Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 醫學工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82126
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor呂東武(Tung-Wu Lu)
dc.contributor.authorYen-Hung Liuen
dc.contributor.author劉彥宏zh_TW
dc.date.accessioned2022-11-25T05:36:24Z-
dc.date.available2026-10-13
dc.date.copyright2021-10-21
dc.date.issued2021
dc.date.submitted2021-10-14
dc.identifier.citation參考文獻 [1]. Fung, H.-C., et al., Analysis of the< i> PINK1</i> gene in a cohort of patients with sporadic early-onset parkinsonism in Taiwan. Neuroscience letters, 2006. 394(1): p. 33-36. [2]. Melton, L.J., et al., Fracture risk after the diagnosis of Parkinson's disease: influence of concomitant dementia. Movement disorders, 2006. 21(9): p. 1361-1367. [3]. McIntosh, G.C., et al., Rhythmic auditory-motor facilitation of gait patterns in patients with Parkinson's disease. Journal of Neurology, Neurosurgery Psychiatry, 1997. 62(1): p. 22-26. [4]. Factor, S.A. and W. Weiner, Parkinson's disease: diagnosis and clinical management. 2007. [5]. Elbaz, A., et al., Risk tables for parkinsonism and Parkinson's disease. Journal of clinical epidemiology, 2002. 55(1): p. 25-31. [6]. Zhang, Z.-X. and G.C. Román, Worldwide occurrence of Parkinson's disease: an updated review. Neuroepidemiology, 1993. 12(4): p. 195-208. [7]. Chen, R., et al., Prevalence, incidence, and mortality of PD: a door-to-door survey in Ilan county, Taiwan. Neurology, 2001. 57(9): p. 1679-1686. [8]. Tian, Y.-y., et al., Parkinson’s disease in China. Neurological Sciences, 2011. 32(1): p. 23-30. [9]. Obeso, J.A., et al., The basal ganglia and disorders of movement: pathophysiological mechanisms. Physiology, 2002. 17(2): p. 51-55. [10]. Alexander, G.E. and M.D. Crutcher, Functional architecture of basal ganglia circuits: neural substrates of parallel processing. Trends in neurosciences, 1990. 13(7): p. 266-271. [11]. Nambu, A., et al., Dynamic model of basal ganglia functions and Parkinson’s disease, in The basal ganglia VIII. 2005, Springer. p. 307-312. [12]. Lockhart, P.J., et al., Lack of mutations in DJ‐1 in a cohort of Taiwanese ethnic Chinese with early‐onset parkinsonism. Movement disorders, 2004. 19(9): p. 1065-1069. [13]. Fung, H.-C., et al., Analysis of the PINK1 gene in a cohort of patients with sporadic early-onset parkinsonism in Taiwan. Neuroscience letters, 2006. 394(1): p. 33-36. [14]. Fung, H.C., et al., Lack of G2019S LRRK2 mutation in a cohort of Taiwanese with sporadic Parkinson's disease. Movement disorders, 2006. 21(6): p. 880-881. [15]. Mata, I.F., et al., Lrrk2 pathogenic substitutions in Parkinson's disease. Neurogenetics, 2005. 6(4): p. 171-177. [16]. Wu, R.-M., et al., Parkin mutations and early-onset parkinsonism in a Taiwanese cohort. Archives of neurology, 2005. 62(1): p. 82-87. [17]. Carpenter, M., et al., Postural abnormalities to multidirectional stance perturbations in Parkinson’s disease. Journal of Neurology, Neurosurgery Psychiatry, 2004. 75(9): p. 1245-1254. [18]. Alexander, B.H., F.P. Rivara, and M.E. Wolf, The cost and frequency of hospitalization for fall-related injuries in older adults. American journal of public health, 1992. 82(7): p. 1020-1023. [19]. Dibble, L.E. and M. Lange, Predicting falls in individuals with Parkinson disease: a reconsideration of clinical balance measures. Journal of Neurologic Physical Therapy, 2006. 30(2): p. 60-67. [20]. Rascol, O., et al., Treatment interventions for Parkinson's disease: an evidence based assessment. The Lancet, 2002. 359(9317): p. 1589-1598. [21]. Curtze, C., et al., Levodopa I sa D ouble‐E dged S word for B alance and G ait in P eople W ith P arkinson's D isease. Movement disorders, 2015. 30(10): p. 1361-1370. [22]. LeWitt, P.A., Levodopa therapy for Parkinson's disease: pharmacokinetics and pharmacodynamics. Movement Disorders, 2015. 30(1): p. 64-72. [23]. Lang, A.E. and A.M. Lozano, Parkinson's disease. New England Journal of Medicine, 1998. 339(16): p. 1130-1143. [24]. Plotnik, M., N. Giladi, and J.M. Hausdorff, Bilateral coordination of walking and freezing of gait in Parkinson’s disease. European Journal of Neuroscience, 2008. 27(8): p. 1999-2006. [25]. Mancini, M., et al., Trunk accelerometry reveals postural instability in untreated Parkinson’s disease. Parkinsonism related disorders, 2011. 17(7): p. 557-562. [26]. Stack, E. and A. Ashburn, Fall events described by people with Parkinson's disease: implications for clinical interviewing and the research agenda. Physiotherapy research international, 1999. 4(3): p. 190-200. [27]. Bond, J.M. and M. Morris, Goal-directed secondary motor tasks: their effects on gait in subjects with Parkinson disease. Archives of physical medicine and rehabilitation, 2000. 81(1): p. 110-116. [28]. Yang, W.-C., et al., Motion analysis of axial rotation and gait stability during turning in people with Parkinson's disease. Gait posture, 2016. 44: p. 83-88. [29]. Bloem, B.R., et al., Falls and freezing of gait in Parkinson's disease: a review of two interconnected, episodic phenomena. Movement disorders: official journal of the Movement Disorder Society, 2004. 19(8): p. 871-884. [30]. Lewek, M.D., et al., Arm swing magnitude and asymmetry during gait in the early stages of Parkinson's disease. Gait posture, 2010. 31(2): p. 256-260. [31]. Roiz, R.d.M., et al., Gait analysis comparing Parkinson's disease with healthy elderly subjects. Arquivos de neuro-psiquiatria, 2010. 68(1): p. 81-86. [32]. Vitório, R., et al., Effects of obstacle height on obstacle crossing in mild Parkinson's disease. Gait Posture, 2010. 31(1): p. 143-146. [33]. Stegemöller, E.L., et al., Postural instability and gait impairment during obstacle crossing in Parkinson's disease. Archives of physical medicine and rehabilitation, 2012. 93(4): p. 703-709. [34]. House, C., A. Reece, and D. Roiz de Sa, Shock-Absorbing Insoles Reduce the Incidence of Lower Limb Overuse Injuries Sustained During Royal Marine Training. Military Medicine, 2013. 178(6): p. 683-689. [35]. Annino, G., et al., Effects of long-term stimulation of textured insoles on postural control in health elderly. The Journal of sports medicine and physical fitness, 2016. 58(4): p. 377-384. [36]. Dombroski, C.E., M.E. Balsdon, and A. Froats, The use of a low cost 3D scanning and printing tool in the manufacture of custom-made foot orthoses: a preliminary study. BMC research notes, 2014. 7(1): p. 1-4. [37]. Novak, D., et al., Toward real-time automated detection of turns during gait using wearable inertial measurement units. Sensors, 2014. 14(10): p. 18800-18822. [38]. Amstutz, E., et al. PCA based 3D shape reconstruction of human foot using multiple viewpoint cameras. in International Conference on Computer Vision Systems. 2008. Springer. [39]. Lu, M., et al., Nanomaterials as assisted matrix of laser desorption/ionization time-of-flight mass spectrometry for the analysis of small molecules. Nanomaterials, 2017. 7(4): p. 87. [40]. Chen, T.-Y., et al., Test-Retest Reliability of Sole Morphology Measurements Using a Novel Single-Image-Based Pin-Array Impression Reconstruction Method. Applied Sciences, 2021. 11(10): p. 4447. [41]. Jacobs, J.V., et al., Can stooped posture explain multidirectional postural instability in patients with Parkinson’s disease? Experimental brain research, 2005. 166(1): p. 78-88. [42]. Konczak, J., et al., Proprioception and motor control in Parkinson's disease. Journal of motor behavior, 2009. 41(6): p. 543-552. [43]. Johnell, O., et al., Fracture risk in patients with parkinsonism: a population-based study in Olmsted County, Minnesota. Age and ageing, 1992. 21(1): p. 32-38. [44]. Dibble, L.E., et al., High‐intensity resistance training amplifies muscle hypertrophy and functional gains in persons with Parkinson's disease. Movement disorders: official journal of the Movement Disorder Society, 2006. 21(9): p. 1444-1452. [45]. Pedersen, S., et al., Gait analysis, isokinetic muscle strength measurement in patients with Parkinson's disease. Scandinavian journal of rehabilitation medicine, 1997. 29(2): p. 67-74. [46]. Kimmeskamp, S. and E.M. Hennig, Heel to toe motion characteristics in Parkinson patients during free walking. Clinical biomechanics, 2001. 16(9): p. 806-812. [47]. Abdulhay, E., et al., Gait and tremor investigation using machine learning techniques for the diagnosis of Parkinson disease. Future Generation Computer Systems, 2018. 83: p. 366-373. [48]. Perry, S.D., A. Radtke, and C.R. Goodwin, Influence of footwear midsole material hardness on dynamic balance control during unexpected gait termination. Gait posture, 2007. 25(1): p. 94-98. [49]. Menz, H.B. and S.R. Lord, Footwear and postural stability in older people. Journal of the American Podiatric Medical Association, 1999. 89(7): p. 346-357. [50]. Barton, C.J., D. Bonanno, and H.B. Menz, Development and evaluation of a tool for the assessment of footwear characteristics. Journal of Foot and Ankle Research, 2009. 2(1): p. 1-12. [51]. Iglesias, M.E.L., R.B. de Bengoa Vallejo, and D.P. Peña, Impact of soft and hard insole density on postural stability in older adults. Geriatric Nursing, 2012. 33(4): p. 264-271. [52]. Chen, H.-L. and T.-W. Lu, Comparisons of the joint moments between leading and trailing limb in young adults when stepping over obstacles. Gait posture, 2006. 23(1): p. 69-77. [53]. Lu, T.-W., Geometric and mechanical modelling of the human locomotor system. 1997, University of Oxford. [54]. Craven, P. and G. Wahba, Smoothing noisy data with spline functions. Numerische mathematik, 1978. 31(4): p. 377-403. [55]. Huang, S.-C., et al., Age and height effects on the center of mass and center of pressure inclination angles during obstacle-crossing. Medical engineering physics, 2008. 30(8): p. 968-975. [56]. CHEN, H.-L., T.-W. LU, and H. Lin, Three-dimensional kinematic analysis of stepping over obstacles in young subjects. Biomedical Engineering: Applications, Basis and Communications, 2004. 16(03): p. 157-164. [57]. Fung, H.-C., et al., A common genetic factor for Parkinson disease in ethnic Chinese population in Taiwan. BMC Neurology, 2006. 6(1): p. 47. [58]. Graybiel, A.M., The basal ganglia. Current biology, 2000. 10(14): p. R509-R511. [59]. Pirozzolo, F.J., et al., Dementia in Parkinson disease: a neuropsychological analysis. Brain and cognition, 1982. 1(1): p. 71-83. [60]. Albin, R.L., A.B. Young, and J.B. Penney, The functional anatomy of basal ganglia disorders. Trends in neurosciences, 1989. 12(10): p. 366-375. [61]. Bloem, B.R., et al., Prospective assessment of falls in Parkinson's disease. Journal of neurology, 2001. 248(11): p. 950-958. [62]. Nadeau, S., B.J. McFadyen, and F. Malouin, Frontal and sagittal plane analyses of the stair climbing task in healthy adults aged over 40 years: what are the challenges compared to level walking? Clinical biomechanics, 2003. 18(10): p. 950-959. [63]. Mandeville, D., L.R. Osternig, and L.-S. Chou, The effect of total knee replacement on dynamic support of the body during walking and stair ascent. Clinical biomechanics, 2007. 22(7): p. 787-794. [64]. Liu, Y.-H., et al., Effects of bilateral medial knee osteoarthritis on intra-and inter-limb contributions to body support during gait. Journal of biomechanics, 2014. 47(2): p. 445-450. [65]. Winter, D.A., Overall principle of lower limb support during stance phase of gait. Journal of biomechanics, 1980. 13(11): p. 923-927. [66]. Sofuwa, O., et al., Quantitative gait analysis in Parkinson’s disease: comparison with a healthy control group. Archives of physical medicine and rehabilitation, 2005. 86(5): p. 1007-1013. [67]. Skinner, J.W., et al., Execution of activities of daily living in persons with Parkinson disease. Medicine and science in sports and exercise, 2015. 47(9): p. 1906-1912. [68]. Winter, D.A., Human balance and posture control during standing and walking. Gait posture, 1995. 3(4): p. 193-214. [69]. Hsu, W.-C., et al., Control of Body's Center of Mass Motion During Level Walking and Obstacle-Crossing in Older Patients with Knee Osteoarthritis. Journal of Mechanics, 2011. 26(2): p. 229-237. [70]. Hong, S.-W., et al., Influence of inclination angles on intra- and inter-limb load-sharing during uphill walking. Gait Posture, 2014. 39(1): p. 29-34. [71]. Allum, J. and F. Honegger, Interactions between vestibular and proprioceptive inputs triggering and modulating human balance-correcting responses differ across muscles. Experimental brain research, 1998. 121(4): p. 478-494. [72]. Horak, F.B., L.M. Nashner, and H. Diener, Postural strategies associated with somatosensory and vestibular loss. Experimental brain research, 1990. 82(1): p. 167-177. [73]. Carroll, M., et al., Assessment of foot and ankle muscle strength using hand held dynamometry in patients with established rheumatoid arthritis. Journal of foot and ankle research, 2013. 6(1): p. 1-4. [74]. Dibble, L.E. and M. Lange, Predicting Falls In Individuals with Parkinson Disease: A Reconsideration of Clinical Balance Measures. Journal of Neurologic Physical Therapy, 2006. 30(2): p. 60-67 10.1097/01.NPT.0000282569.70920.dc. [75]. Nieuwboer, A., et al., Does freezing in Parkinson’s disease change limb coordination? Journal of neurology, 2007. 254(9): p. 1268-1277. [76]. Ebersbach, G., et al., Clinical syndromes: Parkinsonian gait. Movement Disorders, 2013. 28(11): p. 1552-1559. [77]. Rogers, M.W., Disorders of posture, balance, and gait in Parkinson's disease. Clinics in geriatric medicine, 1996. 12(4): p. 825-845. [78]. Blake, A., et al., Falls by elderly people at home: prevalence and associated factors. Age and ageing, 1988. 17(6): p. 365-372. [79]. Hoyert, D.L., et al., Deaths: final data for 1999. National vital statistics reports: from the Centers for Disease Control and Prevention, National Center for Health Statistics, National Vital Statistics System, 2001. 49(8): p. 1-113. [80]. Pandya, N.K., et al., Osteoarthritis of the knees increases the propensity to trip on an obstacle. Clinical orthopaedics and related research, 2005. 431: p. 150-156. [81]. Lu, T.-W., H.-L. Chen, and S.-C. Chen, Comparisons of the lower limb kinematics between young and older adults when crossing obstacles of different heights. Gait posture, 2006. 23(4): p. 471-479. [82]. Dietz, V. and J. Michel, Locomotion in Parkinson's disease: neuronal coupling of upper and lower limbs. Brain, 2008. 131(12): p. 3421-3431. [83]. Patla, A., Assessment of balance control in the elderly: major issues. Physiotherapy Canada, 1990. 42(2): p. 89-97. [84]. Kuo, A.D., An optimal control model for analyzing human postural balance. Biomedical Engineering, IEEE Transactions on, 1995. 42(1): p. 87-101. [85]. Patla, A.E., Strategies for dynamic stability during adaptive human locomotion. Engineering in Medicine and Biology Magazine, IEEE, 2003. 22(2): p. 48-52. [86]. Lee, H.-J. and L.-S. Chou, Detection of gait instability using the center of mass and center of pressure inclination angles. Archives of physical medicine and rehabilitation, 2006. 87(4): p. 569-575. [87]. Hsu, W.-C., et al., Control of Body's Center of Mass Motion During Level Walking and Obstacle-Crossing in Older Patients with Knee Osteoarthritis. Journal of Mechanics, 2010. 26(02): p. 229-237. [88]. Huang, S.-C., et al., Effects of severity of degeneration on gait patterns in patients with medial knee osteoarthritis. Medical Engineering Physics, 2008. 30(8): p. 997-1003. [89]. Chien, H.-L., T.-W. Lu, and M.-W. Liu, Control of the motion of the body's center of mass in relation to the center of pressure during high-heeled gait. Gait posture, 2013. 38(3): p. 391-396. [90]. Pai, Y.C. and J. Patton, Center of Mass Velocity-Position Predictions for Balance Control. Journal of Biomechanics, 1997. 30: p. 347-354. [91]. Lu, T.-W., H.-L. Chen, and T.-M. Wang, Obstacle crossing in older adults with medial compartment knee osteoarthritis. Gait Posture, 2007. 26(4): p. 553-559. [92]. Dempster, W.T., W.C. Gabel, and W.J. Felts, The anthropometry of the manual work space for the seated subject. American Journal of Physical Anthropology, 1959. 17(4): p. 289-317. [93]. Lu, T., H. Chien, and H. Chen, Joint loading in the lower extremities during elliptical exercise. Medicine and science in sports and exercise, 2007. 39(9): p. 1651. [94]. Hsieh, H.-J., et al., A new device for< i> in situ</i> static and dynamic calibration of force platforms. Gait posture, 2011. 33(4): p. 701-705. [95]. Woltring, H.J., A FORTRAN package for generalized, cross-validatory spline smoothing and differentiation. Advances in Engineering Software (1978), 1986. 8(2): p. 104-113. [96]. Morris, M., et al., Three‐dimensional gait biomechanics in Parkinson's disease: Evidence for a centrally mediated amplitude regulation disorder. Movement Disorders, 2005. 20(1): p. 40-50. [97]. Galna, B., A.T. Murphy, and M.E. Morris, Obstacle crossing in people with Parkinson’s disease: foot clearance and spatiotemporal deficits. Human movement science, 2010. 29(5): p. 843-852. [98]. Hausdorff, J.M., et al., Gait variability and basal ganglia disorders: Stride‐to‐stride variations of gait cycle timing in parkinson's disease and Huntington's disease. Movement disorders, 1998. 13(3): p. 428-437. [99]. Chou, L.-S., et al., Medio-lateral motion of the center of mass during obstacle crossing distinguishes elderly individuals with imbalance. Gait posture, 2003. 18(3): p. 125-133. [100]. Jacobs, J. and F. Horak, Abnormal proprioceptive-motor integration contributes to hypometric postural responses of subjects with Parkinson’s disease. Neuroscience, 2006. 141(2): p. 999-1009. [101]. Frank, J., F. Horak, and J. Nutt, Centrally initiated postural adjustments in parkinsonian patients on and off levodopa. Journal of Neurophysiology, 2000. 84(5): p. 2440-2448. [102]. Stolwyk, R.J., et al., Effect of a concurrent task on driving performance in people with Parkinson's disease. Movement disorders, 2006. 21(12): p. 2096-2100. [103]. Forner, A., et al., Properties of Shoe Insert Materials Related to Shock Wave Transmission During Gait. Foot Ankle International, 1995. 16(12): p. 778-786. [104]. Mickle, K.J., et al., Foot shape of older people: implications for shoe design. Footwear Science, 2010. 2(3): p. 131-139. [105]. Xiong, S., et al., A computer-aided design system for foot-feature-based shoe last customization. The International Journal of Advanced Manufacturing Technology, 2010. 46(1): p. 11-19. [106]. Hosl, M., et al., Does excessive flatfoot deformity affect function? A comparison between symptomatic and asymptomatic flatfeet using the Oxford Foot Model. Gait Posture, 2014. 39(1): p. 23-28. [107]. Salathé, E.P., G.A. Arangio, and E.P. Salathé, The foot as a shock absorber. Journal of Biomechanics, 1990. 23(7): p. 655-659. [108]. Annino, G., et al., Effects of long-term stimulation of textured insoles on postural control in health elderly. The Journal of sports medicine and physical fitness, 2018. 58(4): p. 377-384. [109]. Dombroski, C.E., M.E.R. Balsdon, and A. Froats, The use of a low cost 3D scanning and printing tool in the manufacture of custom-made foot orthoses: a preliminary study. BMC Research Notes, 2014. 7(1): p. 443. [110]. Kimura, M., M. Mochimaru, and T. Kanade, Measurement of 3D foot shape deformation in motion, in Proceedings of the 5th ACM/IEEE International Workshop on Projector camera systems. 2008, Association for Computing Machinery: Marina del Rey, California. p. Article 10. [111]. Kimura, M., M. Mochimaru, and T. Kanade, 3D measurement of feature cross-sections of foot while walking. Machine Vision and Applications, 2011. 22(2): p. 377-388. [112]. Li, Y., et al. Fast 3D foot modeling based on simulated laser speckle projection stereo and silhouette. in Optical Metrology and Inspection for Industrial Applications V. 2018. International Society for Optics and Photonics. [113]. Novak, B., et al., Three-dimensional foot scanning system with a rotational laser-based measuring head. Strojniški vestnik - Journal of Mechanical Engineering, 2014. 60(11): p. 685-693. [114]. Yang, H.-Q., et al., 3D Digitization of Human Foot Based on Computer Stereo Vision Combined with KINECT Sensor. DEStech Transactions on Engineering and Technology Research, 2017(ICMECA). [115]. Tsung, B.Y.S., et al., Effectiveness of insoles on plantar pressure redistribution. 2004. [116]. Tsai, R., A versatile camera calibration technique for high-accuracy 3D machine vision metrology using off-the-shelf TV cameras and lenses. IEEE Journal on Robotics and Automation, 1987. 3(4): p. 323-344. [117]. Keys, R., Cubic convolution interpolation for digital image processing. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1981. 29(6): p. 1153-1160. [118]. Jagannathan, L. and C. Jawahar. Perspective correction methods for camera based document analysis. in Proc. First Int. Workshop on Camera-based Document Analysis and Recognition. 2005. [119]. Muangpaisan, W., H. Hori, and C. Brayne, Systematic review of the prevalence and incidence of Parkinson’s disease in Asia. Journal of epidemiology, 2009: p. 0909290109-0909290109. [120]. Fife, D., J.I. Barancik, and B.F. Chatterjee, Northeastern Ohio Trauma Study: II. Injury rates by age, sex, and cause. American Journal of Public Health, 1984. 74(5): p. 473-478. [121]. Leung, A., A. Mak, and J. Evans, Biomechanical gait evaluation of the immediate effect of orthotic treatment for flexible flat foot. Prosthetics and orthotics international, 1998. 22(1): p. 25-34. [122]. Flores, D.V., et al., Adult acquired flatfoot deformity: anatomy, biomechanics, staging, and imaging findings. Radiographics, 2019. 39(5): p. 1437-1460. [123]. Chaiwanichsiri, D., S. Janchai, and N. Tantisiriwat, Foot disorders and falls in older persons. Gerontology, 2009. 55(3): p. 296-302. [124]. You, S.H., Joint position sense in elderly fallers: a preliminary investigation of the validity and reliability of the SENSERite measure. Archives of physical medicine and rehabilitation, 2005. 86(2): p. 346-352. [125]. Westlake, K.P. and E.G. Culham, Sensory-specific balance training in older adults: effect on proprioceptive reintegration and cognitive demands. Physical therapy, 2007. 87(10): p. 1274-1283. [126]. Honeycutt, P.H. and P. Ramsey, Factors contributing to falls in elderly men living in the community. Geriatric nursing, 2002. 23(5): p. 250-257. [127]. Huang, T.-T., Managing fear of falling: Taiwanese elders’ perspective. International journal of nursing studies, 2005. 42(7): p. 743-750. [128]. Perry, S.D., et al., Efficacy and effectiveness of a balance-enhancing insole. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 2008. 63(6): p. 595-602. [129]. Qiu, F., et al., Effects of textured insoles on balance in people with Parkinson’s disease. PloS one, 2013. 8(12): p. e83309. [130]. Chen, C.-H., et al., Immediate effect of lateral-wedged insole on stance and ambulation after stroke. American journal of physical medicine rehabilitation, 2010. 89(1): p. 48-55. [131]. Kenshalo Sr, D.R., Somesthetic sensitivity in young and elderly humans. Journal of gerontology, 1986. 41(6): p. 732-742. [132]. Huang, Y.-p., et al., The arch support insoles show benefits to people with flatfoot on stance time, cadence, plantar pressure and contact area. PloS one, 2020. 15(8): p. e0237382. [133]. Ho, T.-J., et al., Influence of long-term Tai-Chi Chuan training on standing balance in the elderly. Biomedical Engineering: Applications, Basis and Communications, 2012. 24(01): p. 17-25. [134]. Wu, K.-W., et al., Whole body balance control in Lenke 1 thoracic adolescent idiopathic scoliosis during level walking. Plos one, 2020. 15(3): p. e0229775. [135]. Hsieh, H.J., et al., A new device for in situ static and dynamic calibration of force platforms. Gait posture, 2011. 33(4): p. 701-5. [136]. Sokal, R.R. and F.J. Rohlf, Biometry: The principles and practice of statisfics in biological research. 1981, New York: Freeman. [137]. Pelykh, O., et al., Dynamics of postural control in Parkinson patients with and without symptoms of freezing of gait. Gait Posture, 2015. 42(3): p. 246-250. [138]. Hatzitaki, V., I.G. Amiridis, and F. Arabatzi, Aging effects on postural responses to self-imposed balance perturbations. Gait Posture, 2005. 22(3): p. 250-257. [139]. Nallegowda, M., et al., Role of sensory input and muscle strength in maintenance of balance, gait, and posture in Parkinson’s disease: a pilot study. American journal of physical medicine rehabilitation, 2004. 83(12): p. 898-908. [140]. Mulford, D., et al., Arch support use for improving balance and reducing pain in older adults. Applied Nursing Research, 2008. 21(3): p. 153-158. [141]. Chen, T.-h., et al., Effectiveness of a heel cup with an arch support insole on the standing balance of the elderly. Clinical interventions in aging, 2014. 9: p. 351. [142]. Manchester, D., et al., Visual, vestibular and somatosensory contributions to balance control in the older adult. Journal of gerontology, 1989. 44(4): p. M118-M127.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82126-
dc.description.abstract帕金森症為老年族群最常見之退化性神經系統疾病之一,由於基底核內部之多巴胺神經元退化,導致多巴胺分泌不足而出現動作異常,並造成人體於靜態站立、走路、跨越障礙物等日常功能性活動中平衡控制的改變,導致增加其跌倒受傷的風險。此外,客製化足墊也經常被使用來改善平衡控制之非侵入性處方。因此探討輕度帕金森氏症患者在執行上述功能活動時,其受損的神經迴路如何影響執行動作時的動作控制,以及穿著客製化足墊後之平衡策略的改變,是非常值得探討的。本研究運用三維動作分析系統量測分析帕金森症患者與正常受試者在日常生活中常見的走路以及跨越障礙物之運動學資料,及利用測力板量測地面反作用力並計算力動學資料以及站立時之壓力中心擺盪面積。同時進行新式單影像陣列影像重建技術(SIBPAIR)精確度分析,並利用其製作客製化足墊。結果顯示輕度帕金森氏症患者的患側下肢推進身體後,健側下肢會透過增加髖關節效率以維持其當時的姿勢平衡,且健側下肢作為前跨越腳時,可調整其力矩比例,以避免患側下肢面對觸地後負重反應之負擔。帕金森氏症病患在跨越障礙物時,其較差的左-右方向平衡控制,可能會增加病患跌倒的風險。對比患側腳或健側腳作為前跨腳的不同差異後,建議帕金森氏症病患可選擇患側腳作為前跨越腳,比較相對安全。而SIBPAIR技術的應用精確性,結果顯示不論是推算曲面輪廓數據,或是足底曲面的三維影像重建,都具有精確性。帕金森氏症患者穿著有客製化足弓結構之足墊後,可促進其站立時的平衡控制,建議帕金森氏症患者在接受肌力或平衡訓練的同時,可穿著具有客製化足弓結構之足墊,提升姿勢平衡控制,以減低跌倒受傷之風險。zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-25T05:36:24Z (GMT). No. of bitstreams: 1
U0001-1310202112392000.pdf: 5073431 bytes, checksum: 896bd903402d46f76404ca960e1b5caf (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents目 錄 誌 謝 ii 中文摘要 iii Abstract iv 目 錄 v 圖目錄 viii 表目錄 xi 第一章 導論 1 1.1 帕金森氏症 1 1.2 帕金森氏症流行率與病理特徵 1 1.3 帕金森氏症臨床症狀 5 1.4 帕金森氏症患者步行時下肢支撐性力矩之變化 7 1.5 帕金森氏症患者跨越障礙物時之姿勢控制策略 8 1.6 新式足底三維形狀量測技術之精確度 8 1.7 客製化足墊對帕金森氏症患者站立平衡之立即影響 9 1.8 研究目的 10 第二章 材料與方法 11 2.1受試者 11 2.1.1輕度帕金森氏症患者 11 2.1.1 正常受試者 12 2.2動作分析系統與流程 13 2.3動作分析系統之座標系統 16 2.3.1座標系統 16 2.3.2人體量測學參數 18 2.3.3逆向動力學分析 19 2.4資料分析 23 2.4.1 壓力中心擺盪面積 23 2.4.2身體質量中心 25 2.4.3跨越障礙物 26 2.4.4 足部評估與快速客製化足墊設備 29 2.5 統計分析 35 第三章 帕金森氏症患者步行時下肢之肢體內 36 與肢體間之支撐性力矩之變化 36 3.1前言 36 3.2材料與方法 39 3.2.1受試者 39 3.2.2步態分析 40 3.2.3資料分析 42 3.2.4 統計分析 45 3.3 結果 46 3.3.1 步態時間-距離參數 46 3.3.2 尖峰值之運動學與動力學 47 3.3.3 尖峰值之總支撐力矩(Ms) 51 3.3.4 尖峰值時整體支撐力矩之個別關節貢獻力矩(CMs) 53 3.3.5 前跨越腳與後跨越腳在雙腳支撐期之曲線面積與全身總支撐力矩(WMs)比值 56 3.4 討論 57 第四章 帕金森氏症患者跨越障礙物時之身體質量重心以及下肢遠端控制點之控制策略 59 4.1前言 59 4.2材料與方法 62 4.2.1受試者 62 4.2.2步態分析 63 4.2.3資料分析 66 4.2.4 統計分析 71 4.3結果 72 4.3.1 時間-距離參數 72 4.3.2 前傾角IA 74 4.3.3 前傾角速率RCIA 77 4.4 討論 80 第五章 新式足底三維形狀量測及精度評估 83 5.1前言 83 5.2材料與方法 85 5.2.1設備 85 5.2.2實驗模具 87 5.2.3實驗流程 87 5.3結果 91 5.4討論 96 第六章 客製化足墊對帕金森氏症患者站立時 101 平衡控制之立即影響 101 6.1前言 101 6.2材料與方法 104 6.2.1受試者 104 6.2.2實驗流程 105 6.2.3 資料分析 112 6.2.4 統計分析 113 6.3結果 113 6.3.1 開眼(EO) 113 6.3.2 閉眼(EC) 116 6.4 討論 119 第七章 結論與建議 122 7.1結論 122 7.1.1帕金森氏症患者步行時下肢之肢體內與肢體間之支撐性力矩之變化 122 7.1.2 帕金森氏症患者跨越障礙物時之身體質量重心以及下肢遠端控制點之控制策略 122 7.1.3 新式足底三維形狀量測及精度評估 122 7.1.4 客製化足墊對帕金森氏症患者站立時平衡控制之立即影響 123 7.2 建議與未來研究 123 7.2.1臨床建議 123 7.2.2 未來研究 124 參考文獻 125
dc.language.isozh-TW
dc.subject壓力中心擺盪面積zh_TW
dc.subject客製化足墊zh_TW
dc.subject支撐力矩zh_TW
dc.subject帕金森症zh_TW
dc.subject跨越障礙物zh_TW
dc.subjectsupporting momenten
dc.subjectParkinson’s diseaseen
dc.subjectCOP sway areaen
dc.subjectcustomized insoleen
dc.subjectobstacle crossingen
dc.title帕金森氏症患者動作平衡控制與下肢支撐以及客製化足墊之應用zh_TW
dc.titleBalance Control and Lower Limb Support During Activities and Applications of Customized Insoles in Parkinson’s Diseaseen
dc.date.schoolyear109-2
dc.description.degree博士
dc.contributor.oralexamcommittee相子元(Hsin-Tsai Liu),陳祥和(Chih-Yang Tseng),陳文斌,許維君
dc.subject.keyword帕金森症,壓力中心擺盪面積,客製化足墊,跨越障礙物,支撐力矩,zh_TW
dc.subject.keywordParkinson’s disease,COP sway area,customized insole,obstacle crossing,supporting moment,en
dc.relation.page131
dc.identifier.doi10.6342/NTU202103688
dc.rights.note同意授權(限校園內公開)
dc.date.accepted2021-10-15
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept醫學工程學研究所zh_TW
dc.date.embargo-lift2026-10-13-
顯示於系所單位:醫學工程學研究所

文件中的檔案:
檔案 大小格式 
U0001-1310202112392000.pdf
  未授權公開取用
4.95 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved