Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 生醫電子與資訊學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82069
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor曾宇鳳(Yu-Feng Jane Tseng)
dc.contributor.authorBo-Jhang Linen
dc.contributor.author林柏璋zh_TW
dc.date.accessioned2022-11-25T05:35:10Z-
dc.date.available2026-12-28
dc.date.copyright2022-02-17
dc.date.issued2021
dc.date.submitted2021-12-28
dc.identifier.citationRyan, D.J., J.M. Spraggins, and R.M. Caprioli, Protein identification strategies in MALDI imaging mass spectrometry: a brief review. Current Opinion in Chemical Biology, 2019. 48: p. 64-72. Swales, J.G., et al., Mass spectrometry imaging and its application in pharmaceutical research and development: A concise review. International Journal of Mass Spectrometry, 2019. 437: p. 99-112. Perez, C.J., et al., Review and perspectives on the applications of mass spectrometry imaging under ambient conditions. Rapid Communications in Mass Spectrometry, 2019. 33: p. 27-53. Brown, H.M., et al., The current role of mass spectrometry in forensics and future prospects. Analytical Methods, 2020. 12(32): p. 3974-3997. Parrot, D., et al., Imaging the Unimaginable: Desorption Electrospray Ionization - Imaging Mass Spectrometry (DESI-IMS) in Natural Product Research. Planta Medica, 2018. 84(9-10). Buchberger, A.R., et al., Mass Spectrometry Imaging: A Review of Emerging Advancements and Future Insights. Anal Chem, 2018. 90(1): p. 240-265. Kulkarni, P., Computational methods for the analysis of mass spectrometry imaging data. 2018. Race, A.M., Investigation and interpretation of large mass spectrometry imaging datasets. 2016, University of Birmingham. Schramm, T., et al., imzML--a common data format for the flexible exchange and processing of mass spectrometry imaging data. J Proteomics, 2012. 75(16): p. 5106-5110. Race, A.M., I.B. Styles, and J. Bunch, Inclusive sharing of mass spectrometry imaging data requires a converter for all. Journal of Proteomics, 2012. 75(16): p. 5111-5112. Alexandrov, T., et al., METASPACE: A community-populated knowledge base of spatial metabolomes in health and disease. BioRxiv, 2019: p. 539478. Ayora, S., BIOMAP: A Home for All Biology Methods. Biol Methods Protoc, 2016. 1(1): p. bpv001. Kallback, P., et al., msIQuant--Quantitation Software for Mass Spectrometry Imaging Enabling Fast Access, Visualization, and Analysis of Large Data Sets. Anal Chem, 2016. 88(8): p. 4346-53. Bokhart, M.T., et al., MSiReader v1.0: Evolving Open-Source Mass Spectrometry Imaging Software for Targeted and Untargeted Analyses. J Am Soc Mass Spectrom, 2018. 29(1): p. 8-16. He, J., et al., MassImager: A software for interactive and in-depth analysis of mass spectrometry imaging data. Analytica chimica acta, 2018. 1015: p. 50-57. Tortorella, S., et al., LipostarMSI: Comprehensive, Vendor-Neutral Software for Visualization, Data Analysis, and Automated Molecular Identification in Mass Spectrometry Imaging. Journal of the American Society for Mass Spectrometry, 2020. 31(1): p. 155-163. Klinkert, I., et al., Methods for full resolution data exploration and visualization for large 2D and 3D mass spectrometry imaging datasets. International Journal of Mass Spectrometry, 2014. 362: p. 40-47. Race, A.M., et al., SpectralAnalysis: Software for the Masses. Anal Chem, 2016. 88(19): p. 9451-9458. Veselkov, K., et al., BASIS: High-performance bioinformatics platform for processing of large-scale mass spectrometry imaging data in chemically augmented histology. Sci Rep, 2018. 8(1): p. 4053. Bemis, K.D., et al., Cardinal: an R package for statistical analysis of mass spectrometry-based imaging experiments. Bioinformatics, 2015. 31(14): p. 2418-2420. Gibb, S. and K. Strimmer, MALDIquant: a versatile R package for the analysis of mass spectrometry data. Bioinformatics, 2012. 28(17): p. 2270-2271. Bond, N.J., et al., massPix: an R package for annotation and interpretation of mass spectrometry imaging data for lipidomics. Metabolomics, 2017. 13(11): p. 128. Patterson, N.H., et al., Co-registration and analysis of multiple imaging mass spectrometry datasets targeting different analytes. Bioinformatics, 2019. 35(7): p. 1261-1262. Patterson, N.H., et al., Advanced Registration and Analysis of MALDI Imaging Mass Spectrometry Measurements through Autofluorescence Microscopy. Analytical Chemistry, 2018. 90(21): p. 12395-12403. Matusch, A., et al., Combined elemental and biomolecular mass spectrometry imaging for probing the inventory of tissue at a micrometer scale. Anal Chem, 2012. 84(7): p. 3170-8. Neumann, E.K., et al., Multimodal Imaging Mass Spectrometry: Next Generation Molecular Mapping in Biology and Medicine. J Am Soc Mass Spectrom, 2020. 31(12): p. 2401-2415. Tuck, M., et al., Multimodal Imaging Based on Vibrational Spectroscopies and Mass Spectrometry Imaging Applied to Biological Tissue: A Multiscale and Multiomics Review. Anal Chem, 2021. 93(1): p. 445-477. Calligaris, D., et al., Mass spectrometry imaging as a tool for surgical decision‐making. Journal of Mass Spectrometry, 2013. 48(11): p. 1178-1187. Henderson, F., et al., Multi-modal imaging of long-term recovery post-stroke by positron emission tomography and matrix-assisted laser desorption/ionisation mass spectrometry. Rapid Commun Mass Spectrom, 2018. 32(9): p. 721-729. Fletcher, J.S., et al., Correlated fluorescence microscopy and multi-ion beam secondary ion mass spectrometry imaging reveals phosphatidylethanolamine increases in the membrane of cancer cells over-expressing the molecular chaperone subunit CCTdelta. Anal Bioanal Chem, 2021. 413(2): p. 445-453. Tian, X., et al., Multimodal Imaging of Amyloid Plaques: Fusion of the Single-Probe Mass Spectrometry Image and Fluorescence Microscopy Image. Anal Chem, 2019. 91(20): p. 12882-12889. Verbeeck, N., et al., Connecting imaging mass spectrometry and magnetic resonance imaging-based anatomical atlases for automated anatomical interpretation and differential analysis. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics, 2017. 1865(7): p. 967-977. Abdelmoula, W.M., et al., Automatic 3D Nonlinear Registration of Mass Spectrometry Imaging and Magnetic Resonance Imaging Data. Anal Chem, 2019. 91(9): p. 6206-6216. Race, A.M., et al., Correlative Hyperspectral Imaging Using a Dimensionality-Reduction-Based Image Fusion Method. Analytical Chemistry, 2020. 92(16): p. 10979-10988. Van de Plas, R., et al., Image fusion of mass spectrometry and microscopy: a multimodality paradigm for molecular tissue mapping. Nat Methods, 2015. 12(4): p. 366-72. Veselkov, K.A., et al., Chemo-informatic strategy for imaging mass spectrometry-based hyperspectral profiling of lipid signatures in colorectal cancer. Proceedings of the National Academy of Sciences, 2014. 111(3): p. 1216-1221. Abdelmoula, W.M., et al., Automatic Generic Registration of Mass Spectrometry Imaging Data to Histology Using Nonlinear Stochastic Embedding. Analytical Chemistry, 2014. 86(18): p. 9204-9211. Verbeeck, N., R.M. Caprioli, and R. Van de Plas, Unsupervised machine learning for exploratory data analysis in imaging mass spectrometry. Mass Spectrom Rev, 2020. 39(3): p. 245-291. Abdelmoula, W.M., et al., Interactive Visual Exploration of 3D Mass Spectrometry Imaging Data Using Hierarchical Stochastic Neighbor Embedding Reveals Spatiomolecular Structures at Full Data Resolution. J Proteome Res, 2018. 17(3): p. 1054-1064. McInnes, L., J. Healy, and J. Melville, Umap: Uniform manifold approximation and projection for dimension reduction. arXiv preprint arXiv:1802.03426, 2018. Race, A.M., et al., Deep Learning-Based Annotation Transfer between Molecular Imaging Modalities: An Automated Workflow for Multimodal Data Integration. Anal Chem, 2021. 93(6): p. 3061-3071. Smets, T., E. Waelkens, and B. De Moor, Prioritization of m/z-values in mass spectrometry imaging profiles obtained using uniform manifold approximation and projection for dimensionality reduction. Analytical chemistry, 2020. 92(7): p. 5240-5248. Oetjen, J., et al., Benchmark datasets for 3D MALDI- and DESI-imaging mass spectrometry. Gigascience, 2015. 4. Guenther, S., et al., Spatially Resolved Metabolic Phenotyping of Breast Cancer by Desorption Electrospray Ionization Mass Spectrometry. Cancer Research, 2015. 75(9): p. 1828-1837. Veselkov, K.A., et al., Chemo-informatic strategy for imaging mass spectrometry-based hyperspectral profiling of lipid signatures in colorectal cancer. Proc Natl Acad Sci U S A, 2014. 111(3): p. 1216-21. Abbassi-Ghadi, N., et al., Discrimination of lymph node metastases using desorption electrospray ionisation-mass spectrometry imaging: a proof of concept study. British Journal of Surgery, 2014. 101: p. 44-44. Haug, K., et al., MetaboLights: a resource evolving in response to the needs of its scientific community. Nucleic Acids Research, 2020. 48(D1): p. D440-D444. Lin, L.-E., et al., Precision biomarker discovery powered by microscopy image fusion-assisted high spatial resolution ambient ionization mass spectrometry imaging. Analytica chimica acta, 2020. 1100: p. 75-87. Abbassi-Ghadi, N., et al., Discrimination of lymph node metastases using desorption electrospray ionisation-mass spectrometry imaging. Chemical Communications, 2014. 50(28): p. 3661-3664. Abasi, S., M.A. Tehran, and M.D. Fairchild, Colour metrics for image edge detection. Color Research and Application, 2020. 45(4): p. 632-643. Hu, M., Visual-Pattern Recognition by Moment Invariants. Ire Transactions on Information Theory, 1962. 8(2): p. 179- . Klein, S., et al., elastix: a toolbox for intensity-based medical image registration. IEEE Trans Med Imaging, 2010. 29(1): p. 196-205. Kobayashi, S., J.H. Saltz, and V.W. Yang, State of machine and deep learning in histopathological applications in digestive diseases. World J Gastroenterol, 2021. 27(20): p. 2545-2575. Tran, K.A., et al., Deep learning in cancer diagnosis, prognosis and treatment selection. Genome Med, 2021. 13(1): p. 152. Uno, Y. and J.T. Coyle, Glutamate hypothesis in schizophrenia. Psychiatry Clin Neurosci, 2019. 73(5): p. 204-215. Bendikov, I., et al., A CSF and postmortem brain study of D-serine metabolic parameters in schizophrenia. Schizophr Res, 2007. 90(1-3): p. 41-51. MacKay, M.-A.B., et al., D-Serine: potential therapeutic agent and/or biomarker in schizophrenia and depression? Frontiers in psychiatry, 2019. 10: p. 25. Schizophrenia Working Group of the Psychiatric Genomics, C., Biological insights from 108 schizophrenia-associated genetic loci. Nature, 2014. 511(7510): p. 421-7. Balu, D.T., et al., Multiple risk pathways for schizophrenia converge in serine racemase knockout mice, a mouse model of NMDA receptor hypofunction. Proc Natl Acad Sci U S A, 2013. 110(26): p. E2400-9. Hussain, G., et al., Lipids as biomarkers of brain disorders. Critical reviews in food science and nutrition, 2020. 60(3): p. 351-374. Shamim, A., et al., Lipids: An insight into the neurodegenerative disorders. Clinical Nutrition Experimental, 2018. 20: p. 1-19. Horrobin, D.F., et al., Fatty acid levels in the brains of schizophrenics and normal controls. Biol Psychiatry, 1991. 30(8): p. 795-805. Yao, J.K., S. Leonard, and R.D. Reddy, Membrane phospholipid abnormalities in postmortem brains from schizophrenic patients. Schizophr Res, 2000. 42(1): p. 7-17. Wang, D., et al., Metabolic profiling identifies phospholipids as potential serum biomarkers for schizophrenia. Psychiatry research, 2019. 272: p. 18-29. McNamara, R.K., et al., Abnormalities in the fatty acid composition of the postmortem orbitofrontal cortex of schizophrenic patients: gender differences and partial normalization with antipsychotic medications. Schizophr Res, 2007. 91(1-3): p. 37-50. Pearce, J.M., R.A. Komoroski, and R.E. Mrak, Phospholipid composition of postmortem schizophrenic brain by 31P NMR spectroscopy. Magn Reson Med, 2009. 61(1): p. 28-34. Hamazaki, K., K.H. Choi, and H.-Y. Kim, Phospholipid profile in the postmortem hippocampus of patients with schizophrenia and bipolar disorder: no changes in docosahexaenoic acid species. Journal of psychiatric research, 2010. 44(11): p. 688-693. Wood, P.L., Targeted lipidomics and metabolomics evaluations of cortical neuronal stress in schizophrenia. Schizophr Res, 2019. 212: p. 107-112. Vos, D.R.N., et al., Experimental and Data Analysis Considerations for Three-Dimensional Mass Spectrometry Imaging in Biomedical Research. Mol Imaging Biol, 2021. 23(2): p. 149-159. Pei, J.-C., et al., Therapeutic potential and underlying mechanism of sarcosine (N-methylglycine) in N-methyl-D-aspartate (NMDA) receptor hypofunction models of schizophrenia. Journal of Psychopharmacology, 2019. 33(10): p. 1288-1302. Palmer, A., et al., FDR-controlled metabolite annotation for high-resolution imaging mass spectrometry. Nature methods, 2017. 14(1): p. 57-60. Wishart, D.S., et al., HMDB 4.0: the human metabolome database for 2018. Nucleic Acids Res, 2018. 46(D1): p. D608-D617. Ding, J., et al., A metabolome atlas of the aging mouse brain. Nature Communications, 2021. 12(1): p. 1-12. Fitzner, D., et al., Cell-Type- and Brain-Region-Resolved Mouse Brain Lipidome. Cell Rep, 2020. 32(11): p. 108132. Dong, H.W., The Allen reference atlas: A digital color brain atlas of the C57Bl/6J male mouse. 2008: John Wiley Sons Inc. McInnes, L., J. Healy, and S. Astels, hdbscan: Hierarchical density based clustering. Journal of Open Source Software, 2017. 2(11): p. 205. C. Silva, A.S., et al., Data-driven rescoring of metabolite annotations significantly improves sensitivity. Analytical chemistry, 2018. 90(19): p. 11636-11642. Maganti, R.J., et al., Defining Changes in the Spatial Distribution and Composition of Brain Lipids in the Shiverer and Cuprizone Mouse Models of Myelin Disease. J Histochem Cytochem, 2019. 67(3): p. 203-219. Del Castillo, E., et al., rMSIKeyIon: An Ion Filtering R Package for Untargeted Analysis of Metabolomic LDI-MS Images. Metabolites, 2019. 9(8). Corraliza-Gomez, M., D. Sanchez, and M.D. Ganfornina, Lipid-Binding Proteins in Brain Health and Disease. Front Neurol, 2019. 10: p. 1152. Tallima, H. and R. El Ridi, Arachidonic acid: Physiological roles and potential health benefits - A review. J Adv Res, 2018. 11: p. 33-41. Wang, B., et al., Metabolism pathways of arachidonic acids: mechanisms and potential therapeutic targets. Signal Transduct Target Ther, 2021. 6(1): p. 94. Sun, G.Y., et al., Phospholipases A2 and inflammatory responses in the central nervous system. Neuromolecular Med, 2010. 12(2): p. 133-48. Brouwers, H., et al., Anti-Inflammatory and Proresolving Effects of the Omega-6 Polyunsaturated Fatty Acid Adrenic Acid. J Immunol, 2020. 205(10): p. 2840-2849. Guijas, C., et al., Phospholipid sources for adrenic acid mobilization in RAW 264.7 macrophages. Comparison with arachidonic acid. Biochim Biophys Acta, 2012. 1821(11): p. 1386-93. Song, J., et al., Neuroprotective effects of oleic acid in rodent models of cerebral ischaemia. Sci Rep, 2019. 9(1): p. 10732. Beaulieu, J., et al., The Neuroinflammatory and Neurotoxic Potential of Palmitic Acid Is Mitigated by Oleic Acid in Microglial Cells and Microglial-Neuronal Co-cultures. Molecular Neurobiology, 2021. 58(6): p. 3000-3014. Schwarz, E., et al., High throughput lipidomic profiling of schizophrenia and bipolar disorder brain tissue reveals alterations of free fatty acids, phosphatidylcholines, and ceramides. J Proteome Res, 2008. 7(10): p. 4266-77. Hsu, M.C., Y.S. Huang, and W.C. Ouyang, Beneficial effects of omega-3 fatty acid supplementation in schizophrenia: possible mechanisms. Lipids Health Dis, 2020. 19(1): p. 159. Hashimoto, M., et al., Docosahexaenoic acid: one molecule diverse functions. Crit Rev Biotechnol, 2017. 37(5): p. 579-597. Heras-Sandoval, D., J. Pedraza-Chaverri, and J.M. Perez-Rojas, Role of docosahexaenoic acid in the modulation of glial cells in Alzheimer's disease. J Neuroinflammation, 2016. 13(1): p. 61. Steullet, P., et al., Redox dysregulation, neuroinflammation, and NMDA receptor hypofunction: A 'central hub' in schizophrenia pathophysiology? Schizophr Res, 2016. 176(1): p. 41-51. Bygrave, A.M., et al., Can N-Methyl-D-Aspartate Receptor Hypofunction in Schizophrenia Be Localized to an Individual Cell Type? Frontiers in psychiatry, 2019. 10: p. 835. Laye, S., et al., Anti-Inflammatory Effects of Omega-3 Fatty Acids in the Brain: Physiological Mechanisms and Relevance to Pharmacology. Pharmacol Rev, 2018. 70(1): p. 12-38. Medzhitov, R., The spectrum of inflammatory responses. Science, 2021. 374(6571): p. 1070-1075. Falabella, M., et al., Cardiolipin, Mitochondria, and Neurological Disease. Trends in Endocrinology Metabolism, 2021. Chen, W.-W., et al., Phosphatidylglycerol incorporates into cardiolipin to improve mitochondrial activity and inhibits inflammation. Scientific reports, 2018. 8(1): p. 1-14. Lee, A.R., et al., Dorsal and Ventral Hippocampus Differentiate in Functional Pathways and Differentially Associate with Neurological Disease-Related Genes during Postnatal Development. Front Mol Neurosci, 2017. 10: p. 331.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82069-
dc.description.abstract質譜影像是能同時研究多種感興趣分子之空間分布的強大工具。質譜影像經常與其他成像技術結合使用進而擴展其適用性。對於多模態成像資料的資料融合,對準是關鍵的步驟。質譜影像與其他成像技術之間的對準經常是通過組織學間接達成的。目前,質譜影像與組織學之間的對準大多是通過手動或半自動操作來進行。本論文的第一部分,我們建構了一個用於在質譜影像和組織學之間自動對準的網頁服務。在使用來自五項不同研究的二十七個樣本資料進行的性能評估中,大多數對準是有效的且沒有明顯偏移。 思覺失調症是一種主要的精神性腦部疾病,在全球範圍內的終生患病率約為1%,但思覺失調症的神經生物學機制和病因錯綜複雜且仍然不明確。本論文的第二部分,以三維質譜影像的方式對思覺失調症風險小鼠模型的腦部和野生型小鼠的腦部進行了分析。在這裡,我們主要針對海馬迴進行分析。我們發現在思覺失調症風險小鼠模型的背側海馬迴區域中數種代謝物顯著增加,包含脂肪酸、溶血磷脂、磷脂。其中一些代謝物在以前的文獻中已被發現可能與炎症有關聯。zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-25T05:35:10Z (GMT). No. of bitstreams: 1
U0001-2812202110393800.pdf: 5540845 bytes, checksum: 87b99b0c7e45bff7acd9abc32e4d323a (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents口試委員會審定書 # 誌謝 i 中文摘要 ii ABSTRACT iii CONTENTS v LIST OF FIGURES ix LIST OF TABLES xii Chapter 1 Introduction 1 1.1 Mass Spectrometry Imaging 1 1.1.1 Commonly Used Ionization Techniques in MSI 2 1.1.2 Mass Spectrometry Imaging Data Analysis 3 1.1.3 Mass Spectrometry Imaging Data Analysis Tools 5 1.2 Multimodal Imaging with Mass Spectrometry Imaging 7 1.2.1 Combinations of Multiple Ionization Techniques 7 1.2.2 Mass Spectrometry Imaging with Radiology 8 1.2.3 Mass Spectrometry Imaging with Vibrational Spectroscopies 9 1.2.4 Mass Spectrometry Imaging with Microscopy 9 1.3 Multimodal Imaging Data Fusion 10 Chapter 2 MSI Registrar: Automatic Registration Service for Mass Spectrometry Imaging and Histology 13 2.1 Introduction 13 2.1.1 Image Registration between Mass Spectrometry Imaging and Histology 14 2.1.2 Dimensionality Reduction 16 2.1.3 Motivation 18 2.2 Method and Materials 19 2.2.1 Experimental Datasets 19 2.2.2 Overview of MSI Registrar 21 2.2.3 Histological Image Processing 22 2.2.4 Mass Spectrometry Imaging Data Processing 23 2.2.5 Multimodal Registration 25 2.2.6 Spectral Index Extraction 27 2.2.7 Registration Evaluation 28 2.3 Results and Discussion 29 2.3.1 Histological Image Processing 29 2.3.2 On-tissue Spectra Extraction 32 2.3.3 Hyperspectral Visualization 34 2.3.4 Multimodal Registration 35 2.3.5 Limitations 39 2.3.6 Web Interface 40 2.4 Conclusion 42 Chapter 3 Three-Dimensional Mass Spectrometry Imaging Analysis in the Brain of Mouse Model of Schizophrenia Risk 44 3.1 Introduction 44 3.1.1 N-Methyl-D-aspartate (NMDA) Receptor 45 3.1.2 D-Serine and Serine Racemase 45 3.1.3 Lipids in Schizophrenia 46 3.1.4 Three-Dimensional Mass Spectrometry Imaging 48 3.2 Method and Materials 49 3.2.1 Tissue Preparation 50 3.2.2 DESI MSI 50 3.2.3 Image Registration and 3D Construction 51 3.2.4 Data Processing and Statistics Analysis 53 3.2.5 Metabolites Grouping based on Spatial Distribution 56 3.3 Results and Discussion 56 3.3.1 Metabolite Annotation 56 3.3.2 Metabolite Classification based on Spatial Distribution 58 3.3.3 Metabolites with Significant Intensity Difference in Hippocampus 76 3.3.4 Hypothesis Generated from Observations in Hippocampus 88 3.3.5 The Limitation of Differential Analysis through DESI MSI 92 3.4 Conclusion 94 REFERENCE 95
dc.language.isoen
dc.subject三維質譜影像zh_TW
dc.subject思覺失調症zh_TW
dc.subject自動影像對準zh_TW
dc.subject組織學zh_TW
dc.subject質譜影像zh_TW
dc.subjectschizophreniaen
dc.subjectmass spectrometry imagingen
dc.subjecthistologyen
dc.subjectautomatic image registrationen
dc.subjectthree-dimensional mass spectrometry imagingen
dc.title組織學影像與質譜影像之自動化對準網頁服務與應用zh_TW
dc.titleWeb Service and Application for Automatic Registration with Mass Spectrometry Imaging and Histologyen
dc.date.schoolyear110-1
dc.description.degree碩士
dc.contributor.oralexamcommittee賴文崧(Hsin-Tsai Liu),徐丞志(Chih-Yang Tseng),陳志光,蘇柏翰
dc.subject.keyword質譜影像,組織學,自動影像對準,三維質譜影像,思覺失調症,zh_TW
dc.subject.keywordmass spectrometry imaging,histology,automatic image registration,three-dimensional mass spectrometry imaging,schizophrenia,en
dc.relation.page101
dc.identifier.doi10.6342/NTU202104585
dc.rights.note同意授權(限校園內公開)
dc.date.accepted2021-12-29
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept生醫電子與資訊學研究所zh_TW
dc.date.embargo-lift2026-12-28-
顯示於系所單位:生醫電子與資訊學研究所

文件中的檔案:
檔案 大小格式 
U0001-2812202110393800.pdf
  未授權公開取用
5.41 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved