請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82139完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳肇欣(Chao-Hsin Wu) | |
| dc.contributor.author | Chieh Lo | en |
| dc.contributor.author | 羅傑 | zh_TW |
| dc.date.accessioned | 2022-11-25T05:36:42Z | - |
| dc.date.available | 2026-10-05 | |
| dc.date.copyright | 2021-11-03 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-10-06 | |
| dc.identifier.citation | [1] Monthly data traffic per smartphone worldwide 2014-2026. 2021, S. O'Dea: Statista. [2] Optical Transceivers for Datacom Telecom Market 2021 report. 2021, Yole Développement [3] Babani, S., et al., Comparative study between fiber optic and copper in communication link. Int. J. Tech. Res. Appl, 2014. 2(2): p. 59-63. [4] Silicon Photonic Integrated Circuits Project. 2021; Available from: https://www.sipic.ntust.edu.tw/teams/23/intro. [5] Understand Fiber Attenuation. 2015 June, 2; Available from: http://www.fowiki.com/b/understand-fiber-attenuation/. [6] Mechanism of LiDAR. Available from: www.hamamatsu.com. [7] IEC 60825-1 Ed. 3.0 (2014); Safety of laser products – Part 1: Equipment classification and requirements. [8] Asghari, M. 1550-nm Photonics Promise Eye-Safe, Cost-Effective Autonomous Machines. 2019. [9] Hao, H., et al. The analysis of signal-to-noise ratio of airborne LIDAR system under state of motion. in High-Power Lasers and Applications V. 2010. International Society for Optics and Photonics. [10] Murphy, E., Enabling optical communication. Nature Photonics, 2010. 4(5): p. 287-287. [11] Hayashi, I. and M. Panish, GaAs–Ga x Al1− x As Heterostructure Injection Lasers which Exhibit Low Thresholds at Room Temperature. Journal of Applied Physics, 1970. 41(1): p. 150-163. [12] Schematic of EEL VCSEL. Available from: https://www.21semiconductors.com/innovation/laser-concepts/. [13] Matsuoka, T. and K. Iwashita. History of Distributed Feedback Laser. in 2017 IEEE HISTory of ELectrotechnolgy CONference (HISTELCON). 2017. IEEE. [14] Kogelnik, H. and C. Shank, Coupled‐wave theory of distributed feedback lasers. Journal of applied physics, 1972. 43(5): p. 2327-2335. [15] Carroll, J.E., et al., Distributed feedback semiconductor lasers. Vol. 10. 1998: IET. [16] Sekartedjo, K., et al., 1.5 μm phase-shifted DFB lasers for single-mode operation. Electronics Letters, 1984. 20(2): p. 80-81. [17] Feng, W., et al., Unselective regrowth of 1.5-µm InGaAsP multiple-quantum-well distributed-feedback buried heterostructure lasers. Optical Engineering, 2006. 45(9): p. 090501. [18] Takemasa, K., et al., 1.3-μm AlGaInAs buried-heterostructure lasers. IEEE Photonics Technology Letters, 1999. 11(8): p. 949-951. [19] Yoshida, Y., et al., Analysis of characteristic temperature for InGaAsP BH lasers with pnpn blocking layers using two-dimensional device simulator. IEEE journal of quantum electronics, 1998. 34(7): p. 1257-1262. [20] Westbrook, L., et al., Continuous-wave operation of 1.5 μm distributed-feedback ridge-waveguide lasers. Electronics Letters, 1984. 20(6): p. 225-226. [21] Bayo, C. and M. Ángel. Theory of elasticity and electric polarization effects in the group-III nitrides. 2013. [22] Baranov, A. and E. Tournié, Semiconductor Lasers: fundamentals and applications. 2013. [23] Silver, M. and E. O'reilly, Optimization of long wavelength InGaAsP strained quantum-well lasers. IEEE journal of quantum electronics, 1995. 31(7): p. 1193-1200. [24] Minch, J., et al., Theory and experiment of In Ga As P and In Ga Al As long-wavelength strained quantum-well lasers. IEEE J. Quantum Electron, 1999. 35(5): p. 771-782. [25] Mostallino, R., Développement de diodes laser émettant à 975nm de très forte puissance, rendement à la prise élevé et stabilisées en longueur d’onde pour pompage de fibres dopées et réalisation de lasers à fibre. 2018, Bordeaux. [26] Prosyk, K., J.G. Simmons, and J. Evans, Well number, length, and temperature dependence of efficiency and loss in InGaAsP-InP compressively strained MQW ridge waveguide lasers at 1.3/spl mu/m. IEEE journal of quantum electronics, 1997. 33(8): p. 1360-1368. [27] Coldren, L.A., S.W. Corzine, and M.L. Mashanovitch, Diode lasers and photonic integrated circuits. Vol. 218. 2012: John Wiley Sons. [28] Martin, J.A. and M. Sanchez, Comparison between a graded and step-index optical cavity in InGaN MQW laser diodes. Semiconductor science and technology, 2005. 20(3): p. 290. [29] Moreira, M.V.A., Fabrication and Characterization of Surface Grating DFB Lasers Using AlGaAs/GaAs Quantum Well Material. 1997: University of Glasgow (United Kingdom). [30] Dridi, K., et al. Low-threshold and narrow linewidth two-electrode MQW laterally coupled distributed feedback lasers at 1550 nm. in 2012 38th European Conference and Exhibition on Optical Communications. 2012. IEEE. [31] High Power Laser-Diode Family for Industrial Range Finding, EXCELITAS, Editor. [32] Yulianto, N., B. Widiyatmoko, and P.S. Priambodo, Temperature effect towards DFB laser wavelength on microwave generation based on two optical wave mixing. Int. J. Optoelectron. Eng., 2015. 5(2): p. 21-27. [33] Ginestar, S., et al., Tunable dual-mode DFB laser for millimetre-wave signal generation. The European Physical Journal-Applied Physics, 2011. 53(3). [34] Utaka, K., et al., Analysis of quarter-wave-shifted DFB laser. Electronics Letters, 1984. 20(8): p. 326-327. [35] Whiteaway, J.E., et al., The design assessment of lambda/4 phase-shifted DFB laser structures. IEEE journal of quantum electronics, 1989. 25(6): p. 1261-1279. [36] Sato, K., F. Kano, and Y. Kondo, Self-Aligned Ridge-Waveguide DFB Lasers Emitting at 1.55 µm: Ridge-Width Dependence. Japanese journal of applied physics, 1990. 29(10R): p. 1946. [37] Kitamura, M., et al., Low-threshold and high temperature single-longitudinal-mode operation of 1.55 μm-band DFB-DC-PBH LDs. Electronics Letters, 1984. 20(14): p. 595-596. [38] Tadokoro, T., et al. Operation of a 25-Gbps direct modulation ridge waveguide MQW-DFB laser up to 85° C. in Optical Fiber Communication Conference. 2009. Optical Society of America. [39] Bertolotti, M., et al., Temperature dependence of the refractive index in semiconductors. Journal of the Optical Society of America B, 1990. 7(6): p. 918-922. [40] Sysak, M.N., et al., Experimental and theoretical thermal analysis of a hybrid silicon evanescent laser. Optics Express, 2007. 15(23): p. 15041-15046. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82139 | - |
| dc.description.abstract | 在5G時代行動網路使用量爆炸性的需求成長下,光通訊這樣高傳輸容量且高效率的傳輸方式已成為必然,加上未來自動駕駛車對LiDAR系統的需求,製作出體積小、效益高、壽命長且包括長波長、高功率特性的光源不僅可以套用於上述應用,更是維持系統良好效能的關鍵。 本論文以高功率分布回饋式雷射之設計與製作為研究主題,目標為製作1550 nm高功率DFB雷射。我們使用商用雷射模擬軟體PICS3D建立DFB雷射之理論模型,模擬DFB雷射之光輸出特性與頻譜特性,並對元件磊晶結構進行設計及優化,最後實際完成高功率DFB雷射的製作。我們一共製作了2種脊形波導寬度與5種光柵週期做搭配,共計10種不同結構變化的元件,內文將詳細介紹DFB雷射的磊晶結構設計、優化與製程過程。 本論文後半部分對10種結構的結果進行比較分析,量測結果證實室溫脈衝操作下,元件最大光強度可達92 mW,在2.5 μm的脊形波導寬度、光柵週期242 nm時DFB為單模操作,對應中心波長為1555.7 nm,SMSR可達39 dB。本論文也針對元件溫度特性做了詳細的分析與探討,元件之熱阻抗為176 oC/W,在室溫附近之特徵溫度達85 K。 總括來說,我們成功製作光強度達90 mW以上的1550 nm高功率DFB雷射,並建立了元件的理論模型,且對元件各項特性進行詳細的分析與討論,也計算了元件對溫度的幾項可靠度數值判斷元件之高溫穩定性。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-25T05:36:42Z (GMT). No. of bitstreams: 1 U0001-0510202105064800.pdf: 5871273 bytes, checksum: 5d3c4e0e83256aa2b85c4f99309333f8 (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | "論文口試委員會審定書 i 誌謝 ii 中文摘要 iv ABSTRACT v CONTENTS vii LIST OF FIGURES ix LIST OF TABLES xiii Chapter 1 緒論 1 1.1 前言 1 1.2 論文架構 7 Chapter 2 DFB雷射之理論知識與結構 8 2.1 半導體雷射的基礎知識與發光機制 8 2.1.1 雷射的基本要素 8 2.1.2 半導體雷射介紹 9 2.2 DFB雷射的基本知識 16 2.3 DFB雷射的結構與特性 19 2.3.1 埋藏式異質結構 (Burried-Heterostructure, BH) 19 2.3.2 脊型波導(Ridge-Waveguide)結構 20 Chapter 3 元件之模擬設計與製程 22 3.1 元件設計與模擬 22 3.1.1 材料系統 23 3.1.2 主動層設計 24 3.1.3 波導層設計 30 3.1.4 光柵設計 32 3.1.5 其他結構設計及磊晶結構整理 39 3.1.6 端面高、低反射鏡設計 41 3.2 元件模擬結果 43 3.3 元件製程 49 3.3.1 製程設計 49 3.3.2 元件製作 50 Chapter 4 元件量測結果 57 4.1 量測架設 57 4.1.1 元件黏著封裝 57 4.1.2 量測架設 59 4.2 DFB雷射量測結果 62 4.2.1 L-I-V特性 63 4.2.2 頻譜特性 68 4.3 量測結果分析與討論 75 4.3.1 光柵週期對元件之影響 75 4.3.2 脊形波導寬度對元件之影響 79 4.3.3 脈衝量測結果 81 4.3.4 變溫量測結果比較 86 Chapter 5 結論 95 REFERENCE 97 附錄 100 " | |
| dc.language.iso | zh-TW | |
| dc.subject | 雷射製程 | zh_TW |
| dc.subject | 雷射雷達 | zh_TW |
| dc.subject | 分布回饋雷射 | zh_TW |
| dc.subject | 高功率分布回饋雷射 | zh_TW |
| dc.subject | 雷射模擬 | zh_TW |
| dc.subject | 光通訊 | zh_TW |
| dc.subject | Laser process | en |
| dc.subject | High-power DFB laser | en |
| dc.subject | LiDAR | en |
| dc.subject | Optical communication | en |
| dc.subject | Laser simulation | en |
| dc.subject | DFB laser | en |
| dc.title | 1550奈米高功率分布回饋雷射之設計與製作 | zh_TW |
| dc.title | Design and Fabrication of High-Power 1550 nm Distributed Feedback Laser | en |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 黃定洧(Ding-Wei Huang) | |
| dc.contributor.oralexamcommittee | 林恭如(Hsin-Tsai Liu),林建中(Chih-Yang Tseng) | |
| dc.subject.keyword | 雷射雷達,光通訊,分布回饋雷射,高功率分布回饋雷射,雷射模擬,雷射製程, | zh_TW |
| dc.subject.keyword | LiDAR,Optical communication,DFB laser,High-power DFB laser,Laser simulation,Laser process, | en |
| dc.relation.page | 100 | |
| dc.identifier.doi | 10.6342/NTU202103549 | |
| dc.rights.note | 同意授權(限校園內公開) | |
| dc.date.accepted | 2021-10-07 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| dc.date.embargo-lift | 2026-10-05 | - |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-0510202105064800.pdf 未授權公開取用 | 5.73 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
