Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 醫學工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82133
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor呂東武(Tung-Wu Lu)
dc.contributor.authorTsan-Yang Chenen
dc.contributor.author陳贊仰zh_TW
dc.date.accessioned2022-11-25T05:36:34Z-
dc.date.available2026-10-11
dc.date.copyright2021-10-16
dc.date.issued2021
dc.date.submitted2021-10-13
dc.identifier.citation[1] M.G. Yavuzer, Evolution of bipedalism, Comparative Kinesiology of the Human Body, Elsevier2020, pp. 489-497. [2] Y.P. Ivanenko, N. Dominici, F. Lacquaniti, Development of independent walking in toddlers, Exercise and sport sciences reviews 35(2) (2007) 67-73. [3] S.-F. Jeng, L.-C. Chen, K.-I. Tsou, W.J. Chen, H.-J. Luo, Relationship between spontaneous kicking and age of walking attainment in preterm infants with very low birth weight and full-term infants, Phys. Ther. 84(2) (2004) 159-172. [4] E. Thelen, G. Bradshaw, J.A. Ward, Spontaneous kicking in month-old infants: manifestation of a human central locomotor program, Behavioral and Neural Biology 32(1) (1981) 45-53. [5] J.F. Yang, M. Gorassini, Spinal and brain control of human walking: implications for retraining of walking, The Neuroscientist 12(5) (2006) 379-389. [6] A. Hallemans, D. De Clercq, B. Otten, P. Aerts, 3D joint dynamics of walking in toddlers: A cross-sectional study spanning the first rapid development phase of walking, Gait Posture 22(2) (2005) 107-118. [7] D. Sutherland, The development of mature gait, Gait posture 6(2) (1997) 163-170. [8] K.E. Adolph, J.M. Franchak, The development of motor behavior, Wiley Interdisciplinary Reviews: Cognitive Science 8(1-2) (2017) e1430. [9] D.H. Sutherland, R. Olshen, L. Cooper, S.L. Woo, The development of mature gait, J Bone Joint Surg Am 62(3) (1980) 336-353. [10] L. Statham, M. Murray, Early walking patterns of normal children, Clinical Orthopaedics and Related Research (1976-2007) 79 (1971) 8-24. [11] J.E. Clark, S.J. Phillips, A longitudinal study of intralimb coordination in the first year of independent walking: a dynamical systems analysis, Child development 64(4) (1993) 1143-1157. [12] H. Forssberg, Ontogeny of human locomotor control I. Infant stepping, supported locomotion and transition to independent locomotion, Exp. Brain Res. 57(3) (1985) 480-493. [13] P. Marques-Bruna, P. Grimshaw, Changes in coordination during the first 8 months of independent walking, Perceptual and motor skills 91(3) (2000) 855-869. [14] A. Hallemans, D. De Clercq, P. Aerts, Changes in 3D joint dynamics during the first 5 months after the onset of independent walking: a longitudinal follow-up study, Gait posture 24(3) (2006) 270-279. [15] T.-Y. Tsai, T.-W. Lu, M.-Y. Kuo, H.-C. Hsu, Quantification of three-dimensional movement of skin markers relative to the underlying bones during functional activities, Biomedical Engineering: Applications, Basis and Communications 21(03) (2009) 223-232. [16] C. Capaday, The special nature of human walking and its neural control, Trends Neurosci. 25(7) (2002) 370-376. <Go to ISI>://WOS:000176558300014. [17] M.H. Woollacott, P.F. Tang, Balance control during walking in the older adult: Research and its implications, Phys. Ther. 77(6) (1997) 646-660. <Go to ISI>://WOS:A1997XD06700005. [18] C. Williams, J. Kolic, W. Wu, K. Paterson, Soft soled footwear has limited impact on toddler gait, PLoS One 16(5) (2021) e0251175. [19] W.M.G.R.S. Group, M. de Onis, WHO Motor Development Study: windows of achievement for six gross motor development milestones, Acta paediatrica 95 (2006) 86-95. [20] S.C. Morrison, C. Price, J. McClymont, C. Nester, Big issues for small feet: developmental, biomechanical and clinical narratives on children’s footwear, Journal of foot and ankle research 11(1) (2018) 1-5. [21] M. Walther, D. Herold, A. Sinderhauf, R. Morrison, Children sport shoes—a systematic review of current literature, Foot and Ankle Surgery 14(4) (2008) 180-189. [22] C. Wegener, A.E. Hunt, B. Vanwanseele, J. Burns, R.M. Smith, Effect of children's shoes on gait: a systematic review and meta-analysis, Journal of foot and ankle research 4(1) (2011) 3. [23] N. Lythgo, C. Wilson, M. Galea, Basic gait and symmetry measures for primary school-aged children and young adults whilst walking barefoot and with shoes, Gait posture 30(4) (2009) 502-506. [24] S. Wolf, J. Simon, D. Patikas, W. Schuster, P. Armbrust, L. Döderlein, Foot motion in children shoes—a comparison of barefoot walking with shod walking in conventional and flexible shoes, Gait posture 27(1) (2008) 51-59. [25] M.A. Buckland, C.M. Slevin, J.F. Hafer, C. Choate, A.P. Kraszewski, H.f.S.S.P.R. Team, The effect of torsional shoe flexibility on gait and stability in children learning to walk, Pediatric Physical Therapy 26(4) (2014) 411-417. [26] H.J. Hillstrom, M.A. Buckland, C.M. Slevin, J.F. Hafer, L.M. Root, S.I. Backus, et al., Effect of shoe flexibility on plantar loading in children learning to walk, Journal of the American Podiatric Medical Association 103(4) (2013) 297-305. [27] Y.P. Ivanenko, N. Dominici, G. Cappellini, B. Dan, G. Cheron, F. Lacquaniti, Development of pendulum mechanism and kinematic coordination from the first unsupported steps in toddlers, Journal of Experimental Biology 207(21) (2004) 3797-3810. [28] K. Hollander, B.C. Van der Zwaard, J.E. De Villiers, K.-M. Braumann, R. Venter, A. Zech, The effects of being habitually barefoot on foot mechanics and motor performance in children and adolescents aged 6–18 years: study protocol for a multicenter cross-sectional study (Barefoot LIFE project), Journal of foot and ankle research 9(1) (2016) 1-9. [29] N. Eddison, N. Chockalingam, The effect of tuning ankle foot orthoses–footwear combination on the gait parameters of children with cerebral palsy, Prosthetics and orthotics international 37(2) (2013) 95-107. [30] C. Rival, H. Ceyte, I. Olivier, Developmental changes of static standing balance in children, Neuroscience letters 376(2) (2005) 133-136. [31] C. Riach, K. Hayes, Maturation of postural sway in young children, Developmental Medicine Child Neurology 29(5) (1987) 650-658. [32] D.R. Wolff, J. Rose, V. Jones, D.A. Bloch, J.W. Oehlert, J.G. Gamble, Postural balance measurements for children and adolescents, Journal of Orthopaedic Research 16(2) (1998) 271-275. [33] M.K. Lebiedowska, M. Syczewska, Invariant sway properties in children, Gait posture 12(3) (2000) 200-204. [34] F. Dierick, C. Lefebvre, A. Van Den Hecke, C. Detrembleur, Development of displacement of centre of mass during independent walking in children, Dev. Med. Child Neurol. 46(8) (2004) 533-539. [35] C.D. Mackinnon, D.A. Winter, Control of Whole-Body Balance in the Frontal Plane during Human Walking, Journal of Biomechanics 26(6) (1993) 633-644. <Go to ISI>://WOS:A1993LB82000002. [36] Y.C. Pai, J. Patton, Center of mass velocity-position predictions for balance control, Journal of Biomechanics 30(4) (1997) 347-354. <Go to ISI>://WOS:A1997WN13500005. [37] A. Hof, M. Gazendam, W. Sinke, The condition for dynamic stability, Journal of biomechanics 38(1) (2005) 1-8. [38] D.A. Winter, Human balance and posture control during standing and walking, Gait posture 3(4) (1995) 193-214. [39] M.E. Hahn, L.-S. Chou, Age-related reduction in sagittal plane center of mass motion during obstacle crossing, Journal of biomechanics 37(6) (2004) 837-844. [40] S.-C. Huang, T.-W. Lu, H.-L. Chen, T.-M. Wang, L.-S. Chou, Age and height effects on the center of mass and center of pressure inclination angles during obstacle-crossing, Medical engineering physics 30(8) (2008) 968-975. [41] H.-L. Lu, M.-Y. Kuo, C.-F. Chang, T.-W. Lu, S.-W. Hong, Effects of gait speed on the body’s center of mass motion relative to the center of pressure during over-ground walking, Hum. Mov. Sci. 54 (2017) 354-362. [42] S.C. Huang, T.W. Lu, H.L. Chen, T.M. Wang, L.S. Chou, Age and height effects on the center of mass and center of pressure inclination angles during obstacle-crossing, Medical Engineering and Physics 30(8) (2008) 968-975. http://www.scopus.com/inward/record.url?eid=2-s2.0-53049095549 partnerID=40 md5=dcbc8424b2ea50e894603402c42d5e53. [43] S.-W. Hong, T.-H. Leu, T.-M. Wang, J.-D. Li, W.-P. Ho, T.-W. Lu, Control of body's center of mass motion relative to center of pressure during uphill walking in the elderly, Gait posture 42(4) (2015) 523-528. [44] H.-J. Lee, L.-S. Chou, Detection of gait instability using the center of mass and center of pressure inclination angles, Archives of physical medicine and rehabilitation 87(4) (2006) 569-575. [45] H.-L. Chien, T.-W. Lu, M.-W. Liu, Effects of long-term wearing of high-heeled shoes on the control of the body's center of mass motion in relation to the center of pressure during walking, Gait posture 39(4) (2014) 1045-1050. [46] S.-K. Wu, J.-Y. You, H.-Y. Chen, S.-Z. Lou, GASTROCNEMIUS TIGHTNESS AFFECTS HIP AND PELVIC MOVEMENT IN GAIT, Biomedical Engineering: Applications, Basis and Communications 32(04) (2020) 2050031. [47] D. Clement, J. Taunton, G. Smart, K. McNicol, A survey of overuse running injuries, PHYSICIAN SPORTSMED 9(5) (1981) 47-58. [48] M.T. Gross, Chronic tendinitis: pathomechanics of injury, factors affecting the healing response, and treatment, J ORTHOP SPORT PHYS 16(6) (1992) 248-261. [49] J. Hamill, B.T. Bates, K.G. Holt, Timing of lower extremity joint actions during treadmill running, MED SCI SPORT EXER 24(7) (1992) 807. [50] I. McClay, K. Manal, Coupling parameters in runners who pronate and normals, J Appl Biomech 13 (1996) 107-124. [51] S.I. Subotnick, The biomechanics of running implications for the prevention of foot injuries, SPORTS MED 2(2) (1985) 144-153. [52] B.A. Abegaz, D.G. Awoke, Factors affecting foot arch development in Northern Ethiopia, ANAT 11(1) (2017) 26-29. [53] J. Pauk, V. Ezerskiy, J.V. Raso, M. Rogalski, Epidemiologic factors affecting plantar arch development in children with flat feet, Journal of the American Podiatric Medical Association 102(2) (2012) 114-121. [54] C.-Y. Yu, H.-H. Tu, Foot surface area database and estimation formula, APPL ERGON 40(4) (2009) 767-774. [55] M. Mauch, S. Grau, I. Krauss, C. Maiwald, T. Horstmann, Foot morphology of normal, underweight and overweight children, INT J OBESITY 32(7) (2008) 1068-1075. [56] P.R. Cavanagh, M.M. Rodgers, The arch index: a useful measure from footprints, J BIOMECH 20(5) (1987) 547-551. [57] L.T. Staheli, D.E. Chew, M. Corbett, The longitudinal arch. A survey of eight hundred and eighty-two feet in normal children and adults, The Journal of bone and joint surgery. American volume 69(3) (1987) 426-428. [58] F. Forriol, J. Pascual, Footprint analysis between three and seventeen years of age, FOOT ANKLE 11(2) (1990) 101-104. [59] Z.Q. Liang, Y. Meng, S. Popik, F.F. Chen, Analysis of foot morphology in habitually barefoot group, Journal of Biomimetics, Biomaterials and Biomedical Engineering, Trans Tech Publ, 2019, pp. 1-9. [60] X. Zhao, T. Tsujimoto, B. Kim, Y. Katayama, K. Tanaka, Characteristics of foot morphology and their relationship to gender, age, body mass index and bilateral asymmetry in Japanese adults, J BACK MUSCULOSKELET 30(3) (2017) 527-535. [61] D. Tomassoni, E. Traini, F. Amenta, Gender and age related differences in foot morphology, MATURITAS 79(4) (2014) 421-427. [62] D.S. Williams, I.S. McClay, Measurements used to characterize the foot and the medial longitudinal arch: reliability and validity, Phys. Ther. 80(9) (2000) 864-871. [63] R.M. Queen, N.A. Mall, W.M. Hardaker, J.A. Nunley, Describing the medial longitudinal arch using footprint indices and a clinical grading system, Foot ankle international 28(4) (2007) 456-462. [64] P. Caravaggi, T. Pataky, J.Y. Goulermas, R. Savage, R. Crompton, A dynamic model of the windlass mechanism of the foot: evidence for early stance phase preloading of the plantar aponeurosis, Journal of Experimental Biology 212(15) (2009) 2491-2499. [65] Y.-C. Lee, M.-J. Wang, Taiwanese adult foot shape classification using 3D scanning data, ERGONOMICS 58(3) (2015) 513-523. [66] M. Kouchi, M. Mochimaru, K. Tsuzuki, T. Yokoi, INTEROBSERVER ERRORS IN ANTHROFOMETRY, Journal of human ergology 28(1-2) (1999) 15-24. [67] M. Kouchi, M. Mochimaru, Errors in landmarking and the evaluation of the accuracy of traditional and 3D anthropometry, Applied ergonomics 42(3) (2011) 518-527. [68] M.W. Cornwall, T.G. McPoil, M. Lebec, B. Vicenzino, J. Wilson, Reliability of the modified foot posture index, J AM PODIAT MED ASSN 98(1) (2008) 7-13. [69] D.S. Teyhen, B.E. Stoltenberg, K.M. Collinsworth, C.L. Giesel, D.G. Williams, C.H. Kardouni, et al., Dynamic plantar pressure parameters associated with static arch height index during gait, CLIN BIOMECH 24(4) (2009) 391-396. [70] D.S. Teyhen, B.E. Stoltenberg, T.G. Eckard, P.M. Doyle, D.M. Boland, J.J. Feldtmann, et al., Static foot posture associated with dynamic plantar pressure parameters, journal of orthopaedic sports physical therapy 41(2) (2011) 100-107. [71] J.S. Lee, K.B. Kim, J.O. Jeong, N.Y. Kwon, S.M. Jeong, Correlation of foot posture index with plantar pressure and radiographic measurements in pediatric flatfoot, Annals of rehabilitation medicine 39(1) (2015) 10. [72] S. Telfer, J. Woodburn, The use of 3D surface scanning for the measurement and assessment of the human foot, Journal of foot and ankle research 3(1) (2010) 1-9. [73] A. Alcacer, I. Epifanio, M.V. Ibáñez, A. Simó, A. Ballester, A data-driven classification of 3D foot types by archetypal shapes based on landmarks, PLOS ONE 15(1) (2020) e0228016. [74] S. Grazioso, T. Caporaso, M. Selvaggio, D. Panariello, R. Ruggiero, G. Di Gironimo, Using photogrammetric 3D body reconstruction for the design of patient–tailored assistive devices, 2019 II Workshop on Metrology for Industry 4.0 and IoT (MetroInd4. 0 IoT), IEEE, 2019, pp. 240-242. [75] D.F. Redaelli, S.G. Barsanti, E. Biffi, F.A. Storm, G. Colombo, Comparison of geometrical accuracy of active devices for 3D orthopaedic reconstructions, The International Journal of Advanced Manufacturing Technology (2021) 1-24. [76] M. Wang, X.a. Wang, Z. Fan, S. Zhang, C. Peng, Z. Liu, A 3D foot shape feature parameter measurement algorithm based on Kinect2, EURASIP Journal on Image and Video Processing 2018(1) (2018) 1-12. [77] G. Rogati, A. Leardini, M. Ortolani, P. Caravaggi, Semi-automatic measurements of foot morphological parameters from 3D plantar foot scans, Journal of Foot and Ankle Research 14(1) (2021) 1-8. [78] S. Chun, S. Kong, K.-R. Mun, J. Kim, A foot-arch parameter measurement system using a RGB-D camera, Sensors 17(8) (2017) 1796. [79] J.H. Chang, S.H. Wang, C.L. Kuo, H.C. Shen, Y.W. Hong, L.C. Lin, Prevalence of flexible flatfoot in Taiwanese school-aged children in relation to obesity, gender, and age, Eur. J. Pediatr. 169(4) (2010) 447-452. <Go to ISI>://WOS:000274456200010. [80] A. Stotz, K. Hollander, C. Heidt, S. Sehner, A. Zech, Clinical Assessment of the Medial Longitudinal Arch in Children: Rater Agreement and Relationship to Objective Foot Arch Measurements, SN Comprehensive Clinical Medicine 2(12) (2020) 2763-2770. [81] P.O. McKeon, J. Hertel, D. Bramble, I. Davis, The foot core system: a new paradigm for understanding intrinsic foot muscle function, British journal of sports medicine 49(5) (2015) 290-290. [82] M. Saghazadeh, N. Kitano, T. Okura, Gender differences of foot characteristics in older Japanese adults using a 3D foot scanner, Journal of foot and ankle research 8(1) (2015) 1-7. [83] I.C. Sacco, A.N. Onodera, K. Bosch, D. Rosenbaum, Comparisons of foot anthropometry and plantar arch indices between German and Brazilian children, BMC pediatrics 15(1) (2015) 1-6. [84] J.-P. Chen, M.-J. Chung, M.-J. Wang, Flatfoot prevalence and foot dimensions of 5–to 13-year-old children in Taiwan, Foot ankle international 30(4) (2009) 326-332. [85] O. El, O. Akcali, C. Kosay, B. Kaner, Y. Arslan, E. Sagol, et al., Flexible flatfoot and related factors in primary school children: a report of a screening study, Rheumatology international 26(11) (2006) 1050-1053. [86] C. Price, J. McClymont, F. Hashmi, S.C. Morrison, C. Nester, Development of the infant foot as a load bearing structure: study protocol for a longitudinal evaluation (the Small Steps study), Journal of foot and ankle research 11(1) (2018) 1-9. [87] N. Gould, M. Moreland, R. Alvarez, S. Trevino, J. Fenwick, Development of the child's arch, Foot ankle 9(5) (1989) 241-245. [88] S. Müller, A. Carlsohn, J. Müller, H. Baur, F. Mayer, Static and dynamic foot characteristics in children aged 1–13 years: a cross-sectional study, Gait posture 35(3) (2012) 389-394. [89] C.-J. Lin, K.-A. Lai, T.-S. Kuan, Y.-L. Chou, Correlating factors and clinical significance of flexible flatfoot in preschool children, J. Pediatr. Orthop. 21(3) (2001) 378-382. [90] C. Klein, E. Groll-Knapp, M. Kundi, W. Kinz, Increased hallux angle in children and its association with insufficient length of footwear: a community based cross-sectional study, BMC musculoskeletal disorders 10(1) (2009) 1-7. [91] W. Nachbauer, B.M. Nigg, Effects of arch height of the foot on ground reaction forces in running, Medicine and science in sports and exercise 24(11) (1992) 1264-1269. [92] M. Hösl, H. Böhm, C. Multerer, L. Döderlein, Does excessive flatfoot deformity affect function? A comparison between symptomatic and asymptomatic flatfeet using the Oxford Foot Model, Gait posture 39(1) (2014) 23-28. [93] T.-Y. Chen, C.-C. Kuo, L.-W. Hung, W.-C. Lee, J.-H. Lo, H.-L. Lu, et al., Test-Retest Reliability of Sole Morphology Measurements Using a Novel Single-Image-Based Pin-Array Impression Reconstruction Method, Applied Sciences 11(10) (2021) 4447. [94] A. Cappozzo, U. Della Croce, A. Leardini, L. Chiari, Human movement analysis using stereophotogrammetry - Part 1: theoretical background, Gait Posture 21(2) (2005) 186-196. <Go to ISI>://WOS:000226568400008. [95] A. Leardini, L. Chiari, U. Della Croce, A. Cappozzo, Human movement analysis using stereophotogrammetry - Part 3. Soft tissue artifact assessment and compensation, Gait Posture 21(2) (2005) 212-225. <Go to ISI>://WOS:000226568400010. [96] T.-W. Lu, Geometric and Mechanical Modelling of the Human Locomotor System, Orthopaedic Engineering, University of Oxford, England, United Kingdom, 1997, p. 249. [97] H. Elftman, Forces and energy changes in the leg during walking, American Journal of Physiology-Legacy Content 125(2) (1939) 339-356. [98] E. Bresler, The forces and moments in the leg during level walking, Journal of Applied Mechanics 72 (1950) 27-36. [99] T.-W. Lu, J. O’connor, Bone position estimation from skin marker co-ordinates using global optimisation with joint constraints, Journal of biomechanics 32(2) (1999) 129-134. [100] G. Cole, B. Nigg, J. Ronsky, M. Yeadon, Application of the joint coordinate system to three-dimensional joint attitude and movement representation: a standardization proposal, Journal of biomechanical engineering 115(4A) (1993) 344-349. [101] A. Leardini, A. Cappozzo, F. Catani, S. Toksvig-Larsen, A. Petitto, V. Sforza, et al., Validation of a functional method for the estimation of hip joint centre location, Journal of biomechanics 32(1) (1999) 99-103. [102] C. Romano, C. Frigo, G. Randelli, A. Pedotti, Analysis of the gait of adults who had residua of congenital dysplasia of the hip, JBJS 78(10) (1996) 1468-79. [103] S.-C. Chen, H.-J. Hsieh, T.-W. Lu, C.-H. Tseng, A method for estimating subject-specific body segment inertial parameters in human movement analysis, Gait posture 33(4) (2011) 695-700. [104] T.-W. Lu, H.-L. Chien, H.-L. Chen, Joint loading in the lower extremities during elliptical exercise, Medicine and Science in Sports and Exercise 39(9) (2007) 1651-1658. <Go to ISI>://WOS:000249445700028. [105] R. Dumas, L. Cheze, J.P. Verriest, Adjustments to McConville et al. and Young et al. body segment inertial parameters, Journal of Biomechanics 40(3) (2007) 543-553. <Go to ISI>://WOS:000244241200007. [106] K.J. Ganley, C.M. Powers, Determination of lower extremity anthropometric parameters using dual energy X-ray absorptiometry: the influence on net joint moments during gait, Clinical Biomechanics 19(1) (2004) 50-56. <Go to ISI>://WOS:000187467000008. [107] D.J. Pearsall, J.G. Reid, R. Ross, Inertia Properties of the Human Trunk of Males Determined from Magnetic-Resonance-Imaging, Annals of Biomedical Engineering 22(6) (1994) 692-706. <Go to ISI>://WOS:A1994PU60700011. [108] D.A. Winter, Biomechanics and Motor Control of Human Movement, Wiley2009. [109] H.-J. Hsieh, T.-W. Lu, S.-C. Chen, C.-M. Chang, C. Hung, A new device for in situ static and dynamic calibration of force platforms, Gait Posture 33(4) (2011) 701-705. <Go to ISI>://WOS:000291139600033. [110] H.-L. Chen, T.-W. Lu, T.-M. Wang, S.-C. Huang, Biomechanical strategies for successful obstacle crossing with the trailing limb in older adults with medial compartment knee osteoarthritis, Journal of biomechanics 41(4) (2008) 753-761. [111] H.J. Woltring, A fortran package for generalized, cross-validatory spline smoothing and differentiation, Advances in Engineering Software and Workstations 8(2) (1986) 104-113. <Go to ISI>://WOS:A1986C649400006. [112] E.D. Stamatis, M.S. Myerson, How to avoid specific complications of total ankle replacement, Foot and ankle clinics 7(4) (2002) 765-89. [113] F.N. Todd, L. Lamoreux, S.R. Skinner, M.E. Johanson, R. St Helen, S. Moran, et al., Variations in the gait of normal children. A graph applicable to the documentation of abnormalities, The Journal of bone and joint surgery. American volume 71(2) (1989) 196-204. [114] L.T. Staheli, Shoes for children: a review, Pediatrics 88(2) (1991) 371-375. [115] S. Cranage, L. Perraton, K.-A. Bowles, C. Williams, A comparison of young children’s spatiotemporal measures of walking and running in three common types of footwear compared to bare feet, Gait Posture 81 (2020) 218-224. [116] A.J. Mudge, M. Sangeux, E.A. Wojciechowski, M.G. Louey, M.J. McKay, J.N. Baldwin, et al., Can pedobarography predict the occurrence of heel rocker in children with lower limb spasticity?, Clinical Biomechanics 71 (2020) 208-213. [117] F.E. Zajac, R.R. Neptune, S.A. Kautz, Biomechanics and muscle coordination of human walking: Part I: Introduction to concepts, power transfer, dynamics and simulations, Gait posture 16(3) (2002) 215-232. [118] D. Oeffinger, B. Brauch, S. Cranfill, C. Hisle, C. Wynn, R. Hicks, et al., Comparison of gait with and without shoes in children, Gait Posture 9(2) (1999) 95-100. [119] N. Yaguramaki, T. Kimura, Acquirement of stability and mobility in infant gait, Gait posture 16(1) (2002) 69-77. [120] P.-A. Lee, K.-H. Wu, H.-Y. Lu, K.-W. Su, T.-M. Wang, H.-C. Liu, et al., Compromised balance control in older people with bilateral medial knee osteoarthritis during level walking, Scientific reports 11(1) (2021) 1-8. [121] A.M. Evans, K. Rome, L. Peet, The foot posture index, ankle lunge test, Beighton scale and the lower limb assessment score in healthy children: a reliability study, Journal of foot and ankle research 5(1) (2012) 1-5. [122] M. Carroll, M.-E. Annabell, K. Rome, Reliability of capturing foot parameters using digital scanning and the neutral suspension casting technique, Journal of foot and ankle research 4(1) (2011) 1-7. [123] T.-W. Lu, H.-C. Hsu, L.-Y. Chang, H.-L. Chen, Enhancing the examiner's resisting force improves the reliability of manual muscle strength measurements: comparison of a new device with hand-held dynamometry, Journal of Rehabilitation Medicine 39(9) (2008) 679-684. [124] C.-Y. Hsieh, Mold and method for getting foot model thereof, US Patents, 2019. [125] R. Tsai, A versatile camera calibration technique for high-accuracy 3D machine vision metrology using off-the-shelf TV cameras and lenses, IEEE Journal on Robotics and Automation 3(4) (1987) 323-344. [126] I.O.f. Standardization, Basic human body measurements for technological design — Part 1: Body measurement definitions and landmarks, 2017. [127] L.T. Staheli, D.E. Chew, M. Corbett, The longitudinal arch. A survey of eight hundred and eighty-two feet in normal children and adults, J BONE JOINT SURG AM 69(3) (1987) 426-428. [128] D.S. Williams, I.S. McClay, Measurements used to characterize the foot and the medial longitudinal arch: reliability and validity, PHYS THER 80(9) (2000) 864-871. [129] T.K. Koo, M.Y. Li, A guideline of selecting and reporting intraclass correlation coefficients for reliability research, Journal of chiropractic medicine 15(2) (2016) 155-163. [130] P.E. Shrout, J.L. Fleiss, Intraclass correlations: uses in assessing rater reliability, POL PSYCHOL BULL 86(2) (1979) 420. [131] D.G. Altman, Practical statistics for medical research, Chapman Hall/CRC1991. [132] M. Hill, R. Naemi, H. Branthwaite, N. Chockalingam, The relationship between arch height and foot length: Implications for size grading, Applied ergonomics 59 (2017) 243-250. [133] R. Fitzpatrick, C. Davey, M.J. Buxton, D.R. Jones, Evaluating patient-based outcome measures for use in clinical trials, (1998). [134] D.M. Janssen, A.P. Sanders, N.A. Guldemond, J. Hermus, G.H. Walenkamp, L.W. Van Rhijn, A comparison of hallux valgus angles assessed with computerised plantar pressure measurements, clinical examination and radiography in patients with diabetes, FOOT ANKLE RES 7(1) (2014) 1-9. [135] J. Taranto, M.J. Taranto, A. Bryant, K.P. Singer, Angle of gait: a comparative reliability study using footprints and the EMED-SF®, The Foot 15(1) (2005) 7-13. [136] P. Igbigbi, B. Msamati, The footprint ratio as a predictor of pes planus: a study of indigenous Malawians, FOOT ANKLE SUR 41(6) (2002) 394-397. [137] H.B. Menz, S.E. Munteanu, Validity of 3 clinical techniques for the measurement of static foot posture in older people, Journal of Orthopaedic Sports Physical Therapy 35(8) (2005) 479-486. [138] J.C. Zuil-Escobar, C.B. Martínez-Cepa, J.A. Martín-Urrialde, A. Gómez-Conesa, Reliability and accuracy of static parameters obtained from ink and pressure platform footprints, J MANIP PHYSIOL THER 39(7) (2016) 510-517. [139] J.M. Fascione, R.T. Crews, J.S. Wrobel, Dynamic footprint measurement collection technique and intrarater reliability: ink mat, paper pedography, and electronic pedography, J AM PODIAT MED ASSN 102(2) (2012) 130-138. [140] J.C. Zuil-Escobar, C.B. Martínez-Cepa, J.A. Martín-Urrialde, A. Gómez-Conesa, Reliability and accuracy of static parameters obtained from ink and pressure platform footprints, Journal of manipulative and physiological therapeutics 39(7) (2016) 510-517. [141] M. Fantini, F. De Crescenzio, L. Brognara, N. Baldini, Design and rapid manufacturing of a customized foot orthosis: a first methodological study, Advances on Mechanics, Design Engineering and Manufacturing, Springer2017, pp. 457-467. [142] E.S. Schrank, S.J. Stanhope, Dimensional accuracy of ankle-foot orthoses constructed by rapid customization and manufacturing framework, Journal of Rehabilitation Research Development 48(1) (2011). [143] B. Chuckpaiwong, J.A. Nunley, R.M. Queen, Correlation between static foot type measurements and clinical assessments, Foot ankle international 30(3) (2009) 205-212. [144] G. Gravante, F. Pomara, G. Russo, G. Amato, F. Cappello, C. Ridola, Plantar pressure distribution analysis in normal weight young women and men with normal and claw feet: A cross‐sectional study, Clinical Anatomy: The Official Journal of the American Association of Clinical Anatomists and the British Association of Clinical Anatomists 18(4) (2005) 245-250. [145] P.R. Cavanagh, M.M. Rodgers, The arch index: a useful measure from footprints, Journal of biomechanics 20(5) (1987) 547-551. [146] P.E. Shrout, J.L. Fleiss, Intraclass correlations: uses in assessing rater reliability, Psychological bulletin 86(2) (1979) 420. [147] D.R. Wenger, D. Mauldin, D. Morgan, M.G. Sobol, M. Pennebaker, R. Thaler, Foot growth rate in children age one to six years, Foot ankle 3(4) (1983) 207-210. [148] M.A. Villarroya, J.M. Esquivel, C. Tomás, L.A. Moreno, A. Buenafé, G. Bueno, Assessment of the medial longitudinal arch in children and adolescents with obesity: footprints and radiographic study, Eur. J. Pediatr. 168(5) (2009) 559-567. [149] J. Wang, L. Tang, J. Tang, J. Chen, X. Gong, L. Qin, et al., The typically developing pediatric foot—The data of the 1744 children in China, Foot and Ankle Surgery (2021). [150] J. Hall, J. Allanson, K. Gripp, A. Slavotinek, Handbook of physical measurements, Oxford University Press2006. [151] M. Mauch, S. Grau, I. Krauss, C. Maiwald, T. Horstmann, Influence of age, gender and body-mass-index on 3-D foot shape in children, Gait { } Posture (20) (2004) Supplement 1
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82133-
dc.description.abstract了解正常兒童步態的發展,對於研究異常之兒童步態有著重要的意義。對於初學走路的幼童,神經肌肉骨骼尚未成熟,使得他們行走的每一步皆具有極大的變化性與不穩定性。隨著年紀的增長,身體中樞神經與各項子系統的成熟並透過數萬步的練習後,幼童與成人的步態才會逐漸相似。然而影響幼童步態因子,除了隨著年紀的增長,身體的各項系統逐漸成熟以外,過去文獻指出,鞋具是另一項重要的因子。幼童是相當特殊的族群,他們無法自主描述鞋具的舒適性,至今仍未有針對幼童鞋具設計的指引或家長購買的方針,因此量化的數據測量如: 動作分析、足壓分析亦或三維足型分析等,將變得非常重要。過去文獻多數僅針對年紀較大的孩童(5-16歲)進行量化之分析,其結果不一定能拿來解釋幼童 (1-4歲) 行走的下肢生物力學,因此鞋具對於幼童的下肢生物力學則需要額外進行探討。此外,行走使得幼童處於一個不穩定的狀態,幼童既要保持平衡避免跌倒亦要往前行進,因此了解兒童全身動態平衡控制的策略,便相當重要。過去已有研究透過人體質量中心相對於足底壓力中心之傾角與傾角變化率用來描述人體平衡控制,但至今尚未了解幼兒隨著年紀增長以及機能鞋具介入對於全身平衡控制的影響。 本研究收取36位1-4歲的幼童,依據年齡分為組別,分別為1-2歲一組,2-3歲一組及3-4歲一組,每組共12人。身上各黏貼39顆紅外線反光球,並赤足及穿著兩種不同機能運動鞋以自選速度於測力板步道行走。反光球軌跡藉由8台立體紅外線攝影機捕捉,並計算其逆向動力學以及透過13連桿模型計算行走時人體質量中心位置。足底壓力中心位置則3塊測力板計算得知。 本次研究發現,第一,1-2歲幼童與3-4歲的幼童,時空參數、運動學及力動學有所不同。第二,不同鞋具設計,如:具有彈性的前足、穩定的中足與後足跟之設計,將提升幼童行走時的表現如:增加行走速度、減小步寬及適當的踝關節彎曲角度。不同的鞋具設計會影響不同年齡的幼童,行走時下肢生物力學,若有些微不良的設計,將可能對其造成負面的影響。第三,全身平衡控制中則發現,1-2歲年紀的幼童將會以較保守的策略行走,減少跌倒的風險。不同機能鞋具的介入,會造成不同年齡的幼童平衡控制策略上的影響。 綜合以上所述,不同年齡的幼童三維運動學、力動學參數及平衡控制策略皆有所不同,幼童下肢生物力學並無法以年紀較大之孩童進行探討。此外,透過本次結果發現,幼童鞋具需透過量化之方法,才能評估出對於不同年齡層,其下肢生物力學以及全身平衡控制之影響。zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-25T05:36:34Z (GMT). No. of bitstreams: 1
U0001-0910202102061300.pdf: 11287941 bytes, checksum: afd7bf2cc374a98a1bf19720773e3ee7 (MD5)
Previous issue date: 2021
en
dc.description.tableofcontentsACKNOWLEDGEMENTS i 摘要 ii ABSTRACT iv TABLE OF CONTENTS vi LIST OF FIGURES x LIST OF TABLES xiv ABBREVIATIONS xxiii CHAPTER 1. INTRODUCTION 1 1.1 Development of Gait 1 1.2 Gait Analysis 4 1.3 Shoes Effects on Lower Lim Biomechanics in Toddlers 7 1.4 Development of Balance Control in Toddlers 10 1.5 Measurement of Foot Morphology 12 1.6 Development Foot Morphology 16 1.7 Aims and Scope of the Dissertation 18 CHAPTER 2. METHODS 21 2.1 Subjects 22 2.2 Experimental Setting and Data Collection 22 2.3 Models of Biomechanical Analysis 26 2.3.1 Coordinate System 26 2.3.2 Anthropometric 28 2.4 Data Analysis 31 2.4.1 Temporal - Spatial Variables 31 2.4.2 Joint Angles and Moments 31 2.5 Determination of Gait Events and Phases 38 2.6 Determination of Center of Mass (COM) 40 2.7 Determination of Center of Pressure 43 2.8 COM-COP Inclination Angles and Their Rate of Change 44 CHAPTER 3. EFFECTS OF AGE ON LOWER LIMB BIOMECHANICS IN TODDLER 46 3.1 Introduction 46 3.2 Materials and Methods 48 3.2.1 Subjects 48 3.2.2 Experimental Protocol 48 3.2.3 Data Analysis 48 3.2.4 Statistical Analysis 49 3.3 Results 50 3.3.1 Temporal-Spatial Parameters 50 3.3.2 Joint Angle 51 3.3.3 Joint Moment 53 3.4 Discussion 69 CHAPTER 4. EFFECTS OF AGE AND FUNCTIONAL SPORTS SHOES ON LOWER LIMB BIOMECHANICS IN TODDLERS 72 4.1 Introduction 72 4.2 Materials and Methods 75 4.2.1 Subjects 75 4.2.2 Experimental Protocol 75 4.2.3 Footwear 75 4.2.4 Data Analysis 77 4.2.5 Statistical Analysis 77 4.3 Results 78 4.3.1 Temporal-Spatial Parameters 78 4.3.2 Joint Angle 80 4.3.3 Joint Moment 83 4.4 Discussion 117 CHAPTER 5. EFFECTS OF AGE AND FUNCTIONAL SPORTS SHOES ON WHOLE-BODY BALANCE IN TODDLERS 121 5.1 Introduction 121 5.2 Materials and Methods 123 5.2.1 Subjects 123 5.2.2 Experimental Protocol 123 5.2.3 Data analysis 123 5.2.4 Statistical Analysis 124 5.3 Results 125 5.3.1 IA and RCIA 125 5.3.2 Sagittal IA and RCIA 125 5.3.3 Frontal IA and RCIA 131 5.4 Discussion 163 CHAPTER 6. TEST-RETEST RELIABILITY OF SOLE MORPHOLOGY MEASUREMENTS USING A NOVEL SINGLE-IMAGE-BASED PIN-ARRAY IMPRESSION RECONSTRUCTION METHOD1 166 6.1 Introduction 166 6.2 Materials and Methods 169 6.2.3 Measurement Protocol Using SIBPAIR 171 6.2.4 Repeated Measurements 171 6.2.5 SIBPAIR Morphological Parameters of the Sole 172 6.2.6 Statistical Analysis 174 6.3 Results 175 6.4 Discussion 180 CHAPTER 7. DEVELOPMENT OF FOOT MORPHOLOGY IN AGE 1-12 TAIWANESE CHILDREN USING A NOVEL SOLE MORPHOLOGY MEASUREMENTS 184 7.1 Introduction 184 7.2 Materials and Methods 186 7.2.1 Subjects 186 7.2.2 Experimental Protocol 186 7.2.3 Data Analysis 187 7.2.4 Statistical Analysis 187 7.3 Results 188 7.4 Discussion 192 CHAPTER 8. CONCLUSIONS AND SUGGESTIONS 195 8.1 Conclusions 195 8.2 Suggestions for Future Studies and Application 199 8.3 General Summary 200 REFERENCES 201
dc.language.isoen
dc.subject機能運動鞋zh_TW
dc.subject質量與壓力中心之傾角zh_TW
dc.subject全身性平衡控制zh_TW
dc.subject成長階段幼童zh_TW
dc.subject幼童步態分析zh_TW
dc.subjecttoddler’s gait analysisen
dc.subjectCOM-COP inclinationen
dc.subjectwhole-body balance controlen
dc.subjecttoddlersen
dc.subjectfunctional sports shoesen
dc.title年齡與機能運動鞋對成長階段兒童步態及動態平衡控制之影響zh_TW
dc.titleEffects of Age and Functional Sports Shoes on Lower Limb Biomechanics and Whole-Body Balance in Toddlersen
dc.date.schoolyear109-2
dc.description.degree博士
dc.contributor.oralexamcommittee相子元(Hsin-Tsai Liu),陳文斌(Chih-Yang Tseng),陳祥和,許維君
dc.subject.keyword成長階段幼童,幼童步態分析,機能運動鞋,全身性平衡控制,質量與壓力中心之傾角,zh_TW
dc.subject.keywordtoddlers,toddler’s gait analysis,functional sports shoes,whole-body balance control,COM-COP inclination,en
dc.relation.page209
dc.identifier.doi10.6342/NTU202103630
dc.rights.note同意授權(限校園內公開)
dc.date.accepted2021-10-13
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept醫學工程學研究所zh_TW
dc.date.embargo-lift2026-10-11-
顯示於系所單位:醫學工程學研究所

文件中的檔案:
檔案 大小格式 
U0001-0910202102061300.pdf
  未授權公開取用
11.02 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved