Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生化科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82123
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳光超(Guang-Chao Chen)
dc.contributor.authorShih-Yuan Chenen
dc.contributor.author陳世原zh_TW
dc.date.accessioned2022-11-25T05:36:20Z-
dc.date.available2026-10-18
dc.date.copyright2021-11-02
dc.date.issued2021
dc.date.submitted2021-10-19
dc.identifier.citationAlemu, E.A., Lamark, T., Torgersen, K.M., Birgisdottir, A.B., Larsen, K.B., Jain, A., Olsvik, H., Øvervatn, A., Kirkin, V., and Johansen, T. (2012). ATG8 family proteins act as scaffolds for assembly of the ULK complex: sequence requirements for LC3-interacting region (LIR) motifs. Journal of Biological Chemistry 287, 39275-39290. Alessi, D.R., James, S.R., Downes, C.P., Holmes, A.B., Gaffney, P.R., Reese, C.B., and Cohen, P. (1997). Characterization of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase Bα. Current biology 7, 261-269. Balachandran, R.S., Heighington, C.S., Starostina, N.G., Anderson, J.W., Owen, D.L., Vasudevan, S., and Kipreos, E.T. (2016). The ubiquitin ligase CRL2ZYG11 targets cyclin B1 for degradation in a conserved pathway that facilitates mitotic slippageCRL2ZYG11 promotes mitotic slippage. The Journal of cell biology 215, 151-166. Bar-Peled, L., Chantranupong, L., Cherniack, A.D., Chen, W.W., Ottina, K.A., Grabiner, B.C., Spear, E.D., Carter, S.L., Meyerson, M., and Sabatini, D.M. (2013). A Tumor suppressor complex with GAP activity for the Rag GTPases that signal amino acid sufficiency to mTORC1. Science 340, 1100-1106. Bar-Peled, L., Schweitzer, L.D., Zoncu, R., and Sabatini, D.M. (2012). Ragulator is a GEF for the rag GTPases that signal amino acid levels to mTORC1. Cell 150, 1196-1208. Ben-Sahra, I., Hoxhaj, G., Ricoult, S.J., Asara, J.M., and Manning, B.D. (2016). mTORC1 induces purine synthesis through control of the mitochondrial tetrahydrofolate cycle. Science 351, 728-733. Birgisdottir, Å.B., Mouilleron, S., Bhujabal, Z., Wirth, M., Sjøttem, E., Evjen, G., Zhang, W., Lee, R., O’Reilly, N., and Tooze, S.A. (2019). Members of the autophagy class III phosphatidylinositol 3-kinase complex I interact with GABARAP and GABARAPL1 via LIR motifs. Autophagy 15, 1333-1355. Bozic, M., van den Bekerom, L., Milne, B.A., Goodman, N., Roberston, L., Prescott, A.R., Macartney, T.J., Dawe, N., and McEwan, D.G. (2020). A conserved ATG2‐GABARAP family interaction is critical for phagophore formation. EMBO reports 21, e48412. Branon, T.C., Bosch, J.A. Sanchez, A.D., Udeshi, N.D., Svinkina, T., Carr, S.A., Feldman, J.L., Perrimon, N., and Ting, A.Y. (2018). Efficient proximity labeling in living cells and organisms with TurboID. Nature biotechnology 36, 880-887. Cai, W., and Yang, H. (2016). The structure and regulation of Cullin 2 based E3 ubiquitin ligases and their biological functions. Cell division 11, 1-11. Chantranupong, L., Scaria, S.M., Saxton, R.A., Gygi, M.P., Shen, K., Wyant, G.A., Wang, T., Harper, J.W., Gygi, S.P., and Sabatini, D.M. (2016). The CASTOR proteins are arginine sensors for the mTORC1 pathway. Cell 165, 153-164. Chen, R., Zou, Y., Mao, D., Sun, D., Gao, G., Shi, J., Liu, X., Zhu, C., Yang, M., and Ye, W. (2014). The general amino acid control pathway regulates mTOR and autophagy during serum/glutamine starvation. Journal of Cell Biology 206, 173-182. Düvel, K., Yecies, J.L., Menon, S., Raman, P., Lipovsky, A.I., Souza, A.L., Triantafellow, E., Ma, Q., Gorski, R., and Cleaver, S. (2010). Activation of a metabolic gene regulatory network downstream of mTOR complex 1. Molecular cell 39, 171-183. Deng, L., Jiang, C., Chen, L., Jin, J., Wei, J., Zhao, L., Chen, M., Pan, W., Xu, Y., and Chu, H. (2015). The ubiquitination of RagA GTPase by RNF152 negatively regulates mTORC1 activation. Molecular cell 58, 804-818. DeRenzo, C., Reese, K.J., and Seydoux, G. (2003). Exclusion of germ plasm proteins from somatic lineages by cullin-dependent degradation. Nature 424, 685-689. Deretic, V. (2021). Autophagy in inflammation, infection, and immunometabolism. Immunity 54, 437-453. Di Bartolomeo, S., Corazzari, M., Nazio, F., Oliverio, S., Lisi, G., Antonioli, M., Pagliarini, V., Matteoni, S., Fuoco, C., and Giunta, L. (2010). The dynamic interaction of AMBRA1 with the dynein motor complex regulates mammalian autophagy. Journal of Cell Biology 191, 155-168. Dikic, I., and Elazar, Z. (2018). Mechanism and medical implications of mammalian autophagy. Nature reviews Molecular cell biology 19, 349-364. Dooley, H.C., Razi, M., Polson, H.E., Girardin, S.E., Wilson, M.I., and Tooze, S.A. (2014). WIPI2 links LC3 conjugation with PI3P, autophagosome formation, and pathogen clearance by recruiting Atg12–5-16L1. Molecular cell 55, 238-252. Dorrello, N.V., Peschiaroli, A., Guardavaccaro, D., Colburn, N.H., Sherman, N.E., and Pagano, M. (2006). S6K1-and ßTRCP-mediated degradation of PDCD4 promotes protein translation and cell growth. Science 314, 467-471. Epping, M., Wang, L., Edel, M., Carlee, L., Hernandez, M., and Bernards, R. (2005). The human tumor antigen repressor of retinoic acid PRAME is a dominant receptor signaling. Cell 122, 835-847. Feng, H., Zhong, W., Punkosdy, G., Gu, S., Zhou, L., Seabolt, E.K., and Kipreos, E.T. (1999). CUL-2 is required for the G1-to-S-phase transition and mitotic chromosome condensation in Caenorhabditis elegans. Nature cell biology 1, 486-492. Fu, W., and Hall, M.N. (2020). Regulation of mTORC2 signaling. Genes 11, 1045. Gatica, D., Lahiri, V., and Klionsky, D.J. (2018). Cargo recognition and degradation by selective autophagy. Nature cell biology 20, 233-242. Gilder, A.S., Chen, Y.-B., Jackson III, R.J., Jiang, J., and Maher, J.F. (2013). Fem1b promotes ubiquitylation and suppresses transcriptional activity of Gli1. Biochemical and biophysical research communications 440, 431-436. Gingras, A.-C., Gygi, S.P., Raught, B., Polakiewicz, R.D., Abraham, R.T., Hoekstra, M.F., Aebersold, R., and Sonenberg, N. (1999). Regulation of 4E-BP1 phosphorylation: a novel two-step mechanism. Genes development 13, 1422-1437. Gwinn, D. (2008). Shackelford DB, Egan DF, Mihaylova MM, Mery A, Vasquez DS, Turk BE, Shaw RJ. AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol Cell 30, 214-226. Hamasaki, M., Furuta, N., Matsuda, A., Nezu, A., Yamamoto, A., Fujita, N., Oomori, H., Noda, T., Haraguchi, T., and Hiraoka, Y. (2013). Autophagosomes form at ER–mitochondria contact sites. Nature 495, 389-393. Hartmann-Petersen, R., Seeger, M., and Gordon, C. (2003). Transferring substrates to the 26S proteasome. Trends in biochemical sciences 28, 26-31. Hershko, A., and Ciechanover, A. (1998). The ubiquitin system. Annual review of biochemistry 67, 425-479. Hicke, L., and Dunn, R. (2003). Regulation of membrane protein transport by ubiquitin and ubiquitin-binding proteins. Annual review of cell and developmental biology 19, 141-172. Hochstrasser, M. (1995). Ubiquitin, proteasomes, and the regulation of intracellular protein degradation. Current opinion in cell biology 7, 215-223. Holz, M.K., Ballif, B.A., Gygi, S.P., and Blenis, J. (2005). mTOR and S6K1 mediate assembly of the translation preinitiation complex through dynamic protein interchange and ordered phosphorylation events. Cell 123, 569-580. Hosokawa, N., Hara, T., Kaizuka, T., Kishi, C., Takamura, A., Miura, Y., Iemura, S.-i., Natsume, T., Takehana, K., and Yamada, N. (2009). Nutrient-dependent mTORC1 association with the ULK1–Atg13–FIP200 complex required for autophagy. Molecular biology of the cell 20, 1981-1991. Hsu, P.P., Kang, S.A., Rameseder, J., Zhang, Y., Ottina, K.A., Lim, D., Peterson, T.R., Choi, Y., Gray, N.S., and Yaffe, M.B. (2011). The mTOR-regulated phosphoproteome reveals a mechanism of mTORC1-mediated inhibition of growth factor signaling. Science 332, 1317-1322. Ichimiya, T., Yamakawa, T., Hirano, T., Yokoyama, Y., Hayashi, Y., Hirayama, D., Wagatsuma, K., Itoi, T., and Nakase, H. (2020). Autophagy and autophagy-related diseases: a review. International Journal of Molecular Sciences 21, 8974. Inoki, K., Li, Y., Xu, T., and Guan, K.-L. (2003a). Rheb GTPase is a direct target of TSC2 GAP activity and regulates mTOR signaling. Genes development 17, 1829-1834. Inoki, K., Zhu, T., and Guan, K.-L. (2003b). TSC2 mediates cellular energy response to control cell growth and survival. Cell 115, 577-590. Itakura, E., Kishi-Itakura, C., and Mizushima, N. (2012). The hairpin-type tail-anchored SNARE syntaxin 17 targets to autophagosomes for fusion with endosomes/lysosomes. Cell 151, 1256-1269. Jin, G., Lee, S.-W., Zhang, X., Cai, Z., Gao, Y., Chou, P.-C., Rezaeian, A.H., Han, F., Wang, C.-Y., and Yao, J.-C. (2015). Skp2-mediated RagA ubiquitination elicits a negative feedback to prevent amino-acid-dependent mTORC1 hyperactivation by recruiting GATOR1. Molecular cell 58, 989-1000. Kamura, T., Maenaka, K., Kotoshiba, S., Matsumoto, M., Kohda, D., Conaway, R.C., Conaway, J.W., and Nakayama, K.I. (2004). VHL-box and SOCS-box domains determine binding specificity for Cul2-Rbx1 and Cul5-Rbx2 modules of ubiquitin ligases. Genes development 18, 3055-3065. Kamura, T., Sato, S., Haque, D., Liu, L., Kaelin, W.G., Conaway, R.C., and Conaway, J.W. (1998). The Elongin BC complex interacts with the conserved SOCS-box motif present in members of the SOCS, ras, WD-40 repeat, and ankyrin repeat families. Genes development 12, 3872-3881. Kang, R., Livesey, K.M., Zeh, I., Herbert J, Loze, M.T., and Tang, D. (2011). Metabolic regulation by HMGB1-mediated autophagy and mitophagy. Autophagy 7, 1256-1258. Katsuragi, Y., Ichimura, Y., and Komatsu, M. (2015). p62/SQSTM 1 functions as a signaling hub and an autophagy adaptor. The FEBS journal 282, 4672-4678. Kaufmann, A., Beier, V., Franquelim, H.G., and Wollert, T. (2014). Molecular mechanism of autophagic membrane-scaffold assembly and disassembly. Cell 156, 469-481. Khandia, R., Dadar, M., Munjal, A., Dhama, K., Karthik, K., Tiwari, R., Yatoo, M., Iqbal, H., Singh, K.P., and Joshi, S.K. (2019). A comprehensive review of autophagy and its various roles in infectious, non-infectious, and lifestyle diseases: current knowledge and prospects for disease prevention, novel drug design, and therapy. Cells 8, 674. Kim, D.I., Jensen, S.C., Noble, K.A., Kc, B., Roux, K.H., Motamedchaboki, K., and Roux, K.J. (2016). An improved smaller biotin ligase for BioID proximity labeling. Molecular biology of the cell 27, 1188-1196. Kim, J., and Guan, K.-L. (2019). mTOR as a central hub of nutrient signalling and cell growth. Nature cell biology 21, 63-71. Kim, J., and Kim, H. (2010). 201 1. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol 13, 132-141. Koyama-Honda, I., Itakura, E., Fujiwara, T.K., and Mizushima, N. (2013). Temporal analysis of recruitment of mammalian ATG proteins to the autophagosome formation site. Autophagy 9, 1491-1499. Liao, Y., Wang, J., Jaehnig, E.J., Shi, Z., and Zhang, B. (2019). WebGestalt 2019: gene set analysis toolkit with revamped UIs and APIs. Nucleic acids research 47, W199-W205. Liu, G.Y., and Sabatini, D.M. (2020). mTOR at the nexus of nutrition, growth, ageing and disease. Nature Reviews Molecular Cell Biology 21, 183-203. Liu, J., Vasudevan, S., and Kipreos, E.T. (2004). CUL-2 and ZYG-11 promote meiotic anaphase II and the proper placement of the anterior-posterior axis in C. elegans. Liu, X., Zurlo, G., and Zhang, Q. (2020). The roles of Cullin-2 E3 ubiquitin ligase complex in cancer. Cullin-RING Ligases and Protein Neddylation, 173-186. Ma, L., Chen, Z., Erdjument-Bromage, H., Tempst, P., and Pandolfi, P.P. (2005). Phosphorylation and functional inactivation of TSC2 by Erk: implications for tuberous sclerosisand cancer pathogenesis. Cell 121, 179-193. Ma, X.M., Yoon, S.-O., Richardson, C.J., Jülich, K., and Blenis, J. (2008). SKAR links pre-mRNA splicing to mTOR/S6K1-mediated enhanced translation efficiency of spliced mRNAs. Cell 133, 303-313. Mahrour, N., Redwine, W.B., Florens, L., Swanson, S.K., Martin-Brown, S., Bradford, W.D., Staehling-Hampton, K., Washburn, M.P., Conaway, R.C., and Conaway, J.W. (2008). Characterization of Cullin-box sequences that direct recruitment of Cul2-Rbx1 and Cul5-Rbx2 modules to Elongin BC-based ubiquitin ligases. Journal of Biological Chemistry 283, 8005-8013. Malik, B.R., Maddison, D.C., Smith, G.A., and Peters, O.M. (2019). Autophagic and endo-lysosomal dysfunction in neurodegenerative disease. Molecular brain 12, 1-21. Martina, J.A., Chen, Y., Gucek, M., and Puertollano, R. (2012). MTORC1 functions as a transcriptional regulator of autophagy by preventing nuclear transport of TFEB. Autophagy 8, 903-914. New, J., Arnold, L., Ananth, M., Alvi, S., Thornton, M., Werner, L., Tawfik, O., Dai, H., Shnayder, Y., and Kakarala, K. (2017). Secretory autophagy in cancer-associated fibroblasts promotes head and neck cancer progression and offers a novel therapeutic target. Cancer research 77, 6679-6691. Nordstrom‐O'Brien, M., van der Luijt, R.B., van Rooijen, E., van den Ouweland, A.M., Majoor‐Krakauer, D.F., Lolkema, M.P., van Brussel, A., Voest, E.E., and Giles, R.H. (2010). Genetic analysis of von Hippel‐Lindau disease. Human mutation 31, 521-537. Paek, J., Kalocsay, M., Staus, D.P., Wingler, L., Pascolutti, R., Paulo, J.A., Gygi, S.P., and Kruse, A.C. (2017). Multidimensional tracking of GPCR signaling via peroxidase-catalyzed proximity labeling. Cell 169, 338-349. e311. Park, J.-M., Seo, M., Jung, C.H., Grunwald, D., Stone, M., Otto, N.M., Toso, E., Ahn, Y., Kyba, M., and Griffin, T.J. (2018). ULK1 phosphorylates Ser30 of BECN1 in association with ATG14 to stimulate autophagy induction. Autophagy 14, 584-597. Polson, H.d.L.R.D.R.M.U.S.C.M.T.S. (2010). (2010) Mammalian Atg18 (WIPI2) localizes to omegasome-anchored phagophores and positively regulates LC3 lipidation. Autophagy 6, 506-522. Potter, C.J., Pedraza, L.G., and Xu, T. (2002). Akt regulates growth by directly phosphorylating Tsc2. Nature cell biology 4, 658-665. Quesada, J., and Amato, R. (2012). The molecular biology of soft-tissue sarcomas and current trends in therapy. Sarcoma 2012. Reinstein, E., and Ciechanover, A. (2006). Narrative review: protein degradation and human diseases: the ubiquitin connection. Annals of internal medicine 145, 676-684. Rock, K.L., Gramm, C., Rothstein, L., Clark, K., Stein, R., Dick, L., Hwang, D., and Goldberg, A.L. (1994). Inhibitors of the proteasome block the degradation of most cell proteins and the generation of peptides presented on MHC class I molecules. Cell 78, 761-771. Rogov, V., Dötsch, V., Johansen, T., and Kirkin, V. (2014). Interactions between autophagy receptors and ubiquitin-like proteins form the molecular basis for selective autophagy. Molecular cell 53, 167-178. Rousseau, A., and Bertolotti, A. (2016). An evolutionarily conserved pathway controls proteasome homeostasis. Nature 536, 184-189. Roux, K.J., Kim, D.I., Raida, M., and Burke, B. (2012). A promiscuous biotin ligase fusion protein identifies proximal and interacting proteins in mammalian cells. The Journal of cell biology 196, 801-810. Russell, R.C., Tian, Y., Yuan, H., Park, H.W., Chang, Y.-Y., Kim, J., Kim, H., Neufeld, T.P., Dillin, A., and Guan, K.-L. (2013). ULK1 induces autophagy by phosphorylating Beclin-1 and activating VPS34 lipid kinase. Nature cell biology 15, 741-750. Saitoh, M., Pullen, N., Brennan, P., Dennis, P.B., Thomas, G., and Cantrell, D. (2002). Regulation of an activated S6 kinase 1 variant reveals a novel mammalian target of rapamycin phosphorylation site. Journal of Biological Chemistry 277, 20104-20112. Saleeb, R.S., Kavanagh, D.M., Dun, A.R., Dalgarno, P.A., and Duncan, R.R. (2019). A VPS33A-binding motif on syntaxin 17 controls autophagy completion in mammalian cells. Journal of Biological Chemistry 294, 4188-4201. Sancak, Y., Bar-Peled, L., Zoncu, R., Markhard, A.L., Nada, S., and Sabatini, D.M. (2010). Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. Cell 141, 290-303. Sancak, Y., Peterson, T.R., Shaul, Y.D., Lindquist, R.A., Thoreen, C.C., Bar-Peled, L., and Sabatini, D.M. (2008). The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1. Science 320, 1496-1501. Sarbassov, D.D., Ali, S.M., Sengupta, S., Sheen, J.-H., Hsu, P.P., Bagley, A.F., Markhard, A.L., and Sabatini, D.M. (2006). Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB. Molecular cell 22, 159-168. Saxton, R.A., and Sabatini, D.M. (2017). mTOR signaling in growth, metabolism, and disease. Cell 168, 960-976. Schröder, B.A., Wrocklage, C., Hasilik, A., and Saftig, P. (2010). The proteome of lysosomes. Proteomics 10, 4053-4076. Semple, C. (2003). Group, RG, and Members, GSL (2003). Genome Res 13, 1389-1394. Sha, Y., Rao, L., Settembre, C., Ballabio, A., and Eissa, N.T. (2017). STUB 1 regulates TFEB‐induced autophagy–lysosome pathway. The EMBO journal 36, 2544-2552. Shen, K., Choe, A., and Sabatini, D.M. (2017). Intersubunit crosstalk in the Rag GTPase heterodimer enables mTORC1 to respond rapidly to amino acid availability. Molecular cell 68, 552-565. e558. Sisti, G., Kanninen, T.T., Ramer, I., and Witkin, S.S. (2015). Interaction between the inducible 70-kDa heat shock protein and autophagy: effects on fertility and pregnancy. Cell Stress and Chaperones 20, 753-758. Sonneville, R., and Gönczy, P. (2004). Zyg-11 and cul-2 regulate progression through meiosis II and polarity establishment in C. elegans. Starostina, N.G., Simpliciano, J.M., McGuirk, M.A., and Kipreos, E.T. (2010). CRL2LRR-1 Targets a CDK inhibitor for cell cycle control in C. elegans and actin-based motility regulation in human cells. Developmental cell 19, 753-764. Taherbhoy, A.M., Tait, S.W., Kaiser, S.E., Williams, A.H., Deng, A., Nourse, A., Hammel, M., Kurinov, I., Rock, C.O., and Green, D.R. (2011). Atg8 transfer from Atg7 to Atg3: a distinctive E1-E2 architecture and mechanism in the autophagy pathway. Molecular cell 44, 451-461. Tai, H.-C., and Schuman, E.M. (2008). Ubiquitin, the proteasome and protein degradation in neuronal function and dysfunction. Nature Reviews Neuroscience 9, 826-838. Takahara, T., Amemiya, Y., Sugiyama, R., Maki, M., and Shibata, H. (2020). Amino acid-dependent control of mTORC1 signaling: A variety of regulatory modes. Journal of biomedical science 27, 1-16. Tang, D., Kang, R., Livesey, K.M., Cheh, C.-W., Farkas, A., Loughran, P., Hoppe, G., Bianchi, M.E., Tracey, K.J., and Zeh III, H.J. (2010). Endogenous HMGB1 regulates autophagy. Journal of Cell Biology 190, 881-892. Timms, R.T., Zhang, Z., Rhee, D.Y., Harper, J.W., Koren, I., and Elledge, S.J. (2019). A glycine-specific N-degron pathway mediates the quality control of protein N-myristoylation. Science 365. Tsuboyama, K., Koyama-Honda, I., Sakamaki, Y., Koike, M., Morishita, H., and Mizushima, N. (2016). The ATG conjugation systems are important for degradation of the inner autophagosomal membrane. Science 354, 1036-1041. Tsun, Z.-Y., Bar-Peled, L., Chantranupong, L., Zoncu, R., Wang, T., Kim, C., Spooner, E., and Sabatini, D.M. (2013). The folliculin tumor suppressor is a GAP for the RagC/D GTPases that signal amino acid levels to mTORC1. Molecular cell 52, 495-505. Unni, N., and Arteaga, C.L. (2019). Is dual mTORC1 and mTORC2 therapeutic blockade clinically feasible in cancer? JAMA oncology 5, 1564-1565. Vasudevan, S., Starostina, N.G., and Kipreos, E.T. (2007). The Caenorhabditis elegans cell‐cycle regulator ZYG‐11 defines a conserved family of CUL‐2 complex components. EMBO reports 8, 279-286. Voges, D., Zwickl, P., and Baumeister, W. (1999). The 26S proteasome: a molecular machine designed for controlled proteolysis. Annual review of biochemistry 68, 1015-1068. White, E.A., Sowa, M.E., Tan, M.J.A., Jeudy, S., Hayes, S.D., Santha, S., Münger, K., Harper, J.W., and Howley, P.M. (2012). Systematic identification of interactions between host cell proteins and E7 oncoproteins from diverse human papillomaviruses. Proceedings of the National Academy of Sciences 109, E260-E267. Wolfson, R.L., Chantranupong, L., Saxton, R.A., Shen, K., Scaria, S.M., Cantor, J.R., and Sabatini, D.M. (2016). Sestrin2 is a leucine sensor for the mTORC1 pathway. Science 351, 43-48. Wu, S., Pei, Q., Ni, W., Fu, X., Zhang, W., Song, C., Peng, Y., Guo, Q., Dong, J., and Yao, M. (2021). HSPA1A Protects Cells from Thermal Stress by Impeding ESCRT-0–Mediated Autophagic Flux in Epidermal Thermoresistance. Journal of Investigative Dermatology 141, 48-58. e43. Xu, H., and Ren, D. (2015). Lysosomal physiology. Annual review of physiology 77, 57-80. Yang, H., Jiang, X., Li, B., Yang, H.J., Miller, M., Yang, A., Dhar, A., and Pavletich, N.P. (2017). Mechanisms of mTORC1 activation by RHEB and inhibition by PRAS40. Nature 552, 368-373. Yeh, C.W., Huang, W.C., Hsu, P.H., Yeh, K.H., Wang, L.C., Hsu, P.W.C., Lin, H.C., Chen, Y.N., Chen, S.C., and Yeang, C.H. (2021). The C‐degron pathway eliminates mislocalized proteins and products of deubiquitinating enzymes. The EMBO journal 40, e105846. Yen, H.-C.S., Xu, Q., Chou, D.M., Zhao, Z., and Elledge, S.J. (2008). Global protein stability profiling in mammalian cells. Science 322, 918-923. Yoshii, S.R., and Mizushima, N. (2017). Monitoring and measuring autophagy. International journal of molecular sciences 18, 1865. Zhao, J., Zhai, B., Gygi, S.P., and Goldberg, A.L. (2015). mTOR inhibition activates overall protein degradation by the ubiquitin proteasome system as well as by autophagy. Proceedings of the National Academy of Sciences 112, 15790-15797. Zoncu, R., Efeyan, A., and Sabatini, D.M. (2011). mTOR: from growth signal integration to cancer, diabetes and ageing. Nature reviews Molecular cell biology 12, 21-3
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82123-
dc.description.abstract"ZER1蛋白屬於ZYG11家族(ZYG11A, ZYG11B和ZER1)的其中之一,它們是Cullin2-RING泛素連接酶複合物(CRL2)的受體辨識亞單位。目前,ZER1在哺乳動物細胞中的生理作用還不太清楚。而ZER1的果蠅直系同源物,稱為dZER1。根據我們之前的實驗知道RagC-D會和dZER1有交互作用。Rag蛋白是鳥嘌呤核苷酸結合蛋白,負責調節 TOR的空間募集和活化,進而調控細胞自噬。因此,我們進一步研究ZER1在細胞自噬和mTOR信號傳導中的功能,同時,我們還透過 TurboID 鄰近標記-質譜分析去探索ZER1 相互作用組。 然而,在哺乳動物細胞中敲落ZER1並未發現對細胞自噬或mTOR途徑有任何顯著影響。而我們的研究顯示不僅是ZER1,ZYG11A和ZYG11B也會與 Rag蛋白相互作用,指向ZYG11家族具有功能重疊。另一方面,根據質譜數據的富集分析,我們發現ZER1與蛋白質折疊、核糖核酸調控和細胞核轉運有關。此外我們也找到一些與細胞自噬相關的潛在相互作用物,並在共免疫沉澱法測定後確實與ZER1相互作用。總結上述發現,我們未來將關注整個ZYG11家族如何在細胞自噬和 mTOR 信號傳導中作用,並且我們也會確定哪些ZER1 潛在相互作用組確實是ZER1的受體以提供未來的研究。 "zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-25T05:36:20Z (GMT). No. of bitstreams: 1
U0001-1510202100273100.pdf: 3903781 bytes, checksum: af7036342cb0c883099947c213de900a (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents"中文摘要 I Abstract II Introduction 6 1. Autophagy 6 2. mTOR signaling pathway 9 3. Proximity labeling 13 4. Cullin2-RING E3 ubiquitin ligase complexes 14 Material and methods 19 Results 28 1. ZER1 may be associated with mTOR signaling and autophagy 28 2. Knockdown of ZER1 does not affect autophagy and mTOR signaling 29 3. ZYG11A and ZYG11B may have overlapping functions with ZER1 30 4. TurboID based proximity labeling is applied in the study of the ZER1 interactome 32 5. The major role of ZER1 is associated with protein folding, nuclear transport, and DNA RNA regulation 33 6. Identification of ZER1 interactors 34 Discussion 36 Reference 40 Figures 52"
dc.language.isoen
dc.subjectZYG11家族zh_TW
dc.subjectTurboIDzh_TW
dc.subject細胞自噬zh_TW
dc.subjectmTOR信號傳導zh_TW
dc.subjectZER1zh_TW
dc.subjectautophagyen
dc.subjectmTOR signalingen
dc.subjectZER1en
dc.subjectZYG11 familyen
dc.subjectTurboIDen
dc.title探索 ZER1蛋白在哺乳細胞中之分子功能zh_TW
dc.titleExploring the Molecular Function of ZER1 in Mammalian Cellsen
dc.date.schoolyear109-2
dc.description.degree碩士
dc.contributor.oralexamcommittee楊維元(Hsin-Tsai Liu),顏雪琪(Chih-Yang Tseng)
dc.subject.keywordZER1,ZYG11家族,TurboID,細胞自噬,mTOR信號傳導,zh_TW
dc.subject.keywordZER1,ZYG11 family,TurboID,autophagy,mTOR signaling,en
dc.relation.page70
dc.identifier.doi10.6342/NTU202103740
dc.rights.note同意授權(限校園內公開)
dc.date.accepted2021-10-20
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生化科學研究所zh_TW
dc.date.embargo-lift2026-10-18-
顯示於系所單位:生化科學研究所

文件中的檔案:
檔案 大小格式 
U0001-1510202100273100.pdf
  未授權公開取用
3.81 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved