Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 植物病理與微生物學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82125
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor劉瑞芬(Ruey-Fen Liou)
dc.contributor.authorPei-Yi Laien
dc.contributor.author賴沛宜zh_TW
dc.date.accessioned2022-11-25T05:36:23Z-
dc.date.available2027-02-09
dc.date.copyright2022-02-18
dc.date.issued2022
dc.date.submitted2022-02-09
dc.identifier.citationAlbert, I., Böhm, H., Albert, M., Feiler, C. E., Imkampe, J., Wallmeroth, N., et al. 2015. An RLP23–SOBIR1–BAK1 complex mediates NLP-triggered immunity. Nat. Plants 1:1-9. Appella, E., Weber, I. T., and Blasi, F. 1988. Structure and function of epidermal growth factor‐like regions in proteins. FEBS Lett. 231:1-4. Aziz, A., Gauthier, A., Bézier, A., Poinssot, B., Joubert, J. M., Pugin, A., et al. 2007. Elicitor and resistance-inducing activities of β-1, 4-cellodextrins in grapevine, comparison with β-1, 3 glucans and α-1, 4-oligogalacturonides. J. Exp. Bot. 58:1463-1472. Barghahn, S., Arnal, G., Jain, N., Petutschnig, E., Brumer, H., and Lipka, V. 2021. Mixed linkage β-1, 3/1, 4-glucan oligosaccharides induce defense responses in Hordeum vulgare and Arabidopsis thaliana. Front. Plant Sci. 12:1201. Bartels, S., and Boller, T. 2015. Quo vadis, Pep? Plant elicitor peptides at the crossroads of immunity, stress, and development. J. Exp. Bot. 66:5183-5193. Bartnicki-Garcia, S. 1968. Cell wall chemistry, morphogenesis, and taxonomy of fungi. Annu. Rev. Microbiol. 22:87-108. Bateman, A., and Bycroft, M. 2000. The structure of a LysM domain from E. coli membrane-bound lytic murein transglycosylase D (MltD). J. Mol. Biol. 299:1113-1119. Beffa, R. S., Hofer, R. M., Thomas, M., and Meins Jr, F. 1996. Decreased susceptibility to viral disease of [beta]-1, 3-glucanase-deficient plants generated by antisense transformation. Plant Cell 8:1001-1011. Bellande, K., Bono, J. J., Savelli, B., Jamet, E., and Canut, H. 2017. Plant lectins and lectin receptor-like kinases: how do they sense the outside? Int. J. Mol. Sci. 18:1164. Berlemont, R., and Martiny, A. C. 2016. Glycoside hydrolases across environmental microbial communities. PLoS Comp. Biol. 12:e1005300. doi: 10.1371/journal.pcbi.1005300. Bigeard, J., Colcombet, J., and Hirt, H. 2015. Signaling mechanisms in pattern-triggered immunity (PTI). Mol. Plant 8:521-539. Boevink, P. C., Birch, P. R. J., Turnbull, D., and Whisson, S. C. 2020. Devastating intimacy: the cell biology of plant–Phytophthora interactions. New Phytol. 228:445-458. Bostock, R. M., Savchenko, T., Lazarus, C., and Dehesh, K. 2011. Eicosapolyenoic acids: novel MAMPs with reciprocal effect on oomycete-plant defense signaling networks. Plant Signal. Behav. 6:531-533. Bowman, S. M., and Free, S. J. 2006. The structure and synthesis of the fungal cell wall. Bioessays 28:799-808. Bronkhorst, J., Kasteel, M., van Veen, S., Clough, J. M., Kots, K., Buijs, J., et al. 2021. A slicing mechanism facilitates host entry by plant-pathogenic Phytophthora. Nat. Microbiol. 6:1000-1006. Brunner, F., Rosahl, S., Lee, J., Rudd, J. J., Geiler, C., Kauppinen, S., et al. 2002. Pep‐13, a plant defense‐inducing pathogen‐associated pattern from Phytophthora transglutaminases. EMBO J. 21:6681-6688. Brutus, A., Sicilia, F., Macone, A., Cervone, F., and De Lorenzo, G. 2010. A domain swap approach reveals a role of the plant wall-associated kinase 1 (WAK1) as a receptor of oligogalacturonides. Proc. Natl. Acad. Sci. USA 107:9452-9457. Buendia, L., Girardin, A., Wang, T. M., Cottret, L., and Lefebvre, B. 2018. LysM receptor-like kinase and LysM receptor-like protein families: an update on phylogeny and functional characterization. Front. Plant Sci. 9:1531. Buist, G., Steen, A., Kok, J., and Kuipers, O. P. 2008. LysM, a widely distributed protein motif for binding to (peptido) glycans. Mol. Microbiol. 68:838-847. Buscaill, P., Chandrasekar, B., Sanguankiattichai, N., Kourelis, J., Kaschani, F., Thomas, E. L., et al. 2019. Glycosidase and glycan polymorphism control hydrolytic release of immunogenic flagellin peptides. Science 364. doi: 10.1126/science.aav0748. Cantarel, B. L., Coutinho, P. M., Rancurel, C., Bernard, T., Lombard, V., and Henrissat, B. 2009. The Carbohydrate-Active EnZymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res. 37:233-238. Cao, Y. R., Liang, Y., Tanaka, K., Nguyen, C. T., Jedrzejczak, R. P., Joachimiak, A., et al. 2014. The kinase LYK5 is a major chitin receptor in Arabidopsis and forms a chitin-induced complex with related kinase CERK1. Elife 3:e03766. doi: 10.7554/eLife.03766. Carella, P., Isaacs, M., and Cameron, R. K. 2015. Plasmodesmata‐located protein overexpression negatively impacts the manifestation of systemic acquired resistance and the long‐distance movement of Defective in Induced Resistance1 in Arabidopsis. Plant Biol. 17:395-401. Chakraborty, S., Nguyen, B., Wasti, S. D., and Xu, G. 2019. Plant leucine-rich repeat receptor kinase (LRR-RK): structure, ligand perception, and activation mechanism. Molecules 24:3081. Chaliha, C., Rugen, M. D., Field, R. A., and Kalita, E. 2018. Glycans as modulators of plant defense against filamentous pathogens. Front. Plant Sci. 9:928. Chanda, B., Xia, Y., Mandal, M. K., Yu, K. S., Sekine, K. T., Gao, Q. M., et al. 2011. Glycerol-3-phosphate is a critical mobile inducer of systemic immunity in plants. Nat. Genet. 43:421-427. Chang, Y. H., Yan, H. Z., and Liou, R. F. 2015. A novel elicitor protein from Phytophthora parasitica induces plant basal immunity and systemic acquired resistance. Mol. Plant Pathol. 16:123-136. Chaparro-Garcia, A., Wilkinson, R. C., Gimenez-Ibanez, S., Findlay, K., Coffey, M. D., Zipfel, C., et al. 2011. The receptor-like kinase SERK3/BAK1 is required for basal resistance against the late blight pathogen Phytophthora infestans in Nicotiana benthamiana. PloS one 6:e16608. doi: 10.1371/journal.pone.0016608. Cheval, C., and Faulkner, C. 2018. Plasmodesmal regulation during plant–pathogen interactions. New Phytol. 217:62-67. Cheval, C., Samwald, S., Johnston, M. G., De Keijzer, J., Breakspear, A., Liu, X. K., et al. 2020. Chitin perception in plasmodesmata characterizes submembrane immune-signaling specificity in plants. Proc. Natl. Acad. Sci. USA 117:9621-9629. Chinchilla, D., Bauer, Z., Regenass, M., Boller, T., and Felix, G. 2006. The Arabidopsis receptor kinase FLS2 binds flg22 and determines the specificity of flagellin perception. Plant Cell 18:465-476. Chinchilla, D., Shan, L. B., He, P., de Vries, S., and Kemmerling, B. 2009. One for all: the receptor-associated kinase BAK1. Trends Plant Sci. 14:535-541. Chinchilla, D., Zipfel, C., Robatzek, S., Kemmerling, B., Nürnberger, T., Jones, J. D., et al. 2007. A flagellin-induced complex of the receptor FLS2 and BAK1 initiates plant defence. Nature 448:497-500. Chivasa, S., Murphy, A. M., Hamilton, J. M., Lindsey, K., Carr, J. P., and Slabas, A. R. 2009. Extracellular ATP is a regulator of pathogen defence in plants. Plant J. 60:436-448. Choi, J. M., Tanaka, K., Cao, Y. R., Qi, Y., Qiu, J., Liang, Y., et al. 2014. Identification of a plant receptor for extracellular ATP. Science 343:290-294. Clouse, S. D., Langford, M., and McMorris, T. C. 1996. A brassinosteroid-insensitive mutant in Arabidopsis thaliana exhibits multiple defects in growth and development. Plant Physiol. 111:671-678. Cosgrove, D. J. 2016. Plant cell wall extensibility: connecting plant cell growth with cell wall structure, mechanics, and the action of wall-modifying enzymes. J. Exp. Bot. 67:463-476. Cosgrove, D. J. 2018. Nanoscale structure, mechanics and growth of epidermal cell walls. Curr. Opin. Plant Biol. 46:77-86. Dagvadorj, B., Ozketen, A. C., Andac, A., Duggan, C., Bozkurt, T. O., and Akkaya, M. S. 2017. A Puccinia striiformis f. sp. tritici secreted protein activates plant immunity at the cell surface. Sci. Rep. 7:1-10. Davis, K. R., Darvill, A. G., Albersheim, P., and Dell, A. 1986. Host-pathogen interactions: XXIX. oligogalacturonides released from sodium polypectate by endopolygalacturonic acid lyase are elicitors of phytoalexins in soybean. Plant Physiol. 80:568-577. Decreux, A., and Messiaen, J. 2005. Wall-associated kinase WAK1 interacts with cell wall pectins in a calcium-induced conformation. Plant Cell Physiol. 46:268-278. Degenhardt, D. C., Refi-Hind, S., Stratmann, J. W., and Lincoln, D. E. 2010. Systemin and jasmonic acid regulate constitutive and herbivore-induced systemic volatile emissions in tomato, Solanum lycopersicum. Phytochemistry 71:2024-2037. Del Hierro, I., Mélida, H., Broyart, C., Santiago, J., and Molina, A. 2021. Computational prediction method to decipher receptor–glycoligand interactions in plant immunity. Plant J. 105:1710-1726. Derevnina, L., Dagdas, Y. F., De la Concepcion, J. C., Bialas, A., Kellner, R., Petre, B., et al. 2016. Nine things to know about elicitins. New Phytol. 212:888-895. Desaki, Y., Kohari, M., Shibuya, N., and Kaku, H. 2019. MAMP-triggered plant immunity mediated by the LysM-receptor kinase CERK1. J. Gen. Plant Pathol. 85:1-11. Drummond, R. A., and Brown, G. D. 2011. The role of Dectin-1 in the host defence against fungal infections. Curr. Opin. Microbiol. 14:392-399. Erbs, G., Silipo, A., Aslam, S., De Castro, C., Liparoti, V., Flagiello, A., et al. 2008. Peptidoglycan and muropeptides from pathogens Agrobacterium and Xanthomonas elicit plant innate immunity: structure and activity. Chem. Biol. 15:438-448. Faulkner, C., Petutschnig, E., Benitez-Alfonso, Y., Beck, M., Robatzek, S., Lipka, V., et al. 2013. LYM2-dependent chitin perception limits molecular flux via plasmodesmata. Proc. Natl. Acad. Sci. USA 110:9166-9170. Fauth, M., Schweizer, P., Buchala, A., Markstädter, C., Riederer, M., Kato, T., et al. 1998. Cutin monomers and surface wax constituents elicit H2O2 in conditioned cucumber hypocotyl segments and enhance the activity of other H2O2 elicitors. Plant Physiol. 117:1373-1380. Felix, G., Duran, J. D., Volko, S., and Boller, T. 1999. Plants have a sensitive perception system for the most conserved domain of bacterial flagellin. Plant J. 18:265-276. Ferrari, S., Savatin, D. V., Sicilia, F., Gramegna, G., Cervone, F., and De Lorenzo, G. 2013. Oligogalacturonides: plant damage-associated molecular patterns and regulators of growth and development. Front. Plant Sci. 4:49. Fesel, P. H., and Zuccaro, A. 2016. β-glucan: Crucial component of the fungal cell wall and elusive MAMP in plants. Fungal Genet. Biol. 90:53-60. Fiorin, G. L., Sanchéz-Vallet, A., de Toledo Thomazella, D. P., do Prado, P. F. V., do Nascimento, L. C., de Oliveira Figueira, A. V., et al. 2018. Suppression of plant immunity by fungal chitinase-like effectors. Curr. Biol. 28:3023-3030. Fliegmann, J., Uhlenbroich, S., Shinya, T., Martinez, Y., Lefebvre, B., Shibuya, N., et al. 2011. Biochemical and phylogenetic analysis of CEBiP-like LysM domain-containing extracellular proteins in higher plants. Plant Physiol. Biochem. 49:709-720. Fu, Y. B., Yin, H., Wang, W. X., Wang, M. Y., Zhang, H. Y., Zhao, X. M., et al. 2011. β-1, 3-Glucan with different degree of polymerization induced different defense responses in tobacco. Carbohydr. Polym. 86:774-782. Gao, F., Zhang, B. S., Zhao, J. H., Huang, J. F., Jia, P. S., Wang, S., et al. 2019. Deacetylation of chitin oligomers increases virulence in soil-borne fungal pathogens. Nat. Plants 5:1167-1176. Gao, Q. M., Zhu, S. F., Kachroo, P., and Kachroo, A. 2015. Signal regulators of systemic acquired resistance. Front. Plant Sci. 6:228. Gui, Y. J., Chen, J. Y., Zhang, D. D., Li, N. Y., Li, T. G., Zhang, W. Q., et al. 2017. Verticillium dahliae manipulates plant immunity by glycoside hydrolase 12 proteins in conjunction with carbohydrate‐binding module 1. Environ. Microbiol. 19:1914-1932. Gust, A. A., and Felix, G. 2014. Receptor like proteins associate with SOBIR1-type of adaptors to form bimolecular receptor kinases. Curr. Opin. Plant Biol. 21:104-111. Gust, A. A., Pruitt, R., and Nürnberger, T. 2017. Sensing danger: key to activating plant immunity. Trends Plant Sci. 22:779-791. Han, X., and Kim, J. Y. 2016. Integrating hormone- and micromolecule-mediated signaling with plasmodesmal communication. Mol. Plant 9:46-56. Hardham, A. R. 2007. Cell biology of plant–oomycete interactions. Cell. Microbiol. 9:31-39. Hatsugai, N., and Katagiri, F. 2018. Quantification of plant cell death by electrolyte leakage assay. Bio. Protoc. 8:e2758. doi: 10.21769/BioProtoc.2758. Hayafune, M., Berisio, R., Marchetti, R., Silipo, A., Kayama, M., Desaki, Y., et al. 2014. Chitin-induced activation of immune signaling by the rice receptor CEBiP relies on a unique sandwich-type dimerization. Proc. Natl. Acad. Sci. USA 111:404-413. He, Y. X., Zhou, J. G., Shan, L. B., and Meng, X. Z. 2018. Plant cell surface receptor-mediated signaling—a common theme amid diversity. J. Cell Sci. 131:jcs209353. doi: 10.1242/jcs.209353. Hickman, C. J. 1958. Phytophthora—plant destroyer. Trans. Br. Mycological Soc. 41:1-13. Hohmann, U., Lau, K., and Hothorn, M. 2017. The structural basis of ligand perception and signal activation by receptor kinases. Annu. Rev. Plant Biol. 68:109-137. Hou, S. G., Wang, X., Chen, D. H., Yang, X., Wang, M., Turrà, D., et al. 2014. The secreted peptide PIP1 amplifies immunity through receptor-like kinase 7. PLoS Path. 10:e1004331. doi: 10.1371/journal.ppat.1004331. Howard, R. J., Ferrari, M. A., Roach, D. H., and Money, N. P. 1991. Penetration of hard substrates by a fungus employing enormous turgor pressures. Proc. Natl. Acad. Sci. USA 88:11281-11284. Huang, C. J., Zhang, T., Li, F. F., Zhang, X. Y., and Zhou, X. P. 2011. Development and application of an efficient virus-induced gene silencing system in Nicotiana tabacum using geminivirus alphasatellite. J. Zhejiang Univ. Sci. B 12:83-92. Huffaker, A., Pearce, G., and Ryan, C. A. 2006. An endogenous peptide signal in Arabidopsis activates components of the innate immune response. Proc. Natl. Acad. Sci. USA 103:10098-10103. Hugouvieux-Cotte-Pattat, N., Condemine, G., Nasser, W., and Reverchon, S. 1996. Regulation of pectinolysis in Erwinia chrysanthemi. Annu. Rev. Microbiol. 50:213-257. Jia, L. J., Tang, H. Y., Wang, W. Q., Yuan, T. L., Wei, W. Q., Pang, B., et al. 2019. A linear nonribosomal octapeptide from Fusarium graminearum facilitates cell-to-cell invasion of wheat. Nat. Commun. 10:1-20. Jin, D. F., and West, C. A. 1984. Characteristics of galacturonic acid oligomers as elicitors of casbene synthetase activity in castor bean seedlings. Plant Physiol. 74:989-992. Kaku, H., Nishizawa, Y., Ishii-Minami, N., Akimoto-Tomiyama, C., Dohmae, N., Takio, K., et al. 2006. Plant cells recognize chitin fragments for defense signaling through a plasma membrane receptor. Proc. Natl. Acad. Sci. USA 103:11086-11091. Kamoun, S., Young, M., Glascock, C. B., and Tyler, B. M. 1993. Extracellular protein elicitors from Phytophthora: host-specificity and induction of resistance to bacterial and fungal phytopathogens. Mol. Plant-Microbe Interact. 6:15-25. Kauss, H., Fauth, M., Merten, A., and Jeblick, W. 1999. Cucumber hypocotyls respond to cutin monomers via both an inducible and a constitutive H2O2-generating system. Plant Physiol. 120:1175-1182. Ke, T. Y. 2019. Transcriptome analysis to investigate the effect of OPEL, an apoplastic effector from Phytophthora parasitica, on Nicotiana tabacum. Master Thesis, National Taiwan University, Taipei, Taiwan. Keen, N. T., Yoshikawa, M., and Wang, M. C. 1983. Phytoalexin elicitor activity of carbohydrates from Phytophthora megasperma f. sp. glycinea and other sources. Plant Physiol. 71:466-471. Klarzynski, O., Plesse, B., Joubert, J. M., Yvin, J. C., Kopp, M., Kloareg, B., et al. 2000. Linear β-1, 3 glucans are elicitors of defense responses in tobacco. Plant Physiol. 124:1027-1038. Ko, W. H. 1981. Reversible change of mating type in Phytophthora parasitica. Microbiology 125:451-454. Kunze, G., Zipfel, C., Robatzek, S., Niehaus, K., Boller, T., and Felix, G. 2004. The N terminus of bacterial elongation factor Tu elicits innate immunity in Arabidopsis plants. Plant Cell 16:3496-3507. Lannoo, N., and Van Damme, E. J. M. 2014. Lectin domains at the frontiers of plant defense. Front. Plant Sci. 5:397. Lefkowitz, E. J., Dempsey, D. M., Hendrickson, R. C., Orton, R. J., Siddell, S. G., and Smith, D. B. 2018. Virus taxonomy: the database of the International Committee on Taxonomy of Viruses (ICTV). Nucleic Acids Res. 46:708-717. Li, J., Wen, J. Q., Lease, K. A., Doke, J. T., Tax, F. E., and Walker, J. C. 2002. BAK1, an Arabidopsis LRR receptor-like protein kinase, interacts with BRI1 and modulates brassinosteroid signaling. Cell 110:213-222. Liebrand, T. W. H., van den Burg, H. A., and Joosten, M. H. A. J. 2014. Two for all: receptor-associated kinases SOBIR1 and BAK1. Trends Plant Sci. 19:123-132. Liebrand, T. W. H., van den Berg, G. C. M., Zhang, Z., Smit, P., Cordewener, J. H. G., America, A. H. P., et al. 2013. Receptor-like kinase SOBIR1/EVR interacts with receptor-like proteins in plant immunity against fungal infection. Proc. Natl. Acad. Sci. USA 110:10010-10015. Liu, J., Zhang, L., and Yan, D. W. 2021. Plasmodesmata-involved battle against pathogens and potential strategies for strengthening hosts. Front. Plant Sci. 12:644870. Liu, P. L., Huang, Y., Shi, P. H., Yu, M., Xie, J. B., and Xie, L. L. 2018. Duplication and diversification of lectin receptor-like kinases (LecRLK) genes in soybean. Sci. Rep. 8:1-14. Lombard, V., Golaconda Ramulu, H., Drula, E., Coutinho, P. M., and Henrissat, B. 2014. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res. 42:490-495. Loris, R. 2002. Principles of structures of animal and plant lectins. Biochim. Biophys. Acta 1572:198-208. Lorrai, R., and Ferrari, S. 2021. Host cell wall damage during pathogen infection: mechanisms of perception and role in plant-pathogen interactions. Plants 10:399. Mélida, H., Sopeña‐Torres, S., Bacete, L., Garrido‐Arandia, M., Jordá, L., López, G., et al. 2018. Non‐branched β‐1, 3‐glucan oligosaccharides trigger immune responses in Arabidopsis. Plant J. 93:34-49. Ma, Y. N., Han, C., Chen, J. Y., Li, H. Y., He, K., Liu, A. X., et al. 2015a. Fungal cellulase is an elicitor but its enzymatic activity is not required for its elicitor activity. Mol. Plant Pathol. 16:14-26. Ma, Z. C., Song, T. Q., Zhu, L., Ye, W. W., Wang, Y., Shao, Y. Y., et al. 2015b. A Phytophthora sojae glycoside hydrolase 12 protein is a major virulence factor during soybean infection and is recognized as a PAMP. Plant Cell 27:2057-2072. Meénard, R., Alban, S., de Ruffray, P., Jamois, F., Franz, G., Fritig, B., et al. 2004. β-1, 3 glucan sulfate, but not β-1, 3 glucan, induces the salicylic acid signaling pathway in tobacco and Arabidopsis. Plant Cell 16:3020-3032. Meng, Y. L., Zhang, Q., Ding, W., and Shan, W. X. 2014. Phytophthora parasitica: a model oomycete plant pathogen. Mycology 5:43-51. Mikes, V., Milat, M. L., Ponchet, M., Panabières, F., Ricci, P., and Blein, J. P. 1998. Elicitins, proteinaceous elicitors of plant defense, are a new class of sterol carrier proteins. Biochem. Biophys. Res. Commun. 245:133-139. Návarová, H., Bernsdorff, F., Döring, A. C., and Zeier, J. 2012. Pipecolic acid, an endogenous mediator of defense amplification and priming, is a critical regulator of inducible plant immunity. Plant Cell 24:5123-5141. Nürnberger, T., Nennstiel, D., Jabs, T., Sacks, W. R., Hahlbrock, K., and Scheel, D. 1994. High affinity binding of a fungal oligopeptide elicitor to parsley plasma membranes triggers multiple defense responses. Cell 78:449-460. Ngou, B. P. M., Ahn, H. K., Ding, P., and Jones, J. D. G. 2021. Mutual potentiation of plant immunity by cell-surface and intracellular receptors. Nature 592:110-115. Nicaise, V., Roux, M., and Zipfel, C. 2009. Recent advances in PAMP-triggered immunity against bacteria: pattern recognition receptors watch over and raise the alarm. Plant Physiol. 150:1638-1647. Osman, H., Mikes, V., Milat, M. L., Ponchet, M., Marion, D., Prange, T., et al. 2001. Fatty acids bind to the fungal elicitor cryptogein and compete with sterols. FEBS Lett. 489:55-58. Pearce, G., Strydom, D., Johnson, S., and Ryan, C. A. 1991. A polypeptide from tomato leaves induces wound-inducible proteinase inhibitor proteins. Science 253:895-897. Peng, K. C., Wang, C. W., Wu, C. H., Huang, C. T., and Liou, R. F. 2015. Tomato SOBIR1/EVR homologs are involved in elicitin perception and plant defense against the oomycete pathogen Phytophthora parasitica. Mol. Plant-Microbe Interact. 28:913-926. Peng, Y., van Wersch, R., and Zhang, Y. L. 2018. Convergent and divergent signaling in PAMP-triggered immunity and effector-triggered immunity. Mol. Plant-Microbe Interact. 31:403-409. Pruitt, R. N., Locci, F., Wanke, F., Zhang, L., Saile, S. C., Joe, A., et al. 2021. The EDS1-PAD4-ADR1 node mediates Arabidopsis pattern-triggered immunity. Nature 598:495-499. Quoc, N. B., and Bao Chau, N. N. 2017. The role of cell wall degrading enzymes in pathogenesis of Magnaporthe oryzae. Curr. Protein Pept. Sci. 18:1019-1034. Ranf, S., Gisch, N., Schäffer, M., Illig, T., Westphal, L., Knirel, Y. A., et al. 2015. A lectin S-domain receptor kinase mediates lipopolysaccharide sensing in Arabidopsis thaliana. Nat. Immunol. 16:426-433. Rebaque, D., Del Hierro, I., López, G., Bacete, L., Vilaplana, F., Dallabernardina, P., et al. 2021. Cell wall‐derived mixed‐linked β‐1, 3/1, 4‐glucans trigger immune responses and disease resistance in plants. Plant J. 106:601-615. Ricci, P., Bonnet, P., Huet, J. C., Sallantin, M., Beauvais-Cante, F., Bruneteau, M., et al. 1989. Structure and activity of proteins from pathogenic fungi Phytophthora eliciting necrosis and acquired resistance in tobacco. Eur. J. Biochem. 183:555-563. Saijo, Y., Loo, E. P. i., and Yasuda, S. 2018. Pattern recognition receptors and signaling in plant–microbe interactions. Plant J. 93:592-613. Schellenberger, R., Touchard, M., Clément, C., Baillieul, F., Cordelier, S., Crouzet, J., et al. 2019. Apoplastic invasion patterns triggering plant immunity: plasma membrane sensing at the frontline. Mol. Plant Pathol. 20:1602-1616. Scholthof, K. B. G., Adkins, S., Czosnek, H., Palukaitis, P., Jacquot, E., Hohn, T., et al. 2011. Top 10 plant viruses in molecular plant pathology. Mol. Plant Pathol. 12:938-954. Shah, J., and Zeier, J. 2013. Long-distance communication and signal amplification in systemic acquired resistance. Front. Plant Sci. 4:30. Shah, J., Giri, M. K., Chowdhury, Z., and Venables, B. J. 2016. Signaling function of dehydroabietinal in plant defense and development. Phytochem. Rev. 15:1115-1126. Shahinian, S., and Bussey, H. 2000. β‐1, 6‐Glucan synthesis in Saccharomyces cerevisiae. Mol. Microbiol. 35:477-489. Sharp, J. K., Valent, B., and Albersheim, P. 1984a. Purification and partial characterization of a beta-glucan fragment that elicits phytoalexin accumulation in soybean. J. Biol. Chem. 259:11312-11320. Sharp, J. K., McNeil, M., and Albersheim, P. 1984b. The primary structures of one elicitor-active and seven elicitor-inactive hexa (beta-D-glucopyranosyl)-D-glucitols isolated from the mycelial walls of Phytophthora megasperma f. sp. glycinea. J. Biol. Chem. 259:11321-11336. Shimizu, T., Nakano, T., Takamizawa, D., Desaki, Y., Ishii‐Minami, N., Nishizawa, Y., et al. 2010. Two LysM receptor molecules, CEBiP and OsCERK1, cooperatively regulate chitin elicitor signaling in rice. Plant J. 64:204-214. Shinya, T., Motoyama, N., Ikeda, A., Wada, M., Kamiya, K., Hayafune, M., et al. 2012. Functional characterization of CEBiP and CERK1 homologs in Arabidopsis and rice reveals the presence of different chitin receptor systems in plants. Plant Cell Physiol. 53:1696-1706. Sietsma, J. H., Eveleigh, D. E., and Haskins, R. H. 1969. Cell wall composition and protoplast formation of some oomycete species. Biochim. Biophys. Acta 184:306-317. Singh, P., and Zimmerli, L. Z. 2013. Lectin receptor kinases in plant innate immunity. Front. Plant Sci. 4:124. Souza, C. d. A., Li, S., Lin, A. Z., Boutrot, F., Grossmann, G., Zipfel, C., et al. 2017. Cellulose-derived oligomers act as damage-associated molecular patterns and trigger defense-like responses. Plant Physiol. 173:2383-2398. Su, S. Z., Liu, Z. H., Chen, C., Zhang, Y., Wang, X., Zhu, L., et al. 2010. Cucumber mosaic virus movement protein severs actin filaments to increase the plasmodesmal size exclusion limit in tobacco. Plant Cell 22:1373-1387. Sun, T. J., and Zhang, Y. L. 2021. Short‐and long‐distance signaling in plant defense. Plant J. 105:505-517. Tasaki, K., Terada, H., Masuta, C., and Yamagishi, M. 2016. Virus-induced gene silencing (VIGS) in Lilium leichtlinii using the cucumber mosaic virus vector. Plant Biotechnol. 33:373-381. Thordal-Christensen, H. 2020. A holistic view on plant effector-triggered immunity presented as an iceberg model. Cell. Mol. Life Sci. 77:1-14. Tian, H., Wu, Z., Chen, S., Ao, K., Huang, W., Yaghmaiean, H., et al. 2021. Activation of TIR signalling boosts pattern-triggered immunity. Nature 598:500-503. Tisserant, E., Malbreil, M., Kuo, A., Kohler, A., Symeonidi, A., Balestrini, R., et al. 2013. Genome of an arbuscular mycorrhizal fungus provides insight into the oldest plant symbiosis. Proc. Natl. Acad. Sci. USA 110:20117-20122. Tomczynska, I., Stumpe, M., Doan, T. G., and Mauch, F. 2020. A Phytophthora effector protein promotes symplastic cell‐to‐cell trafficking by physical interaction with plasmodesmata‐localised callose synthases. New Phytol. 227:1467-1478. Torii, K. U. 2004. Leucine-rich repeat receptor kinases in plants: structure, function, and signal transduction pathways. Int. Rev. Cytol. 234:1-46. Tran, P. T., and Citovsky, V. 2021. Receptor-like kinase BAM1 facilitates early movement of the tobacco mosaic virus. Commun Biol. 4:1-11. Tsao, P. H. 1971. Chlamydospore formation in sporangium-free liquid of Phytophthora parasitica. Phytopathology 61:1412-1413. Tyler, B. M. 2002. Molecular basis of recognition between Phytophthora pathogens and their hosts. Annu. Rev. Phytopathol. 40:137-167. Tzean, Y., Lee, M. C., Jan, H. H., Chiu, Y. S., Tu, T. C., Hou, B. H., et al. 2019. Cucumber mosaic virus-induced gene silencing in banana. Sci. Rep. 9:1-9. Van Der Burgh, A. M., and Joosten, M. H. A. J. 2019. Plant immunity: thinking outside and inside the box. Trends Plant Sci. 24:587-601. Van Der Burgh, A. M., Postma, J., Robatzek, S., and Joosten, M. H. A. J. 2019. Kinase activity of SOBIR1 and BAK1 is required for immune signalling. Mol. Plant Pathol. 20:410-422. Van Vu, B., Itoh, K., Nguyen, Q. B., Tosa, Y., and Nakayashiki, H. 2012. Cellulases belonging to glycoside hydrolase families 6 and 7 contribute to the virulence of Magnaporthe oryzae. Mol. Plant-Microbe Interact. 25:1135-1141. Verica, J. A., and He, Z. H. 2002. The cell wall-associated kinase (WAK) and WAK-like kinase gene family. Plant Physiol. 129:455-459. Verma, P. P., Shelake, R. M., Das, S., Sharma, P., and Kim, J. Y. 2019. Plant growth-promoting rhizobacteria (PGPR) and fungi (PGPF): potential biological control agents of diseases and pests. Pages 281-311 in: Microbial Interventions in Agriculture and Environment. Springer. Wang, R., Yang, X. X., Wang, N., Liu, X. D., Nelson, R. S., Li, W. M., et al. 2016. An efficient virus‐induced gene silencing vector for maize functional genomics research. Plant J. 86:102-115. Wang, S., Welsh, L., Thorpe, P., Whisson, S. C., Boevink, P. C., and Birch, P. R. J. 2018. The Phytophthora infestans haustorium is a site for secretion of diverse classes of infection-associated proteins. mBio 9:1216-1218. Wanke, A., Rovenich, H., Schwanke, F., Velte, S., Becker, S., Hehemann, J. H., et al. 2020. Plant species‐specific recognition of long and short β‐1, 3‐linked glucans is mediated by different receptor systems. Plant J. 102:1142-1156. Willemsen, A., and Zwart, M. P. 2019. On the stability of sequences inserted into viral genomes. Virus Evol. 5:vez045. doi: 10.1093/ve/vez045. Willmann, R., Lajunen, H. M., Erbs, G., Newman, M. A., Kolb, D., Tsuda, K., et al. 2011. Arabidopsis lysin-motif proteins LYM1 LYM3 CERK1 mediate bacterial peptidoglycan sensing and immunity to bacterial infection. Proc. Natl. Acad. Sci. USA 108:19824-19829. Yamaguchi, Y., and Huffaker, A. 2011. Endogenous peptide elicitors in higher plants. Curr. Opin. Plant Biol. 14:351-357. Yang, C., Liu, R., Pang, J. H., Ren, B., Zhou, H. B., Wang, G., et al. 2021. Poaceae-specific cell wall-derived oligosaccharides activate plant immunity via OsCERK1 during Magnaporthe oryzae infection in rice. Nat. Commun. 12:1-13. Yang, Y. K., Zhang, Y., Li, B. B., Yang, X. F., Dong, Y. J., and Qiu, D. W. 2018. A Verticillium dahliae pectate lyase induces plant immune responses and contributes to virulence. Front. Plant Sci. 9:1271. Yang, Y. Y. 2020. Investigation of how OPEL, an apoplastic effector from Phytophthora parasitica, elicits plant immune responses. Master Thesis, National Taiwan University, Taipei, Taiwan. Yasuda, S., Okada, K., and Saijo, Y. 2017. A look at plant immunity through the window of the multitasking coreceptor BAK1. Curr. Opin. Plant Biol. 38:10-18. Yoon, J. Y., Chung, B. N., and Choi, S. K. 2011. High-temperature-mediated spontaneous mutations in the coat protein of cucumber mosaic virus in Nicotiana tabacum. Arch. Virol. 156:2173-2180. Yu, K. S., Soares, J. M., Mandal, M. K., Wang, C. X., Chanda, B., Gifford, A. N., et al. 2013. A feedback regulatory loop between G3P and lipid transfer proteins DIR1 and AZI1 mediates azelaic-acid-induced systemic immunity. Cell Rep. 3:1266-1278. Yuan, M. H., Jiang, Z. Y., Bi, G. Z., Nomura, K., Liu, M. H., Wang, Y. P., et al. 2021. Pattern-recognition receptors are required for NLR-mediated plant immunity. Nature 592:105-109. Zhang, W., Yang, X., Qiu, D., Guo, L., Zeng, H., Mao, J., et al. 2011. PeaT1-induced systemic acquired resistance in tobacco follows salicylic acid-dependent pathway. Mol. Biol. Rep. 38:2549-2556. Zhang, X. D., and Mou, Z. L. 2009. Extracellular pyridine nucleotides induce PR gene expression and disease resistance in Arabidopsis. Plant J. 57:302-312. Zhang, Z., Fradin, E., de Jonge, R., van Esse, H. P., Smit, P., Liu, C. M., et al. 2013. Optimized agroinfiltration and virus-induced gene silencing to study Ve1-mediated Verticillium resistance in tobacco. Mol. Plant-Microbe Interact. 26:182-190. Zhu, W. J., Ronen, M., Gur, Y., Minz-Dub, A., Masrati, G., Ben-Tal, N., et al. 2017. BcXYG1, a secreted xyloglucanase from Botrytis cinerea, triggers both cell death and plant immune responses. Plant Physiol. 175:438-456. Zipfel, C., and Oldroyd, G. E. D. 2017. Plant signalling in symbiosis and immunity. Nature 543:328-336. "………
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82125-
dc.description.abstract"OPEL為疫病菌 (Phytophthora parasitica) 的外泌蛋白,序列預測顯示其具有signal peptide、thaumatin-like domain、glycine-rich domain及GH16 domain,GH16 domain包含β-1,3-glucanase活性區的保守性序列。以OPEL重組蛋白處理菸草 (Nicotiana tabacum cv. Samsun-NN) 葉片能引發細胞死亡、癒傷葡聚醣沉積、活性氧分子累積及誘導水楊酸和PTI相關防禦基因表現。對處理OPEL重組蛋白之菸草葉片所進行的轉錄體分析發現多個編碼receptor-like proteins (RLPs) 或receptor-like kinases (RLKs) 的差異表現基因 (FC ≥ 2, p-value < 0.01),為瞭解其在OPEL誘發植物免疫的重要性,本研究挑選具研究潛力者,包括被高度誘導表現的NtLYM2、涉及多種醣分子辨識的adaptor RLKs 基因NtCERK1-like以及參與蛋白質辨識的NtSOBIR1和NtBAK1等;RT-qPCR分析顯示這些基因的表現都會因應OPEL之處理顯著提升。進一步以cucumber mosaic virus (CMV) 於N. tabacum cv. Samsun-NN誘導基因靜默,再分析其對OPEL誘發癒傷葡聚醣沉積和細胞離子滲漏的影響,發現靜默NtLYM2顯著減少OPEL介導癒傷葡聚醣累積的數量,靜默NtBAK1降低OPEL引發的細胞離子滲漏量,而靜默NtCERK-like或NtSOBIR1對二項觀測指標皆無顯著影響。此外,疫病菌感染誘導NtLYM2大量表現,而且暫表現NtLYM2顯著提升疫病菌在菸草的感染面積。這些研究顯示NtLYM2和NtBAK1在OPEL引發的植物免疫反應扮演重要角色,至於NtLYM2如何參與菸草和疫病菌的交互作用則待更多研究探討。"zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-25T05:36:23Z (GMT). No. of bitstreams: 1
U0001-0902202223063700.pdf: 3147907 bytes, checksum: 553b188b9e41e37c0bdcd24499ce8791 (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents口試委員會審定書 i 誌 謝 ii 摘 要 iv Abstract v 壹、前言 1 1. 植物防禦反應 1 2. MAMPs 2 3. DAMPs 3 4. PRR及PRR複合體 (PRR complex) 4 4.1 LRR-RLPs/RLKs 5 4.2 LysM-RLPs/RLKs 6 4.3 Lectin-like和EGF-like RLPs/RLKs 6 5. 病原菌細胞壁分解酵素在植物防禦反應之角色 7 6. β-葡聚醣 (β-glucan) 引發植物基礎免疫反應 9 7. 疫病菌 10 8. 疫病菌外泌蛋白OPEL引發植物基礎免疫反應 12 9. 研究動機 13 貳、材料與方法 14 1. 供試植物 14 2. 親緣關係分析 14 3. 表現與純化OPEL重組蛋白 14 3.1 OPEL重組蛋白表現轉形株來源與保存 14 3.2 重組蛋白表現與純化 14 3.3 凝膠過濾層析 (Gel filtration chromatography) 15 4. 植物RNA純化與cDNA製備 16 4.1 萃取植物RNA 16 4.2 去除殘留於RNA分離液的DNA 16 4.3 cDNA製備 16 5. 即時定量聚合酶連鎖反應 (RT-qPCR) 17 6. 基因靜默表現載體構築 17 7. 暫表現 (transient expression) 載體構築 18 8. 大腸桿菌轉形 19 9. 農桿菌轉形 19 10. 農桿菌浸潤 20 10.1 以農桿菌感染法 (agroinfection) 進行病毒誘導系統性基因靜默 20 10.2 以農桿菌浸潤法 (agroinfiltration) 暫表現基因 20 11. 西方墨點法 (Western blot) 21 11.1 植物組織蛋白質萃取與聚丙烯醯胺膠體電泳 (SDS-PAGE) 21 11.2 蛋白質轉漬 21 11.3 抗體雜合與訊號偵測 21 12. 癒傷葡聚醣沉積 (callose deposition) 分析 22 13. 細胞離子滲漏測定 22 14. 疫病菌接種 23 14.1 N. tabacum cv. Samsun-NN疫病菌P. parasitica全株接種 23 14.2 N. benthamiana疫病菌P. parasitica離葉接種 23 參、結果 24 1. NtLYM2、NtCERK1、NtSOBIR1和NtBAK1同源性基因親緣關係分析 24 2. OPEL重組蛋白純化與其引發植物防禦反應的活性 26 3. NtLYM2、NtCERK1-like、NtSOBIR1和NtBAK1因應OPEL處理之表現情形 26 4. 測試CMV誘導N. tabacum基因靜默系統於的效率 27 5. 基因靜默NtLYM2、NtCERK1-like、NtSOBIR1或NtBAK1對OPEL引發植物基礎免疫反應的影響 28 6. 疫病菌P. parasitica感染誘導NtLYM2的基因表現 29 7. 暫表現NtLYM2提升疫病菌P. parasitica的感染 29 肆、討論 30 1. CMV介導N. tabacum cv. Samsun-NN基因靜默 30 2. NtLYM2靜默導致植株葉片出現明顯嵌紋且抑制生長 31 3. 靜默NtLYM2或NtBAK1對OPEL引發免疫反應的影響 32 4. NtCERK1在OPEL介導免疫反應的角色 34 5. 暫表現NtLYM2提升疫病菌P. parasitica之感染面積 35 6. 結語 37 伍、引用文獻 38 陸、附表 50 柒、附圖 52 捌、附錄 70
dc.language.isozh-TW
dc.subjectCMV誘導基因靜默zh_TW
dc.subject菸草zh_TW
dc.subject植物免疫反應zh_TW
dc.subject疫病菌zh_TW
dc.subjectpattern-triggered immunityen
dc.subjectOPELen
dc.subjectreceptor-like proteins (RLPs)en
dc.subjectreceptor-like kinases (RLKs)en
dc.subjectCMV-mediated gene silencingen
dc.subjectNicotiana tabacumen
dc.subjectPhytophthora parasiticaen
dc.title探討OPEL引發植物免疫反應之機制zh_TW
dc.titleInvestigating the mechanism underlying OPEL-induced plant immune responsesen
dc.date.schoolyear110-1
dc.description.degree碩士
dc.contributor.oralexamcommittee吳志航(Hsuan-Jung Su),葉信宏(Daniel Wei-Chung Miao),鍾嘉綾(Po-Ling Kuo),(Hao-Chung Cheng),(Ling-San Meng),(Ling-San Meng),(Ling-San Meng)
dc.subject.keyword植物免疫反應,菸草,疫病菌,CMV誘導基因靜默,zh_TW
dc.subject.keywordOPEL,receptor-like proteins (RLPs),receptor-like kinases (RLKs),CMV-mediated gene silencing,Nicotiana tabacum,pattern-triggered immunity,Phytophthora parasitica,,en
dc.relation.page70
dc.identifier.doi10.6342/NTU202200490
dc.rights.note同意授權(限校園內公開)
dc.date.accepted2022-02-10
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept植物病理與微生物學研究所zh_TW
dc.date.embargo-lift2027-02-09-
顯示於系所單位:植物病理與微生物學系

文件中的檔案:
檔案 大小格式 
U0001-0902202223063700.pdf
  未授權公開取用
3.07 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved