請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82110完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 盧子彬(Tzu-Pin Lu) | |
| dc.contributor.author | Yu-Hsin Liu | en |
| dc.contributor.author | 劉聿欣 | zh_TW |
| dc.date.accessioned | 2022-11-25T05:36:04Z | - |
| dc.date.available | 2022-12-31 | |
| dc.date.copyright | 2021-11-11 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-10-25 | |
| dc.identifier.citation | 1. AJCC. (2021). Updated Breast Chapter for 8th Edition. Retrieved from https://cancerstaging.org/references-tools/deskreferences/Pages/Breast-Cancer-Staging.aspx 2. Bertram, M. Y., Lauer, J. A., De Joncheere, K., Edejer, T., Hutubessy, R., Kieny, M.-P., Hill, S. R. (2016). Cost–effectiveness thresholds: pros and cons. Bulletin of the World Health Organization, 94(12), 925. 3. Blumen, H., Fitch, K., Polkus, V. (2016). Comparison of treatment costs for breast cancer, by tumor stage and type of service. American health drug benefits, 9(1), 23. 4. Bonadonna, G., Moliterni, A., Zambetti, M., Daidone, M. G., Pilotti, S., Gianni, L., Valagussa, P. (2005). 30 years' follow up of randomised studies of adjuvant CMF in operable breast cancer: cohort study. Bmj, 330(7485), 217. 5. Brandt, J., Garne, J. P., Tengrup, I., Manjer, J. (2015). Age at diagnosis in relation to survival following breast cancer: a cohort study. World journal of surgical oncology, 13(1), 1-11. 6. Campbell, H., Taylor, M., Harris, A., Gray, A. (2009). An investigation into the performance of the Adjuvant! Online prognostic programme in early breast cancer for a cohort of patients in the United Kingdom. British journal of cancer, 101(7), 1074-1084. 7. center, T. c. r. (2009). ICD-O癌症部位Topography [T-Code]對照表(ICD-O-FT與ICD-O-3版本). 8. Chen, Y.-C., Yeh, H.-Y., Wu, J.-C., Haschler, I., Chen, T.-J., Wetter, T. (2011). Taiwan's National Health Insurance Research Database: administrative health care database as study object in bibliometrics. Scientometrics, 86(2), 365-380. 9. Chiang, C.-J., Wang, Y.-W., Lee, W.-C. (2019). Taiwan's nationwide cancer registry system of 40 years: past, present, and future. J Formos Med Assoc, 118(5), 856-858. 10. Curtis, C., Shah, S. P., Chin, S.-F., Turashvili, G., Rueda, O. M., Dunning, M. J., . . . Yuan, Y. (2012). The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature, 486(7403), 346-352. 11. Darby, S. C., Ewertz, M., McGale, P., Bennet, A. M., Blom-Goldman, U., Brønnum, D., . . . Gigante, B. (2013). Risk of ischemic heart disease in women after radiotherapy for breast cancer. New England Journal of Medicine, 368(11), 987-998. 12. Deena, M. (2015). Computation of Gene Expression-Based Signatures in Breast Cancer. 13. Dragun, A. E., Huang, B., Tucker, T. C., Spanos, W. J. (2011). Disparities in the application of adjuvant radiotherapy after breast‐conserving surgery for early stage breast cancer: impact on overall survival. Cancer, 117(12), 2590-2598. 14. Earle, C., Chapman, R., Baker, C., Bell, C., Stone, P., Sandberg, E., Neumann, P. (2000). Systematic overview of cost-utility assessments in oncology. Journal of Clinical Oncology, 18(18), 3302-3317. 15. Hospital, C. G. (2020). 國泰醫院收費標準. Retrieved from https://www.cgh.org.tw/ec99/rwd1320/allphoto/1700/1275_fee.pdf 16. Hospital, M. M. (2020). 西醫收費標準-馬偕公告版-審查通過2020. Retrieved from http://www.xn--6xq291p.tw/upload/doc/sale/%E8%A5%BF%E9%86%AB%E6%94%B6%E8%B2%BB%E6%A8%99%E6%BA%96-%E9%A6%AC%E5%81%95%E5%85%AC%E5%91%8A%E7%89%88-%E5%AF%A9%E6%9F%A5%E9%80%9A%E9%81%8E2020.pdf 17. Hung, M., Xu, J., Nielson, D., Bounsanga, J., Gu, Y., Hansen, A. R., Voss, M. W. (2018). Evaluating the prediction of breast cancer survival using lymph node ratio. Journal of breast cancer, 21(3), 315. 18. Jacobsen, P. B., Stein, K. (1999). Is Fatigue a Long-term Side Effect of Breast Cancer Treatment? Breast cancer patients are more likely to experience fatigue following adjuvant chemotherapy or autologous bone marrow transplantation than following regional therapy. Cancer Control, 6(3), 256-263. 19. Lang, H.-C., Wu, S.-L. (2012). Lifetime costs of the top five cancers in Taiwan. The European Journal of Health Economics, 13(3), 347-353. 20. Mook, S., Schmidt, M. K., Rutgers, E. J., van de Velde, A. O., Visser, O., Rutgers, S. M., . . . Ravdin, P. M. (2009). Calibration and discriminatory accuracy of prognosis calculation for breast cancer with the online Adjuvant! program: a hospital-based retrospective cohort study. The lancet oncology, 10(11), 1070-1076. 21. Mook, S., Van’t Veer, L. J., Rutgers, E. J., Ravdin, P. M., van de Velde, A. O., van Leeuwen, F. E., . . . Schmidt, M. K. (2011). Independent prognostic value of screen detection in invasive breast cancer. Journal of the National Cancer Institute, 103(7), 585-597. 22. National Health Insurance Administration, M. o. H., Welfare. (2014). National Health Insurance Annual Report 2014–2015. In: Ministry of Health and Welfare Taipei, Taiwan. 23. Olivotto, I. A., Bajdik, C. D., Ravdin, P. M., Speers, C. H., Coldman, A. J., Norris, B. D., . . . Gelmon, K. A. (2005). Population-based validation of the prognostic model ADJUVANT! for early breast cancer. Journal of Clinical Oncology, 23(12), 2716-2725. 24. Pereira, B., Chin, S.-F., Rueda, O. M., Vollan, H.-K. M., Provenzano, E., Bardwell, H. A., . . . Sammut, S.-J. (2016). The somatic mutation profiles of 2,433 breast cancers refine their genomic and transcriptomic landscapes. Nature communications, 7(1), 1-16. 25. Peters, N., Rose, A., Armstrong, K. (2004). The association between race and attitudes about predictive genetic testing. Cancer Epidemiology and Prevention Biomarkers, 13(3), 361-365. 26. Ravdin, P. M., Siminoff, L. A., Davis, G. J., Mercer, M. B., Hewlett, J., Gerson, N., Parker, H. L. (2001). Computer program to assist in making decisions about adjuvant therapy for women with early breast cancer. Journal of Clinical Oncology, 19(4), 980-991. 27. REGISTRY, T. C. (2017). 民國 106 年 長表申報 16 種癌症期別與治療方式統計. Retrieved from http://tcr.cph.ntu.edu.tw/uploadimages/CA16_LF106.pdf 28. Shapiro, C. L., Recht, A. (2001). Side effects of adjuvant treatment of breast cancer. New England Journal of Medicine, 344(26), 1997-2008. 29. Siminoff, L. A., Gordon, N. H., Silverman, P., Budd, T., Ravdin, P. M. (2006). A decision aid to assist in adjuvant therapy choices for breast cancer. Psycho‐Oncology: Journal of the Psychological, Social and Behavioral Dimensions of Cancer, 15(11), 1001-1013. 30. Van de Steene, J., Vinh-Hung, V., Cutuli, B., Storme, G. (2004). Adjuvant radiotherapy for breast cancer: effects of longer follow-up. Radiotherapy and oncology, 72(1), 35-43. 31. Welfare, M. o. H. a. (2017). The 2000 and 2005 Longitudinal Generation Tracking Database (LGTD 2000, LGTD 2005) Establishment and Verification Report for 2 Million Sampled People. Retrieved from https://www.mohw.gov.tw/dl-60195-6df3ea41-d86b-4d52-b98a-90ce58fa7195.html 32. Yao-Lung, K., Dar-Ren, C., Tsai-Wang, C. (2012). Accuracy validation of adjuvant! online in Taiwanese breast cancer patients-a 10-year analysis. BMC medical informatics and decision making, 12(1), 1-6. 33. Zekri, J., Al-Foheidi, M. O., Alata, M. K., Rasmy, A. A., Rasool, H. J., Abdelrahman, H. A., . . . Mashhour, M. (2019). Decisions on adjuvant chemotherapy for patients with breast cancer based on clinical and evolving Oncotype DX criteria. In: American Society of Clinical Oncology. 34. 國際票券. (2021). Retrieved from http://www.ibfc.com.tw/Home/Gdp | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82110 | - |
| dc.description.abstract | "背景: 乳癌的病患在進行手術後,會依據病人狀況的不同,建議其進行輔助性治療以降低局部復發的風險。其建議標準根據台灣乳癌指引,若病人為乳癌早期(一、二期)病患,因為過去研究指出早期乳癌的病患有相當好預後,且進行輔助性治療與否的存活差異並不大,是否進行治療將由病人與醫師討論,而不強烈要求。但在這樣的前提下,仍有許多早期乳癌病患因為害怕死亡,或是對根據期別所評估出的存活數據感到懷疑,而選擇接受化療或放療。若病人接受了不必要的治療,除了需支出不必要的醫療費用,也可能須承受額外的治療副作用。在這樣的情況下,乳癌基因檢測可能是一個相當不錯的解決方案,讓病人在了解更精確的存活情形後決定輔助性治療的必要性。但是,基因檢測平均的費用落在台幣 160,000至170,000 之間,對於一些病人可能成為一種負擔。因此,該研究希望透過完成以下研究目的,希望能降低病人不必要的醫療花費: (i)確認輔助性治療對於臨床低風險病人的必要性,以及評估雌激素接受體 (estrogen receptor, ER)、黃體素接受體 (progesterone receptor, PR)、HER2/neu 接受體表現情形、期別或是基因檢測風險結果等常見中介因子,對於研究結果的影響情形 (ii) 評估最具成本效益的治療模式,且從不同角度對比進行基因檢測的必要性。 方法:透過使用 METABRIC (Molecular Taxonomy of Breast Cancer International Consortium) 以及TCR (Taiwan Cancer Registry) 資料集,查看使用Adjuvant Online!方法分類出的臨床低風險病人,是否接受輔助性治療 (包括化療與全乳房切除後的放療)的存活狀況有無顯著的不同。同時,我們也參考了一些常見的中介因子,查看存活狀況的結果是否與病人的特性有所關連。接著,我們使用 LGTD (Longitudinal Generation Tracking Database)資料進行成本效益分析,透過以標準治療(沒有進行化療與放療)做為參考組,計算各種不同治療策略的ICER (Incremental cost-effectiveness ratio),並分別以 QALY (Quality adjusted life years)、副作用種類數量、以及嚴重性校正後副作用種類數量作為我們所衡量的效益,查看病人要得到每單位效益所需要花費的金額。最後,我們將ICER與台灣歷年人均國民生產總值 (Gross Domestic Product,GDP) 之平均進行比較,評估接受標準治療是否符合成本效益。並從不同角度討論進行標準治療的人若進行決策前進行基因檢測是否為一個較具成本效益的方式。 結果: 自 METABRIC 以及 TCR 資料所分析出的存活分析結果,被判定為臨床低風險的乳癌病人中,接受輔助性治療的病人相比於進行標準治療的病人,五年乳癌相關存活率只有不顯著的提升。而且在確認接受治療與標準治療的病人多種中介因子的分布類似,表示病人之特性相近,可以推論研究結果受到中介因子影響甚小。接著,使用 LGTD 資料的成本分析結果顯示,當以QALY為效益評估基準,乳癌相關治療的 ICER 以接受全乳房切除後放療較高,為-$2,546,205/QALY,其次為接受化療以及全乳房切除後放療的-$1,709,087/QALY,再者為接受化療的-$913,308 /QALY。以平均GDP (NTD$5,609,257)比較,只有進行放療的 ICER 超過域值(1/3xGDP),表示標準治療相較之下為較符合成本效益之治療決策。而只有接受化療與接受兩種治療的花費雖較標準治療高,但沒有超過域值。當以副作用為效益評估基準,使用嚴重性校正前後的趨勢相同,顯示接受化療以及全乳房切除後放療的病人平均發生的副作用最多,且治療每單位副作用所需要花費的費用最高,其次為全乳房切除後放療,再者為化療。 總結: 本研究使用兩個資料集驗證了乳癌臨床低風險的病人接受輔助性治療,不僅對存活沒有顯著的提升,且乳癌相關治療或是副作用都需要花費相當高的費用。以此結果我們建議臨床低風險的病人只需進行標準治療(不進行化療與放療),且基因檢測為非必要之花費。" | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-25T05:36:04Z (GMT). No. of bitstreams: 1 U0001-2110202116013900.pdf: 4328200 bytes, checksum: e61ce2fa1df110e08f14739da5aa61d7 (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | 口試委員會審定書 2 致謝 3 中文摘要 4 英文摘要(Abstract) 6 Chapter 1. Introduction 14 1.1 Survival of breast cancer in clinical low risk patients 14 1.2 Necessity of adjuvant therapy for clinical low risk patients 15 1.3 Role of adjuvant therapy in breast cancer 16 1.4 The aim of this study 16 Chapter 2. Aim 1: Efficacy of adjuvant chemotherapy in clinically-low-risk patients 18 2.1 Method 18 2.1.1 Study design 18 2.1.2 Datasets 20 2.1.3 Clinical Risk Assessment method 21 2.1.4 Stratification of Confounding factors 22 2.1.5 Statistical Analysis 25 2.2 Result 26 2.2.1 Data description and Clinical Risk Assessment 26 2.2.2 Survival difference between different clinical groups 30 2.2.3 Survival difference with and without therapy 32 2.2.4 Subgroup stratification 35 Chapter 3. Aim 2: Cost effectiveness of breast cancer adjuvant therapy and genetic test for clinical low risk patients 39 3.1 Methods 39 3.1.1 Study cohort and population 39 3.1.2 Stratified Cost-effectiveness analysis 41 3.2 Result 48 3.2.1 Base-Case Analysis 48 3.2.2 Cost and effect evaluation and survival analysis for each treatment strategy 49 3.2.3 Stratified Cost-Effectiveness analysis 52 Chapter 4. Conclusions and discussion 57 4.1 Implications and conclusions 57 4.1.1 Aim 1 57 4.2.2 Aim 2 59 4.2 Strengths and Limitations 64 4.3 Conclusions 66 Chapter 5. Reference 68 Chapter 6. Appendix 72 | |
| dc.language.iso | en | |
| dc.subject | 存活 | zh_TW |
| dc.subject | 輔助性治療 | zh_TW |
| dc.subject | 臨床低風險 | zh_TW |
| dc.subject | 基因檢測 | zh_TW |
| dc.subject | 乳癌輔助性治療副作用 | zh_TW |
| dc.subject | 成本效益 | zh_TW |
| dc.subject | 乳癌 | zh_TW |
| dc.subject | adjuvant therapy side effects | en |
| dc.subject | QALY | en |
| dc.subject | breast cancer | en |
| dc.subject | cost effeteness analysis | en |
| dc.subject | genetic test | en |
| dc.subject | adjuvant therapy | en |
| dc.subject | clinically low risk | en |
| dc.title | 乳癌臨床低風險病人在不同分型下進行輔助性治療治療的成本效益: 病人決定接受輔助性治療前是否要先進行基因檢測? | zh_TW |
| dc.title | Cost-effectiveness of breast cancer adjuvant therapy in subtype categorized patients in clinical low risk group: Should patient do genetic test or adjuvant therapy? | en |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.author-orcid | 0000-0002-7218-1862 | |
| dc.contributor.advisor-orcid | 盧子彬(0000-0003-3697-0386) | |
| dc.contributor.coadvisor | 游宗憲(Tsung-Hsien Yu) | |
| dc.contributor.oralexamcommittee | 陳珮青(Hsin-Tsai Liu),黃其晟(Chih-Yang Tseng) | |
| dc.subject.keyword | 乳癌,輔助性治療,臨床低風險,基因檢測,乳癌輔助性治療副作用,成本效益,存活, | zh_TW |
| dc.subject.keyword | breast cancer,clinically low risk,adjuvant therapy,adjuvant therapy side effects,cost effeteness analysis,QALY,genetic test, | en |
| dc.relation.page | 155 | |
| dc.identifier.doi | 10.6342/NTU202103980 | |
| dc.rights.note | 同意授權(限校園內公開) | |
| dc.date.accepted | 2021-10-25 | |
| dc.contributor.author-college | 公共衛生學院 | zh_TW |
| dc.contributor.author-dept | 流行病學與預防醫學研究所 | zh_TW |
| dc.date.embargo-lift | 2022-12-31 | - |
| 顯示於系所單位: | 流行病學與預防醫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2110202116013900.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 4.23 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
