Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 應用物理研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82098
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor管希聖(Hsi-Sheng Goan)
dc.contributor.authorTai-Yuan Tsaoen
dc.contributor.author曹泰元zh_TW
dc.date.accessioned2022-11-25T05:35:48Z-
dc.date.available2023-09-01
dc.date.copyright2021-11-05
dc.date.issued2021
dc.date.submitted2021-10-26
dc.identifier.citation[1] John Preskill. Quantum computing 40 years later. arXiv preprint arXiv:2106.10522, 2021. [2] Richard P Feynman. Simulating physics with computers. In Feynman and computation, pages 133–153. CRC Press, 2018. [3] Richard P Feynman. Quantum mechanical computers. Optics news, 11(2):11–20, 1985. [4] Jonathan P Dowling and Gerard J Milburn. Quantum technology: the second quantum revolution. Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 361(1809):1655–1674, 2003. [5] Peter W Shor. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM review, 41(2):303–332, 1999. [6] Daniel Gottesman. Stabilizer codes and quantum error correction. California Institute of Technology, 1997. [7] Daniel Gottesman. Theory of fault-tolerant quantum computation. Physical Review A, 57(1):127, 1998. [8] Kishor Bharti, Alba Cervera-Lierta, Thi Ha Kyaw, Tobias Haug, Sumner Alperin-Lea, Abhinav Anand, Matthias Degroote, Hermanni Heimonen, Jakob S Kottmann, Tim Menke, et al. Noisy intermediate-scale quantum (nisq) algorithms. arXiv preprint arXiv:2101.08448, 2021. [9] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mastering the game of go without human knowledge. nature, 550 (7676):354–359, 2017. [10] Jacob Biamonte, Peter Wittek, Nicola Pancotti, Patrick Rebentrost, Nathan Wiebe, and Seth Lloyd. Quantum machine learning. Nature, 549(7671):195–202, 2017. [11] Marco Cerezo, Andrew Arrasmith, Ryan Babbush, Simon C Benjamin, Suguru Endo, Keisuke Fujii, Jarrod R McClean, Kosuke Mitarai, Xiao Yuan, Lukasz Cincio, et al. Variational quantum algorithms. Nature Reviews Physics, pages 1–20, 2021. [12] Samuel Yen-Chi Chen, Shinjae Yoo, and Yao-Lung L Fang. Quantum long short-term memory. arXiv preprint arXiv:2009.01783, 2020. [13] Ville Bergholm, Josh Izaac, Maria Schuld, Christian Gogolin, M Sohaib Alam, Shahnawaz Ahmed, Juan Miguel Arrazola, Carsten Blank, Alain Delgado, Soran Jahangiri, et al. Pennylane: Automatic differentiation of hybrid quantumclassical computations. arXiv preprint arXiv:1811.04968, 2018. [14] Maria Schuld, Ryan Sweke, and Johannes Jakob Meyer. Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A, 103(3):032430, 2021. [15] Maria Schuld, Ilya Sinayskiy, and Francesco Petruccione. An introduction to quantum machine learning. Contemporary Physics, 56(2):172–185, 2015. [16] Maria Schuld and Nathan Killoran. Quantum machine learning in feature hilbert spaces. Physical review letters, 122(4):040504, 2019. [17] Hsin-Yuan Huang, Michael Broughton, Masoud Mohseni, Ryan Babbush, Sergio Boixo, Hartmut Neven, and Jarrod R McClean. Power of data in quantum machine learning. Nature communications, 12(1):1–9, 2021. [18] Vedran Dunjko and Hans J Briegel. Machine learning artificial intelligence in the quantum domain: a review of recent progress. Reports on Progress in Physics, 81(7):074001, 2018. [19] Vedran Dunjko and Peter Wittek. A non-review of quantum machine learning: trends and explorations. Quantum Views, 4:32, 2020. [20] Nimish Mishra, Manik Kapil, Hemant Rakesh, Amit Anand, Nilima Mishra, Aakash Warke, Soumya Sarkar, Sanchayan Dutta, Sabhyata Gupta, Aditya Prasad Dash, et al. Quantum machine learning: A review and current status. Data Management, Analytics and Innovation, pages 101–145, 2021. [21] Kosuke Mitarai, Makoto Negoro, Masahiro Kitagawa, and Keisuke Fujii. Quantum circuit learning. Physical Review A, 98(3):032309, 2018. [22] Samuel Yen-Chi Chen, Chao-Han Huck Yang, Jun Qi, Pin-Yu Chen, Xiaoli Ma, and Hsi-Sheng Goan. Variational quantum circuits for deep reinforcement learning. IEEE Access, 8:141007–141024, 2020. [23] Samuel Yen-Chi Chen, Chih-Min Huang, Chia-Wei Hsing, Hsi-Sheng Goan, and Ying-Jer Kao. Variational quantum reinforcement learning via evolutionary optimization. arXiv preprint arXiv:2109.00540, 2021. [24] Samuel Yen-Chi Chen, Chih-Min Huang, Chia-Wei Hsing, and Ying-Jer Kao. Hybrid quantum-classical classifier based on tensor network and variational quantum circuit. arXiv preprint arXiv:2011.14651, 2020. [25] Maria Schuld, Ville Bergholm, Christian Gogolin, Josh Izaac, and Nathan Killoran. Evaluating analytic gradients on quantum hardware. Physical Review A, 99(3):032331, 2019. [26] Ian J Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial networks. arXiv preprint arXiv:1406.2661, 2014. [27] Sirui Lu, Lu-Ming Duan, and Dong-Ling Deng. Quantum adversarial machine learning. Physical Review Research, 2(3):033212, 2020. [28] Christa Zoufal, Aur´elien Lucchi, and Stefan Woerner. Quantum generative adversarial networks for learning and loading random distributions. npj Quantum Information, 5(1):1–9, 2019. [29] Dylan Randle, Pavlos Protopapas, and David Sondak. Unsupervised learning of solutions to differential equations with generative adversarial networks. arXiv preprint arXiv:2007.11133, 2020. [30] Oleksandr Kyriienko, Annie E Paine, and Vincent E Elfving. Solving nonlinear differential equations with differentiable quantum circuits. Physical Review A, 103(5):052416, 2021. [31] Isaac E Lagaris, Aristidis Likas, and Dimitrios I Fotiadis. Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks, 9(5):987–1000, 1998. [32] Feiyu Chen, David Sondak, Pavlos Protopapas, Marios Mattheakis, Shuheng Liu, Devansh Agarwal, and Marco Di Giovanni. Neurodiffeq: A python package for solving differential equations with neural networks. Journal of Open Source Software, 5(46):1931, 2020. [33] Hao-Wei Lai. Deep neural network with quantum circuits and hybrid neurons. Master’s thesis, National Taiwan University, 2020. [34] Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and Aaron Courville. Improved training of wasserstein gans. arXiv preprint arXiv:1704.00028, 2017. [35] Martin Arjovsky, Soumith Chintala, and L´eon Bottou. Wasserstein generative adversarial networks. In International conference on machine learning, pages 214–223. PMLR, 2017. [36] Martin Arjovsky and L´eon Bottou. Towards principled methods for training generative adversarial networks. arXiv preprint arXiv:1701.04862, 2017. [37] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980, 2014. [38] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning representations by back-propagating errors. nature, 323(6088):533–536, 1986. [39] Sepp Hochreiter and J¨urgen Schmidhuber. Long short-term memory. Neural computation, 9(8):1735–1780, 1997. [40] Kyunghyun Cho, Bart Van Merri¨enboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Holger Schwenk, and Yoshua Bengio. Learning phrase representations using rnn encoder-decoder for statistical machine translation. arXiv preprint arXiv:1406.1078, 2014. [41] Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. Empirical evaluation of gated recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555, 2014. [42] Johannes Bausch. Recurrent quantum neural networks. arXiv preprint arXiv:2006.14619, 2020. [43] Peter Lambropoulos and David Petrosyan. Fundamentals of quantum optics and quantum information, volume 23. Springer, 2007. [44] Maria Schuld and Francesco Petruccione. Supervised learning with quantum computers, volume 17. Springer, 2018.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82098-
dc.description.abstract在近年來機器學習的熱潮下,產生了結合機器學習與量子計算的新學科,量子機器學習。研究顯示在機器學習與量子計算的結合之下,可以使量子神經網路相較於古典神經網路展現量子優勢。 本篇論文分為兩部分,在第一部分我使用了量子生成對抗網路來解決微分方程的問題,包含了一階微分方程、二階微分方程、耦合系統微分方程、以及狄利克雷邊界條件和混合邊界條件的偏微分方程。在第二部分我使用了量子閘門循環神經網路來處理時間序列預測的問題。相較於先前的研究,量子長短期記憶,我的模型使用了不到50%的參數就解決了相同的問題,包含了阻尼振子的震盪、第一類貝索函數,以及腔量子電動力學系統中居量反轉的問題,我的模型更簡便以及具有更快的訓練速度,並且達成了與量子長短期記憶相近的成果。zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-25T05:35:48Z (GMT). No. of bitstreams: 1
U0001-2510202102572600.pdf: 4164934 bytes, checksum: 19bd95d17ab852a0ed3242079f30395f (MD5)
Previous issue date: 2021
en
dc.description.tableofcontentsContents Acknowledgments I 摘要II Abstract III List of Figures VI List of Tables IX 1 Introduction 1 2 Quantum Machine Learning with Variational Quantum Circuits 4 2.1 Introduction to Machine Learning . . . . . . . . . . . . . . . . . . . . 4 2.2 Quantum Machine Learning . . . . . . . . . . . . . . . . . . . . . . . 5 2.3 Variational Quantum Circuits . . . . . . . . . . . . . . . . . . . . . . 7 3 Quantum Generative Adversarial Networks 9 3.1 Classical Generative Adversarial Networks . . . . . . . . . . . . . . . 9 3.2 Related works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 3.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 4 Quantum Gated Recurrent Neural Networks 31 4.1 Classical Recurrent Neural Networks . . . . . . . . . . . . . . . . . . 31 4.1.1 Long short-Term Memory . . . . . . . . . . . . . . . . . . . . 32 IV 4.1.2 Gated Recurrent Neural Networks . . . . . . . . . . . . . . . . 34 4.2 Related works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 4.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 5 Conclusion 48 A Derivations of function derivatives with parameter-shift rule 50 A.1 First order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 A.2 Second order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 A.3 Multiple inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 A.4 Partial differential equations . . . . . . . . . . . . . . . . . . . . . . . 53 Bibliography 57
dc.language.isoen
dc.subject變分量子電路zh_TW
dc.subject機器學習zh_TW
dc.subject量子計算zh_TW
dc.subject量子機器學習zh_TW
dc.subject生成對抗網路zh_TW
dc.subject循環神經網路zh_TW
dc.subject量子神經網路zh_TW
dc.subjectquantum computingen
dc.subjectquantum neural networken
dc.subjectrecurrent neural networken
dc.subjectgenerative adversarial neural networken
dc.subjectquantum machine learningen
dc.subjectmachine learningen
dc.subjectvariational quantum circuiten
dc.title量子生成對抗網路與量子閘門循環神經網路之應用zh_TW
dc.titleApplications of Quantum Generative Adversarial Networks and Quantum Gated Recurrent Neural Networksen
dc.date.schoolyear109-2
dc.description.degree碩士
dc.contributor.oralexamcommittee張慶瑞(Hsin-Tsai Liu),林俊達(Chih-Yang Tseng)
dc.subject.keyword機器學習,量子計算,量子機器學習,生成對抗網路,循環神經網路,量子神經網路,變分量子電路,zh_TW
dc.subject.keywordmachine learning,quantum computing,quantum machine learning,generative adversarial neural network,recurrent neural network,quantum neural network,variational quantum circuit,en
dc.relation.page61
dc.identifier.doi10.6342/NTU202104107
dc.rights.note同意授權(限校園內公開)
dc.date.accepted2021-10-27
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept應用物理研究所zh_TW
dc.date.embargo-lift2023-09-01-
顯示於系所單位:應用物理研究所

文件中的檔案:
檔案 大小格式 
U0001-2510202102572600.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
4.07 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved