-Novel Coronavirus (2019-nCoV) Real-time RT-PCR Primers and Probes. U.S. Department of Health Human Services. Retrived from https://www.cdc.gov/coronavirus/2019-ncov/lab/rt-pcr-panel-primer-probes.html [18] Esbin, M. N., Whitney, O. N., Chong, S., Maurer, A., Darzacq, X., Tjian, R. (2020). Overcoming the bottleneck to widespread testing: a rapid review of nucleic acid testing approaches for COVID-19 detection. Rna, 26(7), 771-783. doi: 10.1261/rna.076232.120 [19] Racine, R., Winslow, G. M. (2009). IgM in microbial infections: taken for granted? Immunology letters, 125(2), 79-85. doi: 10.1016/j.imlet.2009.06.003 [20] Rosen, M. (2020). Fighting the COVID-19 Pandemic Through Testing. Howard Hughes Medical Institute. Retrived from https://www.hhmi.org/news/fighting-the-covid-19-pandemic-through-testing [21] Dirks, R. M., Pierce, N. A. (2004). Triggered amplification by hybridization chain reaction. Proceedings of the National Academy of Sciences, 101(43), 15275-15278. doi: 10.1073/pnas.0407024101 [22] Yin, P., Choi, H. M., Calvert, C. R., Pierce, N. A. (2008). Programming biomolecular self-assembly pathways. nature, 451(7176), 318-322. doi: 10.1038/nature06451 [23] Woo, P. C., Lau, S. K., Huang, Y., Yuen, K.-Y. (2009). Coronavirus diversity, phylogeny and interspecies jumping. Experimental Biology and Medicine, 234(10), 1117-1127. doi: 10.3181/0903-MR-94 [24] Zhou, P., Yang, X.-L., Wang, X.-G., Hu, B., Zhang, L., Zhang, W., . . . Huang, C.-L. (2020). A pneumonia outbreak associated with a new coronavirus of probable bat origin. nature, 579(7798), 270-273. doi: 10.1038/s41586-020-2012-7 [25] Hu, B., Guo, H., Zhou, P., Shi, Z.-L. (2020). Characteristics of SARS-CoV-2 and COVID-19. Nature Reviews Microbiology, 1-14. doi: 10.1038/s41579-020-00459-7 [26] Naqvi, A. A. T., Fatima, K., Mohammad, T., Fatima, U., Singh, I. K., Singh, A., . . . Hassan, M. I. (2020). Insights into SARS-CoV-2 genome, structure, evolution, pathogenesis and therapies: Structural genomics approach. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 165878. doi: 10.1016/j.bbadis.2020.165878 [27] Hannah A Bullock, A. T. (2020). Details on COVID-19. Public Health Image Library, U.S. Centers For Disease Control and Prevention. Retrived from https://phil.cdc.gov/Details.aspx?pid=23354 [28] Elbe, S., Buckland‐Merrett, G. (2017). Data, disease and diplomacy: GISAID's innovative contribution to global health. Global Challenges, 1(1), 33-46. doi: 10.1002/gch2.1018 [29] Shu, Y., McCauley, J. (2017). GISAID: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance, 22(13), 30494. doi: 10.2807/1560-7917.ES.2017.22.13.30494 [30] Sayers, E. W., Cavanaugh, M., Clark, K., Pruitt, K. D., Schoch, C. L., Sherry, S. T., Karsch-Mizrachi, I. (2021). GenBank. Nucleic Acids Research, 49(D1), D92-D96. doi: 10.1093/nar/gkaa1023 [31] Sayers, E. W., Beck, J., Bolton, E. E., Bourexis, D., Brister, J. R., Canese, K., . . . Klimke, W. (2021). Database resources of the national center for biotechnology information. Nucleic Acids Research, 49(D1), D10. doi: 10.1093/nar/gkv1290 [32] Korf, I., Yandell, M., Bedell, J. (2003). Blast: ' O'Reilly Media, Inc.'. [33] Madden, T. (2013). The BLAST sequence analysis tool The NCBI Handbook [Internet]. 2nd edition: National Center for Biotechnology Information (US). [34] Boratyn, G. M., Camacho, C., Cooper, P. S., Coulouris, G., Fong, A., Ma, N., . . . Merezhuk, Y. (2013). BLAST: a more efficient report with usability improvements. Nucleic Acids Research, 41(W1), W29-W33. doi: 10.1093/nar/gkt282 [35] Saiki, R. K., Scharf, S., Faloona, F., Mullis, K. B., Horn, G. T., Erlich, H. A., Arnheim, N. (1985). Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science, 230(4732), 1350-1354. doi: 10.1126/science.2999980 [36] Saiki, R. K., Gelfand, D. H., Stoffel, S., Scharf, S. J., Higuchi, R., Horn, G. T., . . . Erlich, H. A. (1988). Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science, 239(4839), 487-491. doi: 10.1126/science.239.4839.487 [37] Udugama, B., Kadhiresan, P., Kozlowski, H. N., Malekjahani, A., Osborne, M., Li, V. Y., . . . Chan, W. C. (2020). Diagnosing COVID-19: the disease and tools for detection. ACS nano, 14(4), 3822-3835. doi: 10.1021/acsnano.0c02624 [38] Lu, R., Wu, X., Wan, Z., Li, Y., Zuo, L., Qin, J., . . . Zhang, C. (2020). Development of a novel reverse transcription loop-mediated isothermal amplification method for rapid detection of SARS-CoV-2. Virologica Sinica, 35(3), 344-347. doi: 10.3390/ijms21082826 [39] Park, G.-S., Ku, K., Baek, S.-H., Kim, S.-J., Kim, S. I., Kim, B.-T., Maeng, J.-S. (2020). Development of reverse transcription loop-mediated isothermal amplification assays targeting severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The Journal of Molecular Diagnostics, 22(6), 729-735. doi: 10.1016/j.jmoldx.2020.03.006 [40] Yan, C., Cui, J., Huang, L., Du, B., Chen, L., Xue, G., . . . Sun, Y. (2020). Rapid and visual detection of 2019 novel coronavirus (SARS-CoV-2) by a reverse transcription loop-mediated isothermal amplification assay. Clinical Microbiology and Infection, 26(6), 773-779. doi: 10.1016/j.cmi.2020.04.001 [41] Li, B., Ellington, A. D., Chen, X. (2011). Rational, modular adaptation of enzyme-free DNA circuits to multiple detection methods. Nucleic Acids Research, 39(16), e110-e110. doi: 10.1093/nar/gkr504 [42] Ang, Y. S., Yung, L.-Y. L. (2016). Rational design of hybridization chain reaction monomers for robust signal amplification. Chemical Communications, 52(22), 4219-4222. doi: 10.1039/c5cc08907g [43] Li, S., Li, P., Ge, M., Wang, H., Cheng, Y., Li, G., . . . Lin, D. (2020). Elucidation of leak-resistance DNA hybridization chain reaction with universality and extensibility. Nucleic Acids Research, 48(5), 2220-2231. doi: 10.1093/nar/gkaa016 [44] Wu, T.-H., Chang, C.-C., Yang, C.-H., Lin, W.-Y., Ee, T. J., Lin, C.-W. (2020). Hybridization Chain Reactions Targeting the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). International journal of molecular sciences, 21(9), 3216. doi: 10.3390/ijms21093216 [45] Huang, J., Wu, Y., Chen, Y., Zhu, Z., Yang, X., Yang, C. J., . . . Tan, W. (2011). Pyrene‐excimer probes based on the hybridization chain reaction for the detection of nucleic acids in complex biological fluids. Angewandte Chemie International Edition, 50(2), 401-404. doi: 10.1002/anie.201005375 [46] Huang, J., Wang, H., Yang, X., Quan, K., Yang, Y., Ying, L., . . . Wang, K. (2016). Fluorescence resonance energy transfer-based hybridization chain reaction for in situ visualization of tumor-related mRNA. Chemical science, 7(6), 3829-3835. doi: 10.1039/c6sc00377j [47] Li, X., Wang, Y., Wang, L., Wei, Q. (2014). A surface plasmon resonance assay coupled with a hybridization chain reaction for amplified detection of DNA and small molecules. Chemical Communications, 50(39), 5049-5052. doi: 10.1039/c4cc01374c [48] Zheng, J., Hu, Y., Bai, J., Ma, C., Li, J., Li, Y., . . . Yang, R. (2014). Universal surface-enhanced Raman scattering amplification detector for ultrasensitive detection of multiple target analytes. Analytical chemistry, 86(4), 2205-2212. doi: 10.1021/ac404004m [49] Liedberg, B., Nylander, C., Lunström, I. (1983). Surface plasmon resonance for gas detection and biosensing. Sensors and actuators, 4, 299-304. doi: 10.1016/0250-6874(83)85036-7 [50] Wood, R. W. (1902). XLII. On a remarkable case of uneven distribution of light in a diffraction grating spectrum. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 4(21), 396-402. doi: 10.1080/14786440209462857 [51] Homola, J. (2006). Electromagnetic theory of surface plasmons Surface plasmon resonance based sensors (pp. 3-44): Springer. [52] Sellers, H., Ulman, A., Shnidman, Y., Eilers, J. E. (1993). Structure and binding of alkanethiolates on gold and silver surfaces: implications for self-assembled monolayers. Journal of the American Chemical Society, 115(21), 9389-9401. doi: 10.1021/ja00074a004 [53] Cohen-Atiya, M., Mandler, D. (2003). Studying thiol adsorption on Au, Ag and Hg surfaces by potentiometric measurements. Journal of Electroanalytical Chemistry, 550, 267-276. doi: 10.1016/S0022-0728(02)01145-2 [54] Ferretti, S., Paynter, S., Russell, D. A., Sapsford, K. E., Richardson, D. J. (2000). Self-assembled monolayers: a versatile tool for the formulation of bio-surfaces. TrAC Trends in Analytical Chemistry, 19(9), 530-540. doi: 10.1016/S0165-9936(00)00032-7 [55] Herne, T. M., Tarlov, M. J. (1997). Characterization of DNA probes immobilized on gold surfaces. Journal of the American Chemical Society, 119(38), 8916-8920. doi: 10.1021/ja9719586 [56] Peterson, A. W., Heaton, R. J., Georgiadis, R. M. (2001). The effect of surface probe density on DNA hybridization. Nucleic Acids Research, 29(24), 5163-5168. doi: 10.1093/nar/29.24.5163 [57] Ravan, H., Kashanian, S., Sanadgol, N., Badoei-Dalfard, A., Karami, Z. (2014). Strategies for optimizing DNA hybridization on surfaces. Analytical biochemistry, 444, 41-46. doi: 10.1016/j.ab.2013.09.032 [58] Levicky, R., Herne, T. M., Tarlov, M. J., Satija, S. K. (1998). Using self-assembly to control the structure of DNA monolayers on gold: a neutron reflectivity study. Journal of the American Chemical Society, 120(38), 9787-9792. doi: 10.1021/ja981897r [59] Lin, P., Ding, L., Lin, C.-W., Gu, F. (2014). Nonfouling property of zwitterionic cysteine surface. Langmuir, 30(22), 6497-6507. doi: 10.1021/la500243s [60] Lee, J., Park, I.-S., Kim, H., Woo, J.-S., Choi, B.-S., Min, D.-H. (2015). BSA as additive: A simple strategy for practical applications of PNA in bioanalysis. Biosensors and Bioelectronics, 69, 167-173. doi: 10.1016/j.bios.2015.02.030 [61] Wang, R., Zhou, X., Zhu, X., Yang, C., Liu, L., Shi, H. (2017). Isoelectric bovine serum albumin: robust blocking agent for enhanced performance in optical-fiber based DNA sensing. ACS sensors, 2(2), 257-262. doi: 10.1021/acssensors.6b00746 [62] Zhang, X., Huang, P.-J. J., Servos, M. R., Liu, J. (2012). Effects of polyethylene glycol on DNA adsorption and hybridization on gold nanoparticles and graphene oxide. Langmuir, 28(40), 14330-14337. doi: 10.1021/la302799s [63] Egli, M. (2002). DNA-cation interactions: quo vadis? Chemistry biology, 9(3), 277-286. doi: 10.1016/s1074-5521(02)00116-3 [64] Špringer, T., Šípová, H., Vaisocherová, H., Štěpánek, J., Homola, J. (2010). Shielding effect of monovalent and divalent cations on solid-phase DNA hybridization: surface plasmon resonance biosensor study. Nucleic Acids Research, 38(20), 7343-7351. doi: 10.1093/nar/gkq577 [65] Kim, S. Y., Hong, K., Kim, K., Yu, H. K., Kim, W.-K., Lee, J.-L. (2008). Effect of N 2, Ar, and O 2 plasma treatments on surface properties of metals: American Institute of Physics. [66] Raiber, K., Terfort, A., Benndorf, C., Krings, N., Strehblow, H.-H. (2005). Removal of self-assembled monolayers of alkanethiolates on gold by plasma cleaning. Surface Science, 595(1-3), 56-63. doi: 10.1016/j.susc.2005.07.038 [67] Xue, Y., Li, X., Li, H., Zhang, W. (2014). Quantifying thiol–gold interactions towards the efficient strength control. Nature communications, 5(1), 1-9. doi: 10.1038/ncomms5348
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82152-
dc.description.abstract"自從2019年12月開始,新型冠狀病毒(Severe Acute Respiratory Syndrome Coronavirus 2, SARS-CoV-2)在全球廣泛的傳播,導致確診人數及死亡人數日益攀升。若能夠及早診斷出感染者並進行隔離治療,對於疫情的控制及醫療資源的有效分配將會是一大助益。現行的檢測中,核酸檢測是高準確率且早日有效檢測出病毒的最佳選擇。本研究旨在使用恆溫無酵素放大方法進行SARS-CoV-2基因篩檢的研發,以改善即時逆轉錄聚合酶連鎖反應(real-time reverse transcription-PCR, rRT-PCR)之耗時、需調控溫度、需要酵素等缺點。 恆溫無酵素放大技術在目標序列存在時,會與hairpins結合並產生一連串擴增的現象。本研究使用美國疾管署提出之SARS-CoV-2 N基因探針位點的互補股作為目標序列,進行兩種恆溫無酵素放大技術的序列設計,並使用電泳驗證設計的效果。此外,為了進一步獲得量化的數據,採用高靈敏度、無需標記且即時監測的表面電漿子共振(surface plasmon resonance, SPR)感測器進行優化反應的參數測試、探針對目標序列的特異性測試及臨床應用可行性測試。由結果顯示,優化後的放大訊號可增加50%以上,且加入隨機序列的控制組及加入BSA干擾後,探針與目標序列仍具有高度特異性,驗證具有應用在複雜樣本的潛力。本研究建立了恆溫無酵素放大方法的設計流程、反應優化參數及模擬臨床樣品反應的資訊,提供未來使用此方法相關參照依據。"zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-25T06:32:54Z (GMT). No. of bitstreams: 1
U0001-2308202117550400.pdf: 4709201 bytes, checksum: e1f7dc3d5a0d69c351c7317e64866e70 (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents誌謝 I 中文摘要 II Abstract III 圖目錄 VIII 表目錄 X 第 一 章 緒論 1 1.1研究背景與重要性 1 1.2研究動機與目的 5 1.3章節架構 6 第 二 章 基本原理與文獻回顧 7 2.1新型冠狀病毒 7 2.1.1新型冠狀病毒介紹 7 2.1.2新型冠狀病毒的數據共享 10 2.1.3現行的標準核酸篩檢方式 11 2.2恆溫無酵素的放大技術 14 2.2.1雜交連鎖反應 14 2.2.2催化髮夾組裝 15 2.2.3恆溫無酵素技術的序列設計 18 2.2.4檢測上的應用 19 2.3表面電漿子共振感測技術 20 2.3.1表面電漿子共振原理 21 2.3.2表面電漿子共振生物感測器 22 2.3.3表面化學修飾方式 23 2.4雜交反應的障礙與排除 25 第 三 章 研究材料與方法 28 3.1反應序列設計及驗證方法 28 3.1.1設計SARS-CoV-2病毒檢測序列 28 3.1.2電泳驗證 28 3.1.3探針序列設計 29 3.2表面電漿子共振系統 29 3.2.1感測晶片的構造 30 3.2.2強度式表面電漿子共振感測器系統架構 30 3.2.3操作介面 32 3.2.3訊號量測與分析 34 3.2.4感測晶片再生方式 35 第 四 章 結果與討論 36 4.1序列資訊 36 4.2電泳印證 38 4.2.1 HCR 38 4.2.2 CHA 40 4.3 優化恆溫無酵素放大反應之SPR量化分析 42 4.3.1探針修飾量與放大反應的量化分析 42 4.3.2 PEG濃度對於訊號的影響 45 4.3.3 stem長度對於訊號的影響 47 4.3.4鹽度對於SPR訊號的影響 48 4.4 探針與目標序列之特異性測試 50 4.5 臨床測試的可行性 50 第 五 章 結論與未來展望 52 第 六 章 參考文獻 54
dc.language.isozh-TW
dc.subject表面電漿子共振zh_TW
dc.subject新型冠狀病毒zh_TW
dc.subject恆溫無酵素放大技術zh_TW
dc.subjectSurface Plasmon Resonanceen
dc.subjectSevere Acute Respiratory Syndrome Coronavirus 2en
dc.subjectIsothermal Enzyme-free Amplificationen
dc.title恆溫無酵素放大技術於SARS-CoV-2的應用zh_TW
dc.titleIsothermal Enzyme-free Amplification Targeting on SARS-CoV-2en
dc.date.schoolyear109-2
dc.description.degree碩士
dc.contributor.oralexamcommittee彭盛裕(Hsin-Tsai Liu),施博仁(Chih-Yang Tseng)
dc.subject.keyword新型冠狀病毒,恆溫無酵素放大技術,表面電漿子共振,zh_TW
dc.subject.keywordSevere Acute Respiratory Syndrome Coronavirus 2,Isothermal Enzyme-free Amplification,Surface Plasmon Resonance,en
dc.relation.page63
dc.identifier.doi10.6342/NTU202102641
dc.rights.note未授權
dc.date.accepted2021-08-26
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept醫學工程學研究所zh_TW
dc.date.embargo-lift2026-08-25-
顯示於系所單位:醫學工程學研究所

文件中的檔案:
檔案 大小格式 
U0001-2308202117550400.pdf
  未授權公開取用
4.6 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved