請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82108完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 何傳愷(Chuan-Kai Ho) | |
| dc.contributor.author | Chih-Sheng Liu | en |
| dc.contributor.author | 柳智升 | zh_TW |
| dc.date.accessioned | 2022-11-25T05:36:01Z | - |
| dc.date.available | 2026-10-22 | |
| dc.date.copyright | 2021-11-05 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-10-22 | |
| dc.identifier.citation | Abad, P., Gouzy, J., Aury, J.-M., Castagnone-Sereno, P., Danchin, E. G. J., Deleury, E., Perfus-Barbeoch, L., Anthouard, V., Artiguenave, F., Blok, V. C., Caillaud, M.-C., Coutinho, P. M., Dasilva, C., De Luca, F., Deau, F., Esquibet, M., Flutre, T., Goldstone, J. V., Hamamouch, N., Hewezi, T., Jaillon, O., Jubin, C., Leonetti, P., Magliano, M., Maier, T. R., Markov, G. V., McVeigh, P., Pesole, G., Poulain, J., Robinson-Rechavi, M., Sallet, E., Ségurens, B., Steinbach, D., Tytgat, T., Ugarte, E., van Ghelder, C., Veronico, P., Baum, T. J., Blaxter, M., Bleve-Zacheo, T., Davis, E. L., Ewbank, J. J., Favery, B., Grenier, E., Henrissat, B., Jones, J. T., Laudet, V., Maule, A. G., Quesneville, H., Rosso, M.-N., Schiex, T., Smant, G., Weissenbach, J., Wincker, P. (2008, 2008/08/01). Genome sequence of the metazoan plant-parasitic nematode Meloidogyne incognita. Nature Biotechnology, 26(8), 909-915. https://doi.org/10.1038/nbt.1482 Abdel-Fattah, G., Shukry, W., Shokr, M., Ahmed, M. A. M. (2016). Application of Mycorrhizal Technology for Improving Yield Production of Common Bean Plants. International Journal of Applied Sciences and Biotechnology, 4, 191-197. Abdel-Salam, E., Alatar, A., El-Sheikh, M. A. (2018, 2018/12/01/). Inoculation with arbuscular mycorrhizal fungi alleviates harmful effects of drought stress on damask rose. Saudi Journal of Biological Sciences, 25(8), 1772-1780. https://doi.org/https://doi.org/10.1016/j.sjbs.2017.10.015 Adeyemi, N., Sakariyawo, O., Atayese, M. (2017, 06/30). Yield and Yield Attributes Responses of Soybean (Glycine max L. Merrill) to Elevated CO2 and Arbuscular Mycorrhizal Fungi Inoculation in the Humid Transitory Rainforest. Notulae Scientia Biologicae, 9, 233. https://doi.org/10.15835/nsb9210002 AFA. (2021). Agricultural Report Resource Website Agriculture and Food Agency Council of Agriculture, Executive Yuan, Taiwan (R.O.C.) https://agr.afa.gov.tw/afa/afa_frame.jsp Agosta, S. J., Hulshof, C. M., Staats, E. G. (2017). Organismal responses to habitat change: herbivore performance, climate and leaf traits in regenerating tropical dry forests. Journal of Animal Ecology, 86(3), 590-604. Akhtar, M. S., Siddiqui, Z. A. (2008, Mar-May). Biocontrol of a root-rot disease complex of chickpea by Glomus intraradices, Rhizobium sp and Pseudomonas straita. Crop Protection, 27(3-5), 410-417. https://doi.org/10.1016/j.cropro.2007.07.009 Ali, M. P., Kabir, M. M. M., Afrin, S., Nowrin, F., Haque, S. S., Haque, M. M., Hashem, A., Tabassum, B., Abd_Allah, E. F., Pittendrigh, B. R. (2019). Increased temperature induces leaffolder outbreak in rice field. Journal of Applied Entomology, 143(8), 867-874. https://doi.org/https://doi.org/10.1111/jen.12652 Anyia, A. O., Herzog, H. (2004, 2004/04/01/). Water-use efficiency, leaf area and leaf gas exchange of cowpeas under mid-season drought. European Journal of Agronomy, 20(4), 327-339. https://doi.org/https://doi.org/10.1016/S1161-0301(03)00038-8 Asseng, S., Ewert, F., Martre, P., Rötter, R. P., Lobell, D. B., Cammarano, D., Kimball, B. A., Ottman, M. J., Wall, G. W., White, J. W., Reynolds, M. P., Alderman, P. D., Prasad, P. V. V., Aggarwal, P. K., Anothai, J., Basso, B., Biernath, C., Challinor, A. J., De Sanctis, G., Doltra, J., Fereres, E., Garcia-Vila, M., Gayler, S., Hoogenboom, G., Hunt, L. A., Izaurralde, R. C., Jabloun, M., Jones, C. D., Kersebaum, K. C., Koehler, A. K., Müller, C., Naresh Kumar, S., Nendel, C., O’Leary, G., Olesen, J. E., Palosuo, T., Priesack, E., Eyshi Rezaei, E., Ruane, A. C., Semenov, M. A., Shcherbak, I., Stöckle, C., Stratonovitch, P., Streck, T., Supit, I., Tao, F., Thorburn, P. J., Waha, K., Wang, E., Wallach, D., Wolf, J., Zhao, Z., Zhu, Y. (2015, 2015/02/01). Rising temperatures reduce global wheat production. Nature Climate Change, 5(2), 143-147. https://doi.org/10.1038/nclimate2470 Babu, S., Dudwal, R., Meena, P., Rokadia, P. (2018, 08/20). Estimation of Avoidable Losses Due to Defoliators (Semilooper Complex and Common Cutworm, Spodoptera litura Fab.) in Different Varieties of Soybean. International Journal of Current Microbiology and Applied Sciences, 7, 3078-3085. https://doi.org/10.20546/ijcmas.2018.708.328 Baird, J. M., Walley, F. L., Shirtliffe, S. J. (2010, Nov). Arbuscular mycorrhizal fungi colonization and phosphorus nutrition in organic field pea and lentil. Mycorrhiza, 20(8), 541-549. https://doi.org/10.1007/s00572-010-0305-7 Baladhiya, H., Sisodiya, D., Pathan, N. (2018). A review on pink stem borer, Sesamia inferens Walker: A threat to cereals. Journal of Entomology and Zoology Studies, 6(3), 1235-1239. Begum, N., Qin, C., Ahanger, M. A., Raza, S., Khan, M. I., Ashraf, M., Ahmed, N., Zhang, L. (2019). Role of arbuscular mycorrhizal fungi in plant growth regulation: implications in abiotic stress tolerance. Frontiers in Plant Science, 10, 1068. Bernard, G. C., Egnin, M., Bonsi, C. (2017). The Impact of Plant-Parasitic Nematodes on Agriculture and Methods of Control. In. https://doi.org/10.5772/intechopen. Bezemer, T. m., Wagenaar, R., Dam, N., Wäckers, F. (2002, 01/01). Interactions between root and shoot feeding insects are mediated by primary and secondary plant compounds. Proceedings of the Section Experimental and Applied Entomology of the Netherlands Entomological Society (NEV), 13, 117-121. Cabrera, J., Ruiz-Ferrer, V., Fenoll, C., Escobar, C. (2018, Dec). sRNAs involved in the regulation of plant developmental processes are altered during the root-knot nematode interaction for feeding site formation. European Journal of Plant Pathology, 152(4), 945-955. https://doi.org/10.1007/s10658-018-1451-6 Castagnone-Sereno, P. (2012, 2012). Meloidogyne enterolobii (= M. mayaguensis): profile of an emerging, highly pathogenic, root-knot nematode species. Nematology, 14, 133-138. https://doi.org/10.1163/156854111x601650 Chen, W., Meng, P., Feng, H., Wang, C. (2020). Effects of Arbuscular Mycorrhizal Fungi on Growth and Physiological Performance of Catalpa bungei C.A.Mey. under Drought Stress. Forests, 11(10), 1117. https://www.mdpi.com/1999-4907/11/10/1117 Collange, B., Navarrete, M., Peyre, G., Mateille, T., Tchamitchian, M. (2011, 2011/10/01/). Root-knot nematode (Meloidogyne) management in vegetable crop production: The challenge of an agronomic system analysis. Crop Protection, 30(10), 1251-1262. https://doi.org/https://doi.org/10.1016/j.cropro.2011.04.016 Craufurd, P. Q., Wheeler, T. R., Ellis, R. H., Summerfield, R. J., Williams, J. H. (1999). Effect of Temperature and Water Deficit on Water-Use Efficiency, Carbon Isotope Discrimination, and Specific Leaf Area in Peanut. Crop Science, 39(1), cropsci1999.0011183X003900010022x. https://doi.org/https://doi.org/10.2135/cropsci1999.0011183X003900010022x da Silva, J. C. P., Campos, V. P., Barros, A. F., Pedroso, L. A., Silva, M. D., de Souza, J. T., Pedroso, M. P., de Medeiros, F. H. V. (2019, Feb). Performance of volatiles emitted from different plant species against juveniles and eggs of Meloidogyne incognita. Crop Protection, 116, 196-203. https://doi.org/10.1016/j.cropro.2018.11.006 De Groote, H. (2002, 06/01). Maize Yield Losses from Stemborers in Kenya. Insect Science and Its Application, 22, 89-96. https://doi.org/10.1017/S1742758400015162 Deng, J., Li, F., Duan, T. (2020, 02/15). Claroideoglomus etunicatum reduces leaf spot incidence and improves drought stress resistance in perennial ryegrass. Australasian Plant Pathology, 49. https://doi.org/10.1007/s13313-020-00685-w Deutsch, C. A., Tewksbury, J. J., Tigchelaar, M., Battisti, D. S., Merrill, S. C., Huey, R. B., Naylor, R. L. (2018, Aug 31). Increase in crop losses to insect pests in a warming climate. Science, 361(6405), 916-919. https://doi.org/10.1126/science.aat3466 ETMAN, A. A. M., HOOPER, G. H. S. (1980). DEVELOPMENTAL AND REPRODUCTIVE BIOLOGY OF SPODOPTERA LITURA (F.) (LEPIDOPTERA: NOCTUIDAE). Australian Journal of Entomology, 18(4), 363-372. https://doi.org/https://doi.org/10.1111/j.1440-6055.1979.tb00868.x Fand, B. B., Sul, N. T., Bal, S. K., Minhas, P. S. (2015). Temperature Impacts the Development and Survival of Common Cutworm (Spodoptera litura): Simulation and Visualization of Potential Population Growth in India under Warmer Temperatures through Life Cycle Modelling and Spatial Mapping. PLoS One, 10(4), e0124682. https://doi.org/10.1371/journal.pone.0124682 Feakin, S. D. (1967). Pest control in groundnuts. Fourie, H., Ahuja, P., Lammers, J., Daneel, M. (2016, Feb). Brassicacea-based management strategies as an alternative to combat nematode pests: A synopsis [Review]. Crop Protection, 80, 21-41. https://doi.org/10.1016/j.cropro.2015.10.026 Freitas, V. M., Silva, J. G. P., Gomes, C. B., Castro, J. M. C., Correa, V. R., Carneiro, R. M. D. G. (2017, 2017/06/01). Host status of selected cultivated fruit crops to Meloidogyne enterolobii. European Journal of Plant Pathology, 148(2), 307-319. https://doi.org/10.1007/s10658-016-1090-8 Gao, X., Guo, H., Zhang, Q., Guo, H., Zhang, L., Zhang, C., Gou, Z., Liu, Y., Wei, J., Chen, A., Chu, Z., Zeng, F. (2020, 2020/02/07). Arbuscular mycorrhizal fungi (AMF) enhanced the growth, yield, fiber quality and phosphorus regulation in upland cotton (Gossypium hirsutum L.). Scientific Reports, 10(1), 2084. https://doi.org/10.1038/s41598-020-59180-3 GIOVANNETTI, M., MOSSE, B. (1980). AN EVALUATION OF TECHNIQUES FOR MEASURING VESICULAR ARBUSCULAR MYCORRHIZAL INFECTION IN ROOTS. New Phytologist, 84(3), 489-500. https://doi.org/https://doi.org/10.1111/j.1469-8137.1980.tb04556.x Habte, M., Zhang, Y. C., Schmitt, D. P. (1999, Jan). Effectiveness of Glomus species in protecting white clover against nematode damage. Canadian Journal of Botany-Revue Canadienne De Botanique, 77(1), 135-139. https://doi.org/10.1139/b98-188 Han, Z., Boas, S., Schroeder, N. E. (2017, Jul). Serotonin Regulates the Feeding and Reproductive Behaviors of Pratylenchus penetrans. Phytopathology, 107(7), 872-877. https://doi.org/10.1094/phyto-11-16-0397-r Harrier, L. A., Watson, C. A. (2004, Feb). The potential role of arbuscular mycorrhizal (AM) fungi in the bioprotection of plants against soil-borne pathogens in organic and/or other sustainable farming systems. Pest Manag Sci, 60(2), 149-157. https://doi.org/10.1002/ps.820 Hassan, M. A., Pham, T. H., Shi, H., Zheng, J. (2013, 2013/07/01). Nematodes threats to global food security. Acta Agriculturae Scandinavica, Section B — Soil Plant Science, 63(5), 420-425. https://doi.org/10.1080/09064710.2013.794858 Hatfield, J. L., Prueger, J. H. (2015, 2015/12/01/). Temperature extremes: Effect on plant growth and development. Weather and Climate Extremes, 10, 4-10. https://doi.org/https://doi.org/10.1016/j.wace.2015.08.001 He, M., Chen, J., Ding, J., Lu, X. (2018, 2018/07/01). Differing interactions between an introduced beetle and a resident root nematode mediated by an invasive plant and its native congener. Plant Ecology, 219(7), 803-812. https://doi.org/10.1007/s11258-018-0835-1 Heinemeyer, A., Fitter, A. (2004). Impact of temperature on the arbuscular mycorrhizal (AM) symbiosis: growth responses of the host plant and its AM fungal partner. Journal of Experimental Botany, 55(396), 525-534. HLPE. (2020). Food security and nutrition: building a global narrative towards 2030. Hol, G., Cook, R. (2005, 12/01). An overview of arbuscular mycorrhizal fungi–nematode interactions. Basic and Applied Ecology, 6, 489-503. https://doi.org/10.1016/j.baae.2005.04.001 Holopainen, J. K., Virjamo, V., Ghimire, R. P., Blande, J. D., Julkunen-Tiitto, R., Kivimäenpää, M. (2018, 2018-October-02). Climate Change Effects on Secondary Compounds of Forest Trees in the Northern Hemisphere [Mini Review]. Frontiers in Plant Science, 9(1445). https://doi.org/10.3389/fpls.2018.01445 Igiehon, N. O., Babalola, O. O. (2018). Below-ground-above-ground Plant-microbial Interactions: Focusing on Soybean, Rhizobacteria and Mycorrhizal Fungi. The open microbiology journal, 12, 261-279. https://doi.org/10.2174/1874285801812010261 IPCC. (2014). Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC. (2018). Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. IPCC. (2019). Food Security. In: Climate Change and Land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems. Jamieson, M. A., Trowbridge, A. M., Raffa, K. F., Lindroth, R. L. (2012). Consequences of Climate Warming and Altered Precipitation Patterns for Plant-Insect and Multitrophic Interactions. Plant Physiology, 160(4), 1719-1727. https://doi.org/10.1104/pp.112.206524 Jones, J. T., Haegeman, A., Danchin, E. G. J., Gaur, H. S., Helder, J., Jones, M. G. K., Kikuchi, T., Manzanilla-Lopez, R., Palomares-Rius, J. E., Wesemael, W. M. L., Perry, R. N. (2013, Dec). Top 10 plant-parasitic nematodes in molecular plant pathology. Molecular Plant Pathology, 14(9), 946-961. https://doi.org/10.1111/mpp.12057 Jung, S. C., Martinez-Medina, A., Lopez-Raez, J. A., Pozo, M. J. (2012, 2012/06/01). Mycorrhiza-Induced Resistance and Priming of Plant Defenses. Journal of Chemical Ecology, 38(6), 651-664. https://doi.org/10.1007/s10886-012-0134-6 Katayama, N., Nishida, T., Zhang, Z. Q., Ohgushi, T. (2010, 2010/10/01). Belowground microbial symbiont enhances plant susceptibility to a spider mite through change in soybean leaf quality [https://doi.org/10.1007/s10144-010-0207-8]. Population Ecology, 52(4), 499-506. https://doi.org/https://doi.org/10.1007/s10144-010-0207-8 Kempel, A., Brandl, R., Schädler, M. (2009, 2009/04/01). Symbiotic soil microorganisms as players in aboveground plant–herbivore interactions – the role of rhizobia [https://doi.org/10.1111/j.1600-0706.2009.17418.x]. Oikos, 118(4), 634-640. https://doi.org/https://doi.org/10.1111/j.1600-0706.2009.17418.x Khaitov, B., Patiño-Ruiz, J. D., Pina, T., Schausberger, P. (2015). Interrelated effects of mycorrhiza and free-living nitrogen fixers cascade up to aboveground herbivores. Ecology and Evolution, 5(17), 3756-3768. https://doi.org/https://doi.org/10.1002/ece3.1654 Kiffer Jr, W. P., Mendes, F., Casotti, C. G., Costa, L. C., Moretti, M. S. (2018). Exotic Eucalyptus leaves are preferred over tougher native species but affect the growth and survival of shredders in an Atlantic Forest stream (Brazil). PLoS One, 13(1), e0190743. Kilpeläinen, J., Barbero-López, A., Adamczyk, B., Aphalo, P. J., Lehto, T. (2019). Morphological and ecophysiological root and leaf traits in ectomycorrhizal, arbuscular-mycorrhizal and non-mycorrhizal Alnus incana seedlings. Plant and Soil, 436(1), 283-297. Kosonen, M., Keski-Saari, S., Ruuhola, T., Constabel, C. P., Julkunen-Tiitto, R. (2012, Oct). Effects of overproduction of condensed tannins and elevated temperature on chemical and ecological traits of genetically modified hybrid aspens (Populus tremula × P. tremuloides). J Chem Ecol, 38(10), 1235-1246. https://doi.org/10.1007/s10886-012-0193-8 Kucharik, C., Serbin, S. (2008, 07/01). Impacts of recent climate change on Wiscosin corn and soybean yield trends. Environmental Research Letters, 3, 10. https://doi.org/10.1088/1748-9326/3/3/034003 Kuokkanen, K., Julkunen-Tiitto, R., Keinänen, M., Niemelä, P., Tahvanainen, J. (2001, 2001/09/01). The effect of elevated CO2 and temperature on the secondary chemistry of Betula pendula seedlings. Trees, 15(6), 378-384. https://doi.org/10.1007/s004680100108 Lenoir, I., Fontaine, J., Sahraoui, A. L. H. (2016, Mar). Arbuscular mycorrhizal fungal responses to abiotic stresses: A review. Phytochemistry, 123, 4-15. https://doi.org/10.1016/j.phytochem.2016.01.002 Liu, F., Stützel, H. (2004, 2004/10/15/). Biomass partitioning, specific leaf area, and water use efficiency of vegetable amaranth (Amaranthus spp.) in response to drought stress. Scientia Horticulturae, 102(1), 15-27. https://doi.org/https://doi.org/10.1016/j.scienta.2003.11.014 Liu, H., Han, Y., Zhong, Y., Ali, A., Hou, M. (2021, 2021/08/01). Preference and performance of the rice leaf folder, Cnaphalocrocis medinalis, in relation to rice developmental stage [https://doi.org/10.1111/eea.13038]. Entomologia Experimentalis et Applicata, 169(8), 701-710. https://doi.org/https://doi.org/10.1111/eea.13038 Lopes, E. A., Orr, J. N., Blok, V. C. (2018, Oct). Does soil warming affect the interaction between Pasteuria penetrans and Meloidogyne javanica in tomato plants? Plant Pathology, 67(8), 1777-1783. https://doi.org/10.1111/ppa.12877 Malbreil, M., Tisserant, E., Martin, F., Roux, C. (2014). Chapter Nine - Genomics of Arbuscular Mycorrhizal Fungi: Out of the Shadows. In F. M. Martin (Ed.), Advances in Botanical Research (Vol. 70, pp. 259-290). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-12-397940-7.00009-4 Mallikarjuna, N., Kranthi, K. R., Jadhav, D. R., Kranthi, S., Chandra, S. (2004). Influence of foliar chemical compounds on the development of Spodoptera litura (Fab.) in interspecific derivatives of groundnut. Journal of Applied Entomology, 128(5), 321-328. https://doi.org/https://doi.org/10.1111/j.1439-0418.2004.00834.x Marro, N., Lax, P., Cabello, M., Doucet, M. E., Becerra, A. G. (2014). Use of the arbuscular mycorrhizal fungus Glomus intraradices as biological control agent of the nematode Nacobbus aberrans parasitizing tomato. Brazilian Archives of Biology and Technology, 57, 668-674. http://www.scielo.br/scielo.php?script=sci_arttext pid=S1516-89132014000500668 nrm=iso Marro, N., Lax, P., Cabello, M., Edmundo Doucet, M., Gabriela Becerra, A. (2014, Sep-Oct). Use of the Arbuscular Mycorrhizal Fungus Glomus intraradices as Biological Control Agent of the Nematode Nacobbus aberrans Parasitizing Tomato. Brazilian Archives of Biology and Technology, 57(5), 668-674. https://doi.org/10.1590/s1516-8913201402200 Masters, G. J., Brown, V. K., Gange, A. C. (1993, Jan). PLANT MEDIATED INTERACTIONS BETWEEN ABOVEGROUND AND BELOWGROUND INSECT HERBIVORES. Oikos, 66(1), 148-151. https://doi.org/10.2307/3545209 Mavromatis, T. (2015, 2015/05/01). Crop–climate relationships of cereals in Greece and the impacts of recent climate trends. Theoretical and Applied Climatology, 120(3), 417-432. https://doi.org/10.1007/s00704-014-1179-y Meier, A. R., Hunter, M. D. (2018). Mycorrhizae alter toxin sequestration and performance of two specialist herbivores. Frontiers in Ecology and Evolution, 6, 33. Miranda, D., Fischer, G., Ulrichs, C. (2011). The influence of arbuscular mycorrhizal colonization on the growth parameters of cape gooseberry (Physalisperuviana L.) plants grown in a saline soil. Journal of soil science and plant nutrition, 11(2), 18-30. Muhammad, A., Khan, A., Afzal, M., Iqbal, M. S. (2012, 08/10). Wheat Crop Yield Losses Caused by the Aphids Infestation. Journal of Biofertilizer and Biopesticide, 3. https://doi.org/10.4172/2155-6202.1000122 MÜLLER, J., MOHR, U., SPRENGER, N., BORTLIK, K., BOLLER, T., WIEMKEN, A. (1999). Pool sizes of fructans in roots and leaves of mycorrhizal and non-mycorrhizal barley. New Phytologist, 142(3), 551-559. https://doi.org/https://doi.org/10.1046/j.1469-8137.1999.00412.x Nleya, T., Sexton, P., Gustafson, K. (2019). Soybean Growth Stages. In (pp. 1-11). Pedranzani, H., Rodríguez-Rivera, M., Gutiérrez, M., Porcel, R., Hause, B., Ruiz-Lozano, J. M. (2016, 2016/02/01). Arbuscular mycorrhizal symbiosis regulates physiology and performance of Digitaria eriantha plants subjected to abiotic stresses by modulating antioxidant and jasmonate levels. Mycorrhiza, 26(2), 141-152. https://doi.org/10.1007/s00572-015-0653-4 Poveda, K., Steffan-Dewenter, I., Scheu, S., Tscharntke, T. (2007). Plant-mediated interactions between below- and aboveground processes: decomposition, herbivory, parasitism, and pollination. In P. W. Price, T. Ohgushi, T. P. Craig (Eds.), Ecological Communities: Plant Mediation in Indirect Interaction Webs (pp. 147-163). Cambridge University Press. https://doi.org/DOI: 10.1017/CBO9780511542701.008 Radford, P. J. (1967). Growth Analysis Formulae - Their Use and Abuse1. Crop Science, 7(3), cropsci1967.0011183X000700030001x. https://doi.org/https://doi.org/10.2135/cropsci1967.0011183X000700030001x Ranga Rao, G. V., Wightman, J. A., Ranga Rao, D. V. (1993). World Review of the Natural Enemies and Diseases of Spodoptera Litura (F.) (Lepidoptera: Noctuidae). Insect Science and Its Application, 14(3), 273-284. https://doi.org/10.1017/S1742758400014764 Rogers, S. G. (1998, Dec). Biotechnology and the soybean. Am J Clin Nutr, 68(6 Suppl), 1330s-1332s. https://doi.org/10.1093/ajcn/68.6.1330S Roy, S. J., Collins, N. C., Munns, R. (2016). Abiotic Stress Genes and Mechanisms in Wheat. In. https://doi.org/10.1016/B978-0-08-100596-5.00230-4 Savary, S., Willocquet, L., Pethybridge, S. J., Esker, P., McRoberts, N., Nelson, A. (2019, Mar). The global burden of pathogens and pests on major food crops. Nature Ecology Evolution, 3(3), 430-+. https://doi.org/10.1038/s41559-018-0793-y Schädler, M., Jung, G., Auge, H., Brandl, R. (2003, 2003/10/01). Palatability, decomposition and insect herbivory: patterns in a successional old-field plant community [https://doi.org/10.1034/j.1600-0706.2003.12659.x]. Oikos, 103(1), 121-132. https://doi.org/https://doi.org/10.1034/j.1600-0706.2003.12659.x Schöning, C., Wurst, S. (2016). Positive effects of root-knot nematodes (Meloidogyne incognita) on nitrogen availability do not outweigh their negative effects on fitness in Nicotiana attenuata. Plant and Soil, 400(1-2), 381-390. Singh, R., Adholeya, A., Mukerji, K. G. (2000). Mycorrhiza in Control of Soil Borne Pathogens. In K. G. Mukerji, B. P. Chamola, J. Singh (Eds.), Mycorrhizal Biology (pp. 173-196). Springer US. https://doi.org/10.1007/978-1-4615-4265-0_12 Solangi, B., Oad, F., Suthar, V., Soomro, N., Gandahi, A. W., Oad, N., Bhutto, Z., College, A., Khan, B. (2001, 05/01). Population and Damage Fluctuation of Tobacco Cutworm (Spodoptera litura F.) In Relation to Age of Turnip Crop. Journal of Biological Sciences, 1, 382-383. https://doi.org/10.3923/jbs.2001.382.383 Songsri, P., Jogloy, S., Holbrook, C. C., Kesmala, T., Vorasoot, N., Akkasaeng, C., Patanothai, A. (2009, 2009/05/01/). Association of root, specific leaf area and SPAD chlorophyll meter reading to water use efficiency of peanut under different available soil water. Agricultural Water Management, 96(5), 790-798. https://doi.org/https://doi.org/10.1016/j.agwat.2008.10.009 Stein, K., Coulibaly, D., Stenchly, K., Goetze, D., Porembski, S., Lindner, A., Konaté, S., Linsenmair, E. K. (2017, 2017/12/18). Bee pollination increases yield quantity and quality of cash crops in Burkina Faso, West Africa. Scientific Reports, 7(1), 17691. https://doi.org/10.1038/s41598-017-17970-2 Stevnbak, K., Scherber, C., Gladbach, D. J., Beier, C., Mikkelsen, T. N., Christensen, S. (2012, 2012/11/01). Interactions between above- and belowground organisms modified in climate change experiments. Nature Climate Change, 2(11), 805-808. https://doi.org/10.1038/nclimate1544 Sundar, B., Rashmi, V., Sumith, H., Sandhya, S. (2018). Study the incidence and period of activity of Spodoptera litura on soybean. Journal of Entomology and Zoology Studies, 6(5), 331-333. Suri, V., Choudhary, A., Chander, G., Verma, T. (2011, 05/01). Influence of Vesicular Arbuscular Mycorrhizal Fungi and Applied Phosphorus on Root Colonization in Wheat and Plant Nutrient Dynamics in a Phosphorus-Deficient Acid Alfisol of Western Himalayas. Communications in Soil Science and Plant Analysis, 42, 1177-1186. https://doi.org/10.1080/00103624.2011.566962 Těšitel, J., Tahadlová, M., Lepš, J., Hölzel, N. (2021, 2021/07/01). Linking insect herbivory with plant traits: Phylogenetically structured trait syndromes matter [https://doi.org/10.1111/jvs.13061]. Journal of Vegetation Science, 32(4), e13061. https://doi.org/https://doi.org/10.1111/jvs.13061 Van Emden, H. F., Harrington, R. (2017). Aphids as crop pests. Cabi. Vannette, R. L., Hunter, M. D. (2013). Mycorrhizal abundance affects the expression of plant resistance traits and herbivore performance. Journal of Ecology, 101(4), 1019-1029. Veresoglou, S. D., Menexes, G., Rillig, M. C. (2012, Apr). Do arbuscular mycorrhizal fungi affect the allometric partition of host plant biomass to shoots and roots? A meta-analysis of studies from 1990 to 2010. Mycorrhiza, 22(3), 227-235. https://doi.org/10.1007/s00572-011-0398-7 Veteli, T. O., Mattson, W. J., Niemelä, P., Julkunen-Tiitto, R., Kellomäki, S., Kuokkanen, K., Lavola, A. (2007, 2007/02/01). Do Elevated Temperature and CO2 Generally Have Counteracting Effects on Phenolic Phytochemistry of Boreal Trees? Journal of Chemical Ecology, 33(2), 287-296. https://doi.org/10.1007/s10886-006-9235-4 Waceke, J. W., Waudo, S. W., Sikora, R. (2001, 2001/01/01). Suppression of Meloidogyne hapla by arbuscular mycorrhiza fungi (AMF) on pyrethrum in Kenya. International Journal of Pest Management, 47(2), 135-140. https://doi.org/10.1080/09670870151130633 Wu, C., Cheng, A., Chen, S., Chen, Y., Lin, M. (2013). Soybean cultivation management techniques. Tainan District Agricultural Research and Extension Station, Taiwan (R.O.C.). Yang, B., Eisenback, J. D. (1983). Meloidogyne enterolobii n. sp. (Meloidogynidae), a Root-knot Nematode Parasitizing Pacara Earpod Tree in China. Journal of nematology, 15(3), 381-391. https://pubmed.ncbi.nlm.nih.gov/19295822 Zhao, C., Liu, B., Piao, S., Wang, X., Lobell, D. B., Huang, Y., Huang, M., Yao, Y., Bassu, S., Ciais, P., Durand, J.-L., Elliott, J., Ewert, F., Janssens, I. A., Li, T., Lin, E., Liu, Q., Martre, P., Müller, C., Peng, S., Peñuelas, J., Ruane, A. C., Wallach, D., Wang, T., Wu, D., Liu, Z., Zhu, Y., Zhu, Z., Asseng, S. (2017). Temperature increase reduces global yields of major crops in four independent estimates. Proceedings of the National Academy of Sciences, 114(35), 9326. https://doi.org/10.1073/pnas.1701762114 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82108 | - |
| dc.description.abstract | 糧食安全是目前急迫的全球問題,主要取決於環境變遷下的作物表現。作物表現受到非生物性(例如:暖化)或生物性(例如:物種交互作用)因子的影響,因此,檢驗非生物性和生物性因子如何同時影響作物系統可以幫助了解人類世的作物生產和糧食安全。為回應此議題,本研究檢驗地下部生物(叢枝菌根真菌 「AMF」 和根瘤線蟲 「RKN」)是否會透過單獨和交互作用影響作物和地上部食草動物的表現,並檢驗上述的結果是否會受到氣候暖化的影響。具體而言,我們探討以下三個與農業相關的議題:(壹)暖化下,AMF是否仍具有生物肥料的作用;(貳) 暖化下,是否會加劇 RKN 對農作物的負面影響;(參) 暖化下,AMF是否會抵消RKN對農作物和地上草食動物的影響。為釐清上述的議題,我們研究一個常見的農業系統,包含地下部叢枝菌根箘(Claroideoglomus etunicatum)、根瘤線蟲(Meloidogyne enterolobii)、大豆(Glycine max)、以及地上部斜紋夜蛾(Spodoptera litura)。田間的大豆可能會自然地遇到這些叢枝菌根菌、根瘤線蟲和地上部草食動物。我們在實驗室執行一個3×2×2的複因子實驗,操控溫度(控制組、+2°C、+4°C)、叢枝菌根菌(接種、不接種)與根瘤線蟲(接種、不接種)。我們測量叢枝菌根感染率、線蟲密度、植物表現(營養、生長、水分使用效率、生殖、以及物理與化學防禦)、地上部草食物動物的表現(生長與發育)。結果顯示:(甲)關於作物的表現, AMF基本上在控制組溫度和暖化溫度下都會幫助作物表現,代表AMF在暖化下仍能具有生物肥料的作用。具體來說,AMF單獨地影響植物生長(增加地上/地下生重量比值),幫助植物繁殖(增加豆莢重量),改善植物營養情況(較高的無機磷含量和較低的C/N比值),並減少植物物理防禦(減少葉片硬度)。相反地,RKN普遍降低了作物的表現(生長和繁殖),而其對作物繁殖(豆莢數)的傷害,會在+2℃暖化下加劇。具體來說,RKN的單獨作用降低植物生長(降低地上部重量和地上部/地下部重量比值),傷害植物的繁殖(降低豆莢重量),但會改善植物營養狀況(葉無機磷含量「Pi」含量增加,此增加僅是AMF所造成增加的19%)。此外,本研究沒有發現AMF和RKN沒有透過交互作用進而影響作物表現。(乙)暖化與AMF或暖化與RKN的交互作用會改變作物的表現(生長、水份使用效率和繁殖),暗示AMF和RKN對作物影響的方向或程度會隨氣候暖化而發生變化。(丙)關於地上部食草動物的表現,AMF的單獨作用會幫助斜紋夜蛾的表現(增加生長率或略微增加relative growth rate),然而RKN不影響地上部食草動物的表現。(丁)AMF在控制組溫度下會對RKN產生正面的影響,但在暖化下會抑制 RKN,顯示AMF和RKN的關係會隨溫度改變。因此,傳統上認為AMF可以抑制作物害蟲(如RKN和土壤病原)的觀點可能需要被重新檢視,加入溫度的考量,以便提供更精準的農業害蟲管理措施。整體而言,本研究結果顯示農業系統管理需要考量植物地上部系統與地下部系統之間的交互作用,且此交互作用很有可能會隨著全球暖化而改變。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-25T05:36:01Z (GMT). No. of bitstreams: 1 U0001-2210202110081600.pdf: 8358282 bytes, checksum: 367a645b538280f8ab5e76c0b216de24 (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | 謝辭 i 摘要 iii Abstract v Introduction 1 Material and Methods 5 Study species 5 Experimental design 7 Experimental setup 8 Data collection 11 Statistical analysis 16 Results 17 Plant performance 17 Aboveground herbivore performance 19 Belowground organism performance 19 Discussion 20 Summary 20 AMF and RKN effects on crops 22 AMF and RKN effects on aboveground herbivores 24 Individual effect of warming on crops and aboveground herbivores 25 Mediated effect of warming on crops and belowground herbivores 26 Implications for agriculture 28 Potential caveats 30 Conclusions 30 References 31 Appendix 95 | |
| dc.language.iso | en | |
| dc.subject | 全球暖化 | zh_TW |
| dc.subject | 微生物 | zh_TW |
| dc.subject | 植物與動物交互作用 | zh_TW |
| dc.subject | 叢枝菌根菌 | zh_TW |
| dc.subject | 根瘤線蟲 | zh_TW |
| dc.subject | 作物 | zh_TW |
| dc.subject | Root- knot nematodes | en |
| dc.subject | Climate warming | en |
| dc.subject | Crops | en |
| dc.subject | Arbuscular mycorrhizal fungi | en |
| dc.subject | Microbe-plant-animal interactions | en |
| dc.title | 暖化下的地下部交互關係與地上部反應:叢枝菌根菌(AMF)、根瘤線蟲(RKN)與暖化交互作用對作物及地上部草食動物表現之影響 | zh_TW |
| dc.title | "Belowground interactions and aboveground consequences under warming: Interactive effects of belowground arbuscular mycorrhizal fungi (AMF), root-knot nematodes (RKN), and warming on the performance of a crop plant and aboveground herbivore" | en |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林維怡(Hsin-Tsai Liu),張智涵(Chih-Yang Tseng),楊爵因 | |
| dc.subject.keyword | 微生物,植物與動物交互作用,叢枝菌根菌,根瘤線蟲,作物,全球暖化, | zh_TW |
| dc.subject.keyword | Microbe-plant-animal interactions,Arbuscular mycorrhizal fungi,Root- knot nematodes,Crops,Climate warming, | en |
| dc.relation.page | 100 | |
| dc.identifier.doi | 10.6342/NTU202104015 | |
| dc.rights.note | 同意授權(限校園內公開) | |
| dc.date.accepted | 2021-10-22 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 生態學與演化生物學研究所 | zh_TW |
| dc.date.embargo-lift | 2026-10-22 | - |
| 顯示於系所單位: | 生態學與演化生物學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2210202110081600.pdf 未授權公開取用 | 8.16 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
