請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82127完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃正雅(Cheng-Ya Huang) | |
| dc.contributor.author | Chih-Yen Cheng | en |
| dc.contributor.author | 鄭之姸 | zh_TW |
| dc.date.accessioned | 2022-11-25T05:36:26Z | - |
| dc.date.available | 2024-10-31 | |
| dc.date.copyright | 2021-11-09 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-10-14 | |
| dc.identifier.citation | 1. Kelly, V. E., Eusterbrock, A. J., Shumway-Cook, A. (2012). A review of dual-task walking deficits in people with Parkinson's disease: motor and cognitive contributions, mechanisms, and clinical implications. Parkinson's disease, 2012, 918719. doi: 10.1155/2012/918719 2. Heinzel, S., Maechtel, M., Hasmann, S. E., Hobert, M. A., Heger, T., Berg, D., Maetzler, W. (2016). Motor dual-tasking deficits predict falls in Parkinson's disease: A prospective study. Parkinsonism related disorders, 26, 73–77. doi: 10.1016/j.parkreldis.2016.03.007 3. Zirek, E., Ersoz Huseyinsinoglu, B., Tufekcioglu, Z., Bilgic, B., Hanagasi, H. (2018). Which cognitive dual-task walking causes most interference on the Timed Up and Go test in Parkinson's disease: a controlled study. Neurological sciences, 39(12), 2151–2157. doi: 10.1007/s10072-018-3564-2 4. Jones, D., Rochester L., Birleson, A., Hetherington, V., Nieuwboer, A., Willems, A.M., Van Wegen, E., Kwakkel, G. (2008). Everyday walking with Parkinson's disease: understanding personal challenges and strategies. Disability and rehabilitation, 30(16), 1213–1221. doi: 10.1080/09638280701828955 5. Raffegeau, T. E., Krehbiel, L. M., Kang, N., Thijs, F. J., Altmann, L., Cauraugh, J. H., Hass, C. J. (2019). A meta-analysis: Parkinson's disease and dual-task walking. Parkinsonism related disorders, 62, 28–35. doi: 10.1016/j.parkreldis.2018.12.012 6. Alcock, L., Galna, B., Lord, S., Rochester, L. (2016). Characterisation of foot clearance during gait in people with early Parkinson׳s disease: Deficits associated with a dual task. Journal of biomechanics, 49(13), 2763–2769. doi: 10.1016/j.jbiomech.2016.06.007 7. Galletly, R., Brauer, S. G. (2005). Does the type of concurrent task affect preferred and cued gait in people with Parkinson's disease? The Australian journal of physiotherapy, 51(3), 175–180. doi: 10.1016/s0004-9514(05)70024-6 8. Plotnik, M., Dagan, Y., Gurevich, T., Giladi, N., Hausdorff, J. M. (2011). Effects of cognitive function on gait and dual tasking abilities in patients with Parkinson's disease suffering from motor response fluctuations. Experimental brain research, 208(2), 169–179. doi: 10.1007/s00221-010-2469-y 9. Yang, Y. R., Cheng, S. J., Lee, Y. J., Liu, Y. C., Wang, R. Y. (2019). Cognitive and motor dual task gait training exerted specific training effects on dual task gait performance in individuals with Parkinson's disease: A randomized controlled pilot study. PloS one, 14(6), e0218180. doi: 10.1371/journal.pone.0218180 10. Geroin, C., Nonnekes, J., de Vries, N. M., Strouwen, C., Smania, N., Tinazzi, M., Nieuwboer, A., Bloem, B. R. (2018). Does dual-task training improve spatiotemporal gait parameters in Parkinson's disease? Parkinsonism related disorders, 55, 86–91. doi: 10.1016/j.parkreldis.2018.05.018 11. Bloem, B. R., Grimbergen, Y. A., van Dijk, J. G., Munneke, M. (2006). The 'posture second' strategy: a review of wrong priorities in Parkinson's disease. Journal of the neurological sciences, 248(1-2), 196–204. doi: 10.1016/j.jns.2006.05.010 12. Canning C. G. (2005). The effect of directing attention during walking under dual-task conditions in Parkinson's disease. Parkinsonism related disorders, 11(2), 95–99. doi: j.parkreldis.2004.09.006 13. Fok, P., Farrell, M., McMeeken, J. (2010). Prioritizing gait in dual-task conditions in people with Parkinson's. Human movement science, 29(5), 831–842. doi: 10.1016/j.humov.2010.06.005 14. Yogev-Seligmann, G., Rotem-Galili, Y., Dickstein, R., Giladi, N., Hausdorff, J. M. (2012). Effects of explicit prioritization on dual task walking in patients with Parkinson's disease. Gait posture, 35(4), 641–646. doi: 10.1016/j.gaitpost.2011.12.016 15. Yogev-Seligmann, G., Giladi, N., Peretz, C., Springer, S., Simon, E.S., Hausdorff, J.M. Dual tasking, gait rhythmicity, and Parkinson's disease: which aspects of gait are attention demanding? Eur J Neurosci. 2005;22(5):1248-56. doi:10.1111/j.1460-9568.2005.04298.x 16. Hoskovcová, M., Dušek, P., Sieger, T., Brožová, H., Zárubová, K., Bezdíček, O., Šprdlík, O., Jech, R., Štochl, J., Roth, J., Růžička, E. (2015). Predicting Falls in Parkinson Disease: What Is the Value of Instrumented Testing in OFF Medication State? PloS one, 10(10), e0139849. doi: 10.1371/journal.pone.0139849 17. Ginis, P., Pirani, R., Basaia, S., Ferrari, A., Chiari, L., Heremans, E., Nieuwboer, A. (2017). Focusing on heel strike improves toe clearance in people with Parkinson's disease: an observational pilot study. Physiotherapy, 103(4), 485–490. doi: 10.1016/j.physio.2017.05.001 18. Morris, M. E., Iansek, R., Matyas, T. A., Summers, J. J. (1994). The pathogenesis of gait hypokinesia in Parkinson's disease. Brain, 117 (Pt 5), 1169–1181. doi: 10.1093/brain/117.5.1169 19. Behrman, A. L., Teitelbaum, P., Cauraugh, J. H. (1998). Verbal instructional sets to normalise the temporal and spatial gait variables in Parkinson's disease. Journal of neurology, neurosurgery, and psychiatry, 65(4), 580–582. doi: 10.1136/jnnp.65.4.580 20. Nieuwboer, A., Dom, R., De Weerdt, W., Desloovere, K., Fieuws, S., Broens-Kaucsik, E. (2001). Abnormalities of the spatiotemporal characteristics of gait at the onset of freezing in Parkinson's disease. Movement disorders, 16(6), 1066–1075. doi: 10.1002/mds.1206 21. Iansek, R., Huxham, F., McGinley, J. (2006). The sequence effect and gait festination in Parkinson disease: contributors to freezing of gait? Movement disorder, 21(9), 1419–1424. doi: 10.1002/mds.20998 22. Werner, W. G., Gentile, A. M. (2003). Instructional Cues and Parkinsonian Gait A Pilot Study. Neurology Report, 27(1), 8–14. doi: 10.1097/01253086-200327010-00003 23. Hamacher, D., Liebl, D., Hödl, C., Heßler, V., Kniewasser, C. K., Thönnessen, T., Zech, A. (2019). Gait Stability and Its Influencing Factors in Older Adults. Frontiers in physiology, 9, 1955. doi: 10.3389/fphys.2018.01955 24. Moon, Y., Sung, J., An, R., Hernandez, M. E., Sosnoff, J. J. (2016). Gait variability in people with neurological disorders: A systematic review and meta-analysis. Human movement science, 47, 197–208. doi: 10.1016/j.humov.2016.03.010 25. Wulf, G., Shea, C., Lewthwaite, R. (2010). Motor skill learning and performance: a review of influential factors. Medical education, 44(1), 75–84. doi: 10.1111/j.1365-2923.2009.03421.x 26. Peh, S. Y., Chow, J. Y., Davids, K. (2011). Focus of attention and its impact on movement behaviour. Journal of science and medicine in sport, 14(1), 70–78. doi: 10.1016/j.jsams.2010.07.002 27. Wulf, G., McNevin, N., Shea, C. H. (2001). The automaticity of complex motor skill learning as a function of attentional focus. Human experimental psychology, 54(4), 1143–1154. doi: 10.1080/713756012 28. McNevin, N. H., Shea, C. H., Wulf, G. (2003). Increasing the distance of an external focus of attention enhances learning. Psychological research, 67(1), 22–29. doi: 10.1007/s00426-002-0093-6 29. Huang, C. Y., Zhao, C. G., Hwang, I. S. (2014). Neural basis of postural focus effect on concurrent postural and motor tasks: phase-locked electroencephalogram responses. Behavioural brain research, 274, 95–107. doi: 10.1016/j.bbr.2014.07.054 30. Huang, C. Y., Hwang, I. S. (2013). Behavioral data and neural correlates for postural prioritization and flexible resource allocation in concurrent postural and motor tasks. Human brain mapping, 34(3), 635–650. doi: 10.1002/hbm.21460 31. Wulf, G., Landers, M., Lewthwaite, R., Töllner, T. (2009). External focus instructions reduce postural instability in individuals with Parkinson disease. Physical therapy, 89(2), 162–168. doi: 10.2522/ptj.20080045 32. Jazaeri, S. Z., Azad, A., Mehdizadeh, H., Habibi, S. A., Mandehgary Najafabadi, M., Saberi, Z. S., Rahimzadegan, H., Moradi, S., Behzadipour, S., Parnianpour, M., Taghizadeh, G., Khalaf, K. (2018). The effects of anxiety and external attentional focus on postural control in patients with Parkinson's disease. PloS one, 13(2), e0192168. doi: 10.1371/journal.pone.0192168 33. Yogev-Seligmann, G., Sprecher, E., Kodesh, E. (2017). The Effect of External and Internal Focus of Attention on Gait Variability in Older Adults. Journal of motor behavior, 49(2), 179–184. doi: 10.1080/00222895.2016.1169983 34. Mak, T., Young, W. R., Chan, D., Wong, T. (2020). Gait Stability in Older Adults During Level-Ground Walking: The Attentional Focus Approach. The journals of gerontology, 75(2), 274–281. doi: 10.1093/geronb/gby115 35. Mak, T., Young, W. R., Lam, W., Tse, A. Wong, T. (2019). The role of attentional focus on walking efficiency among older fallers and non-fallers. Age and Ageing, 48(6), 811-816. doi: 10.1093/ageing/afz113 36. Beck, E. N., Intzandt, B. N., Almeida, Q. J. (2018). Can Dual Task Walking Improve in Parkinson's Disease After External Focus of Attention Exercise? A Single Blind Randomized Controlled Trial. Neurorehabilitation and neural repair, 32(1), 18–33. doi: 10.1177/1545968317746782 37. Yogev-Seligmann, G., Hausdorff, J. M., Giladi, N. (2012). Do we always prioritize balance when walking? Towards an integrated model of task prioritization. Movement disorders, 27(6), 765–770. doi: 10.1002/mds.24963 38. Wu, T., Hallett, M., Chan, P. (2015). Motor automaticity in Parkinson's disease. Neurobiology of disease, 82, 226–234. doi: 10.1016/j.nbd.2015.06.014 39. Nutt, J. G., Bloem, B. R., Giladi, N., Hallett, M., Horak, F. B., Nieuwboer, A. (2011). Freezing of gait: moving forward on a mysterious clinical phenomenon. The Lancet. Neurology, 10(8), 734–744. doi: 10.1016/S1474-4422(11)70143-0 40. Pietracupa, S., Suppa, A., Upadhyay, N., Giannì, C., Grillea, G., Leodori, G., Modugno, N., Di Biasio, F., Zampogna, A., Colonnese, C., Berardelli, A., Pantano, P. (2018). Freezing of gait in Parkinson's disease: gray and white matter abnormalities. Journal of neurology, 265(1), 52–62. doi: 10.1007/s00415-017-8654-1 41. Brugger, F., Abela, E., Hägele-Link, S., Bohlhalter, S., Galovic, M., Kägi, G. (2015). Do executive dysfunction and freezing of gait in Parkinson's disease share the same neuroanatomical correlates? Journal of the neurological sciences, 356(1-2), 184–187. doi: j.jns.2015.06.046 42. Pizzamiglio, S., Abdalla, H., Naeem, U., Turner, D. L. (2018). Neural predictors of gait stability when walking freely in the real-world. Journal of neuroengineering and rehabilitation, 15(1), 11. doi: 10.1186/s12984-018-0357-z 43. Maidan, I., Fahoum, F., Shustak, S., Gazit, E., Patashov, D., Tchertov, D., Giladi, N., Hausdorff, J. M., Mirelman, A. (2019). Changes in event-related potentials during dual task walking in aging and Parkinson's disease. Clinical neurophysiology, 130(2), 224–230. doi: 10.1016/j.clinph.2018.11.019 44. Maidan, I., Nieuwhof, F., Bernad-Elazari, H., Bloem, B. R., Giladi, N., Hausdorff, J. M., Claassen, J., Mirelman, A. (2018). Evidence for Differential Effects of 2 Forms of Exercise on Prefrontal Plasticity During Walking in Parkinson's Disease. Neurorehabilitation and neural repair, 32(3), 200–208. doi: 10.1177/1545968318763750 45. Baker, K., Rochester, L., Nieuwboer, A. (2008). The effect of cues on gait variability--reducing the attentional cost of walking in people with Parkinson's disease. Parkinsonism related disorders, 14(4), 314–320. doi: 10.1016/j.parkreldis.2007.09.008 46. Yu, R. L., Wu, R. M., Chan, A. Y., Mok, V., Wu, Y. R., Tilley, B. C., Luo, S., Wang, L., LaPelle, N. R., Stebbins, G. T., Goetz, C. G. (2017). Cross-Cultural Differences of the Non-Motor Symptoms Studied by the Traditional Chinese Version of the International Parkinson and Movement Disorder Society- Unified Parkinson's Disease Rating Scale. Movement disorders clinical practice, 4(1), 68–77. doi:10.1002/mdc3.12349 47. Yu, R. L., Tan, C. H., Lu, Y. C., Wu, R. M. (2016). Aldehyde dehydrogenase 2 is associated with cognitive functions in patients with Parkinson's disease. Scientific reports, 6, 30424. doi: 10.1038/srep30424 48. Moreira, H. S., Costa, A. S., Castro, S. L., Lima, C. F., Vicente, S. G. (2017). Assessing Executive Dysfunction in Neurodegenerative Disorders: A Critical Review of Brief Neuropsychological Tools. Frontiers in aging neuroscience, 9, 369. doi: 10.3389/fnagi.2017.00369 49. Chen YA. Effects of attentional focus on dual-task walking in Parkinson’s disease with freezer and non-freezer. Master’s thesis, National Taiwan University; 2018. 50. Hofheinz, M., Mibs, M. (2016). The Prognostic Validity of the Timed Up and Go Test With a Dual Task for Predicting the Risk of Falls in the Elderly. Gerontology geriatric medicine, 2, 2333721416637798. doi: 10.1177/2333721416637798 51. Åhman, H. B., Giedraitis, V., Cedervall, Y., Lennhed, B., Berglund, L., McKee, K., Kilander, L., Rosendahl, E., Ingelsson, M., Åberg, A. C. (2019). Dual-Task Performance and Neurodegeneration: Correlations Between Timed Up-and-Go Dual-Task Test Outcomes and Alzheimer's Disease Cerebrospinal Fluid Biomarkers. Journal of Alzheimer's disease, 71(s1), S75–S83. doi: 10.3233/JAD-181265 52. Schneider, S. A., Drude, L., Kasten, M., Klein, C., Hagenah, J. (2012). A study of subtle motor signs in early Parkinson's disease. Movement disorders, 27(12), 1563–1566. doi: 10.1002/mds.25161 53. Williams, A. J., Peterson, D. S., Earhart, G. M. (2013). Gait coordination in Parkinson disease: effects of step length and cadence manipulations. Gait posture, 38(2), 340–344. doi: 10.1016/j.gaitpost.2012.12.009 54. Maki B. E. (1997). Gait changes in older adults: predictors of falls or indicators of fear. Journal of the American Geriatrics Society, 45(3), 313–320. doi: 10.1111/j.1532-5415.1997.tb00946.x 55. Ma, L., Mi, T. M., Jia, Q., Han, C., Chhetri, J. K., Chan, P. (2020). Gait variability is sensitive to detect Parkinson's disease patients at high fall risk. The International journal of neuroscience, 1–13. Advance online publication. doi: 10.1080/00207454.2020.1849189 56. Hülsdünker, T., Mierau, A., Neeb, C., Kleinöder, H., Strüder, H. K. (2015). Cortical processes associated with continuous balance control as revealed by EEG spectral power. Neuroscience letters, 592, 1–5. doi: 10.1016/j.neulet.2015.02.049 57. Edwards, A. E., Guven, O., Furman, M. D., Arshad, Q., Bronstein, A. M. (2018). Electroencephalographic Correlates of Continuous Postural Tasks of Increasing Difficulty. Neuroscience, 395, 35–48. doi: 10.1016/j.neuroscience.2018.10.040 58. Tan, H., Jenkinson, N., Brown, P. (2014). Dynamic neural correlates of motor error monitoring and adaptation during trial-to-trial learning. The Journal of neuroscience: the official journal of the Society for Neuroscience, 34(16), 5678–5688. doi: 10.1523/JNEUROSCI.4739-13.2014 59. Chung, J. W., Ofori, E., Misra, G., Hess, C. W., Vaillancourt, D. E. (2017). Beta-band activity and connectivity in sensorimotor and parietal cortex are important for accurate motor performance. NeuroImage, 144(Pt A), 164–173. doi: 10.1016/j.neuroimage.2016.10.008 60. Yokoyama, H., Kaneko, N., Masugi, Y., Ogawa, T., Watanabe, K., Nakazawa, K. (2020). Gait-phase-dependent and gait-phase-independent cortical activity across multiple regions involved in voluntary gait modifications in humans. The European journal of neuroscience, 10.1111/ejn.14867. Advance online publication. doi: 10.1111/ejn.14867 61. Wagner, J., Solis-Escalante, T., Scherer, R., Neuper, C., Müller-Putz, G. (2014). It's how you get there: walking down a virtual alley activates premotor and parietal areas. Frontiers in human neuroscience, 8, 93. doi: 10.3389/fnhum.2014.00093 62. Wagner, J., Makeig, S., Gola, M., Neuper, C., Müller-Putz, G. (2016). Distinct β Band Oscillatory Networks Subserving Motor and Cognitive Control during Gait Adaptation. The Journal of neuroscience: the official journal of the Society for Neuroscience, 36(7), 2212–2226. doi: 10.1523/JNEUROSCI.3543-15.2016 63. Bulea, T. C., Kim, J., Damiano, D. L., Stanley, C. J., Park, H. S. (2015). Prefrontal, posterior parietal and sensorimotor network activity underlying speed control during walking. Frontiers in human neuroscience, 9, 247. doi: 10.3389/fnhum.2015.00247 64. Klimesch, W., Sauseng, P., Hanslmayr, S. (2007). EEG alpha oscillations: the inhibition-timing hypothesis. Brain research reviews, 53(1), 63–88. doi: 10.1016/j.brainresrev.2006.06.003 65. Peterson, S. M., Ferris, D. P. (2018). Differentiation in theta and beta electrocortical activity between visual and physical perturbations to walking and standing balance. eNeuro, 5(4), ENEURO.0207-18.2018. doi: 10.1523/ENEURO.0207-18.2018 66. Pfurtscheller, G., Brunner, C., Schlögl, A., Lopes da Silva, F. H. (2006). Mu rhythm (de)synchronization and EEG single-trial classification of different motor imagery tasks. NeuroImage, 31(1), 153–159. doi: 10.1016/j.neuroimage.2005.12.003 67. Presacco, A., Goodman, R., Forrester, L., Contreras-Vidal, J. L. (2011). Neural decoding of treadmill walking from noninvasive electroencephalographic signals. Journal of neurophysiology, 106(4), 1875–1887. doi: 10.1152/jn.00104.2011 68. Nordin, A. D., Hairston, W. D., Ferris, D. P. (2020). Faster gait speeds reduce alpha and beta eeg spectral power from human sensorimotor cortex. IEEE transactions on bio-medical engineering, 67(3), 842–853. doi: 10.1109/TBME.2019.2921766 69. Ko, Y. G., Challis, J. H., Newell, K. M. (2003). Learning to coordinate redundant degrees of freedom in a dynamic balance task. Human movement science, 22(1), 47–66. doi:10.1016/s0167-9457(02)00177-x 70. Hwang, I. S., Huang, C. T., Cherng, R. J., Huang, C. C. (2006). Postural fluctuations during pointing from a unilateral or bilateral stance. Human movement science, 25(2), 275–291. doi: 10.1016/j.humov.2005.09.009 71. Shaw, E. P., Rietschel, J. C., Hendershot, B. D., Pruziner, A. L., Miller, M. W., Hatfield, B. D., Gentili, R. J. (2018). Measurement of attentional reserve and mental effort for cognitive workload assessment under various task demands during dual-task walking. Biological psychology, 134, 39–51. doi: 10.1016/j.biopsycho.2018.01.009 72. Beurskens, R., Steinberg, F., Antoniewicz, F., Wolff, W., Granacher, U. (2016). Neural Correlates of Dual-Task Walking: Effects of Cognitive versus Motor Interference in Young Adults. Neural plasticity, 2016, 8032180. doi: 10.1155/2016/8032180 73. Misselhorn, J., Friese, U., Engel, A. K. (2019). Frontal and parietal alpha oscillations reflect attentional modulation of cross-modal matching. Scientific reports, 9(1), 5030. doi: 10.1038/s41598-019-41636-w 74. Gilat, M., Bell, P. T., Ehgoetz Martens, K. A., Georgiades, M. J., Hall, J. M., Walton, C. C., Lewis, S., Shine, J. M. (2017). Dopamine depletion impairs gait automaticity by altering cortico-striatal and cerebellar processing in Parkinson's disease. NeuroImage, 152, 207–220. doi: 10.1016/j.neuroimage.2017.02.073 75. Workman, C. D., Thrasher, T. A. (2019). The influence of dopaminergic medication on gait automaticity in Parkinson's disease. Journal of clinical neuroscience : official journal of the Neurosurgical Society of Australasia, 65, 71–76. doi: 10.1016/j.jocn.2019.03.007 76. Gwin, J. T., Gramann, K., Makeig, S., Ferris, D. P. (2010). Removal of movement artifact from high-density EEG recorded during walking and running. Journal of neurophysiology, 103(6), 3526–3534. doi: 10.1152/jn.00105.2010 77. Bulea, T. C., Prasad, S., Kilicarslan, A., Contreras-Vidal, J. L. (2014). Sitting and standing intention can be decoded from scalp EEG recorded prior to movement execution. Frontiers in neuroscience, 8, 376. doi: 10.3389/fnins.2014.00376 78. Bradberry, T. J., Gentili, R. J., Contreras-Vidal, J. L. (2010). Reconstructing three-dimensional hand movements from noninvasive electroencephalographic signals. The Journal of neuroscience, 30(9), 3432–3437. doi: 10.1523/JNEUROSCI.6107-09.2010 79. Ozdemir, R. A., Contreras-Vidal, J. L., Lee, B. C., Paloski, W. H. (2016). Cortical activity modulations underlying age-related performance differences during posture-cognition dual tasking. Experimental brain research, 234(11), 3321–3334. doi: 10.1007/s00221-016-4730-5 80. Numan R. (2015). A Prefrontal-Hippocampal Comparator for Goal-Directed Behavior: The Intentional Self and Episodic Memory. Frontiers in behavioral neuroscience, 9, 323. doi: 10.3389/fnbeh.2015.00323 81. Kam, J., Solbakk, A. K., Endestad, T., Meling, T. R., Knight, R. T. (2018). Lateral prefrontal cortex lesion impairs regulation of internally and externally directed attention. NeuroImage, 175, 91–99. doi: 10.1016/j.neuroimage.2018.03.063 82. Cavanagh, J. F., Frank, M. J. (2014). Frontal theta as a mechanism for cognitive control. Trends in cognitive sciences, 18(8), 414–421. doi: 10.1016/j.tics.2014.04.012 83. Gentili, R. J., Bradberry, T. J., Oh, H., Costanzo, M. E., Kerick, S. E., Contreras-Vidal, J. L., Hatfield, B. D. (2015). Evolution of cerebral cortico-cortical communication during visuomotor adaptation to a cognitive-motor executive challenge. Biological psychology, 105, 51–65. doi: 10.1016/j.biopsycho.2014.12.003 84. Shaw, E. P., Rietschel, J. C., Shuggi, I. M., Xu, Y., Chen, S., Miller, M. W., Hatfield, B. D., Gentili, R. J. (2019). Cerebral cortical networking for mental workload assessment under various demands during dual-task walking. Experimental brain research, 237(9), 2279–2295. doi: 10.1007/s00221-019-05550-x 85. Jahn, K., Deutschländer, A., Stephan, T., Strupp, M., Wiesmann, M., Brandt, T. (2004). Brain activation patterns during imagined stance and locomotion in functional magnetic resonance imaging. NeuroImage, 22(4), 1722–1731. doi: 10.1016/j.neuroimage.2004.05.017 86. Peterson, D. S., Pickett, K. A., Duncan, R., Perlmutter, J., Earhart, G. M. (2014). Gait-related brain activity in people with Parkinson disease with freezing of gait. PloS one, 9(3), e90634. doi: 10.1371/journal.pone.0090634 87. Horváth, K., Aschermann, Z., Ács, P., Deli, G., Janszky, J., Komoly, S., Balázs, É., Takács, K., Karádi, K., Kovács, N. (2015). Minimal clinically important difference on the Motor Examination part of MDS-UPDRS. Parkinsonism related disorders, 21(12), 1421–1426. doi: 10.1016/j.parkreldis.2015.10.006 88. Lim, L. I., van Wegen, E. E., de Goede, C. J., Jones, D., Rochester, L., Hetherington, V., Nieuwboer, A., Willems, A. M., Kwakkel, G. (2005). Measuring gait and gait-related activities in Parkinson's patients own home environment: a reliability, responsiveness and feasibility study. Parkinsonism related disorders, 11(1), 19–24. doi: 10.1016/j.parkreldis.2004.06.003 89. Steffen, T., Seney, M. (2008). Test-retest reliability and minimal detectable change on balance and ambulation tests, the 36-item short-form health survey, and the unified Parkinson disease rating scale in people with parkinsonism. Physical therapy, 88(6), 733–746. doi: 10.2522/ptj.20070214 90. Huang, S. L., Hsieh, C. L., Wu, R. M., Tai, C. H., Lin, C. H., Lu, W. S. (2011). Minimal detectable change of the timed 'up go' test and the dynamic gait index in people with Parkinson disease. Physical therapy, 91(1), 114–121. doi: 10.2522/ptj.20090126 91. Park, S. H., Lee, Y. S. (2017). The Diagnostic Accuracy of the Berg Balance Scale in Predicting Falls. Western journal of nursing research, 39(11), 1502–1525. doi: 10.1177/0193945916670894 92. Nightingale, C. J., Mitchell, S. N., Butterfield, S. A. (2019). Validation of the Timed Up and Go Test for Assessing Balance Variables in Adults Aged 65 and Older. Journal of aging and physical activity, 27(2), 230–233. doi: 10.1123/japa.2018-0049 93. Christofoletti, G., Andrade, L. P., Beinotti, F., Borges, G. (2014). Cognition and dual-task performance in older adults with Parkinson's and Alzheimer's disease. International journal of general medicine, 7, 383–388. doi: 10.2147/IJGM.S65803 94. Çekok, K., Kahraman, T., Duran, G., Dönmez Çolakoğlu, B., Yener, G., Yerlikaya, D., Genç, A. (2020). Timed Up and Go Test With a Cognitive Task: Correlations With Neuropsychological Measures in People With Parkinson's Disease. Cureus, 12(9), e10604. doi: 10.7759/cureus.10604 95. Hesse S. (2001). Locomotor therapy in neurorehabilitation. NeuroRehabilitation, 16(3), 133–139. doi: 10.3233/NRE-2001-16302 96. Santos, M. C., Campos, L. S., Guimarães, R. P., Piccinin, C. C., Azevedo, P. C., Piovesana, L. G., De Campos, B. M., Scarparo Amato-Filho, A. C., Cendes, F., D'Abreu, A. (2016). Does Side of Onset Influence the Pattern of Cerebral Atrophy in Parkinson's Disease? Frontiers in neurology, 7, 145. doi: 10.3389/fneur.2016.00145 97. Li, K., Zhao, H., Li, C. M., Ma, X. X., Chen, M., Li, S. H., Wang, R., Lou, B. H., Chen, H. B., Su, W. (2020). The Relationship between Side of Onset and Cerebral Regional Homogeneity in Parkinson's Disease: A Resting-State fMRI Study. Parkinson's disease, 2020, 5146253. doi: 10.1155/2020/5146253 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82127 | - |
| dc.description.abstract | 研究背景與目的:由於動作自動化控制困難與注意力資源分配能力不佳,雙重作業行走困難為巴金森氏症患者常見的問題之一。注意力聚焦策略可分為「內聚焦策略」與「外聚焦策略」,為一透過自主注意力控制改變其資源分布,進而影響動作控制與學習的因子之一。相較於專注於動作本身的內聚焦策略,專注於動作所產生現象與外界環境作用的外聚焦策略,能達到較佳的靜態姿勢控制。然而,注意力聚焦策略對巴金森氏症患者之雙重作業行走訓練之成效仍未被探討。由於有、無凍凝步態患者之動作自動化控制受損能力不同,兩族群所適用之注意力策略可能有所不同。因此,本研究的目的為探討內聚焦策略及外聚焦策略何者更能有效增進無凍凝步態巴金森氏症患者之雙重作業行走訓練成果。 研究方法:本研究共招募28名無凍凝步態之巴金森氏症患者,隨機分配至內聚焦策略組及外聚焦策略組,進行為期6週,每週2次的雙重作業行走訓練。於訓練過程中,兩組受試者將依組別接收到不同指令。內聚焦組為將注意力配置在肢體動作本身;而外聚焦組則將注意力配置在動作與外界物體之作用上,意即以外在環境物品為注意力目標。本研究分別於訓練前、訓練後,及8週後於有藥效、無藥效狀態下皆進行評估。評估項目包含單一作業行走表現、動作與認知雙重作業行走表現、行走時腦波頻帶相對強度,以及臨床量表,臨床量表包含:新版世界動作障礙學會巴金森病綜合評量表第三部分、伯格式平衡量表、特定活動平衡信心量表、坐站起走與雙重作業坐站起走時間、行走時手臂擺盪程度。 結果:在6週訓練後,在單一任務行走情境時,無論在有、無藥效狀態下,內聚焦組的行走速度與步長皆顯著增加,步幅時間變異性則在內、外聚焦組皆顯著下降。在動作與認知雙重作業情境時,無論在有、無藥效狀態下,內聚焦組與外聚焦組的行走速度與步長皆顯著增加。然而在步幅時間變異性參數上,雖內聚焦組與外聚焦組在有藥效狀態下皆顯著降低步態變異性,但在無藥效狀態下,僅有內聚焦組可顯著降低步幅時間變異性。在腦波相對頻帶強度改變上,經訓練後在有藥效狀態下,內聚焦組在單一作業行走情境時,於頂葉-枕葉區呈現theta頻帶強度上升與beta頻帶強度降低。在動作雙重作業行走情境時,內聚焦組在頂葉-枕葉區之beta頻帶強度顯著下降,而在認知雙重作業行走情境時,其額葉及頂葉-枕葉區之theta頻帶強度顯著上升。在無藥效狀態下,內聚焦組在單一作業行走情境時,alpha頻帶強度於感覺運動區顯著下降。在動作雙重作業行走情境時,內聚焦組在前額葉、額葉與頂葉-枕葉區之alpha頻帶強度皆顯著下降。在認知雙重作業行走情境下,外聚焦組在前額葉之theta頻帶強度則顯著上升。臨床量表顯示,內聚焦組與外聚焦組經訓練後巴金森病綜合評量表第三部分分數降低、伯格式平衡量表分數增加、坐站起走及雙重作業坐站起走所需的時間減少,但於無藥效下,僅有內聚焦組在三項評估上皆達最小臨床重要差異或最小偵測差異。另行走時手臂擺盪幅度在有藥效時亦顯著增大。 重要性與預估貢獻:本研究探討不同注意力聚焦策略對雙重作業行走訓練之影響,以及其對於大腦神經可塑性之影響。研究顯示經6週雙重作業行走訓練後,單一作業行走情境下內聚焦組有較佳的表現且可持續到8週後之追蹤測試。而內、外聚焦組在動作與認知雙重作業行走情境之行走表現皆顯著進步。然而在有、無藥效時的單一作業行走情境,以及無藥效時的動作與認知雙重作業行走情境下,內聚焦組的行走表現於步態參數上(行走速度、步長、跨步時間變異性)皆反映較外聚焦組更佳的訓練成效。臨床上,建議以內聚焦策略進行雙重作業行走訓練,可有效改善無凍凝步態巴金森氏症患者的單一作業及雙重作業行走表現,並降低動作嚴重度以及提升其平衡控制能力,以達到早期臨床介入成效。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-25T05:36:26Z (GMT). No. of bitstreams: 1 U0001-1210202117232100.pdf: 4663536 bytes, checksum: ae2f194f812befc3398ce614106b9c59 (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | "口試委員會審定書....................................................i 謝辭...............................................................ii 摘要...............................................................iv Abstract...........................................................vii Contents...........................................................x Chapter 1 Introduction.............................................1 1.1 Overview of Dual-task Walking Deficit in Parkinson’s Disease.1 1.2 Relative Literature..........................................2 1.2.1 Dual-task Walking Training in PD.........................2 1.2.2 The Effects of Attentional Instruction on Walking in PD..4 1.2.3 Attentional Focus Strategy in Motor Control..............7 1.3 Limitation in Previous Studies...............................12 1.4 Purpose and Hypothesis.......................................14 Chapter 2 Methods..................................................16 2.1 Participants.................................................16 2.2 Study Procedure..............................................17 2.2.1 Assessment Session and Experimental Apparatus............18 2.2.2 Intervention Session.....................................20 2.3. Data Analysis...............................................21 2.3.1 Behavioral Data..........................................22 2.3.2 Brain Activity Data......................................22 2.4. Statistical Analysis........................................23 Chapter 3 Results..................................................25 3.1 Part 1: pre-test and post-test...............................25 3.1.1 Behavior performance.....................................25 3.1.2 Relative power of EEG....................................32 3.1.3 Clinical evaluations.....................................37 3.2 Part 2: pre-test, post-test and follow-up....................39 3.2.1 Behavior performance.....................................39 3.2.2 Clinical evaluations.....................................47 Chapter 4 Discussion...............................................51 4.1 Training effects on behavioral performance and training-induced changes in brain activity............................................51 4.2 Improvement on clinical evaluations after training...........58 4.3 Training effects on behavioral performance in follow-up......61 4.4 Study limitations and methodology concerns...................62 Chapter 5 Conclusion...............................................63 Tables.............................................................64 Figures............................................................83 References.........................................................121" | |
| dc.language.iso | en | |
| dc.subject | 腦波圖 | zh_TW |
| dc.subject | 雙重作業行走訓練 | zh_TW |
| dc.subject | 注意力聚焦策略 | zh_TW |
| dc.subject | 巴金森氏症 | zh_TW |
| dc.subject | Dual-task training | en |
| dc.subject | Electroencephalography | en |
| dc.subject | Parkinson | en |
| dc.subject | Attentional focus | en |
| dc.title | 注意力聚焦策略對無凍凝步態巴金森患者於雙重作業行走訓練及大腦活動的影響 | zh_TW |
| dc.title | The Effects of Attentional Focus Strategies on Dual-Task Walking Training and Related Brain Activity in Parkinson’s Disease without Freezing of Gait | en |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 吳瑞美(Hsin-Tsai Liu),周立偉(Chih-Yang Tseng),劉宴齊 | |
| dc.subject.keyword | 雙重作業行走訓練,注意力聚焦策略,巴金森氏症,腦波圖, | zh_TW |
| dc.subject.keyword | Dual-task training,Attentional focus,Parkinson,Electroencephalography, | en |
| dc.relation.page | 134 | |
| dc.identifier.doi | 10.6342/NTU202103668 | |
| dc.rights.note | 同意授權(限校園內公開) | |
| dc.date.accepted | 2021-10-14 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 物理治療學研究所 | zh_TW |
| dc.date.embargo-lift | 2024-10-31 | - |
| 顯示於系所單位: | 物理治療學系所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1210202117232100.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 4.55 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
