請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82068完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳昭瑩(Chao-Ying Chen) | |
| dc.contributor.author | Quan Fong | en |
| dc.contributor.author | 馮全 | zh_TW |
| dc.date.accessioned | 2022-11-25T05:35:08Z | - |
| dc.date.available | 2024-01-01 | |
| dc.date.copyright | 2022-02-17 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2022-01-03 | |
| dc.identifier.citation | 行政院農業委員會。2021。109年農業統計年報。行政院農業委員會。 吳岱融、黃勝泉、盧美君。2017。草莓種苗育苗現況與因應策略。苗栗區農業專訊 80: 22-22。 吳岱融。2016。草莓病蟲害-非化學農藥防治技術介紹. 苗栗區農業專訊 76: 17-19。 吳岱融。2019。草莓採後非農藥處理概說。苗栗區農業專訊 88: 5-6。 呂惠鈴、徐慈鴻、黃慶文。2019。108年度水果農產品農藥殘留監測研究。行政院農業委員會藥物毒物試驗所。臺中。臺灣。 呂惠鈴、徐慈鴻、黃慶文。2019。108年度蔬菜農產品農藥殘留監測研究。行政院農業委員會藥物毒物試驗所。臺中。臺灣。 姚瑞禎。2014。草莓新病害-萎凋病。桃園區農業專訊 90:10-11。 徐巧芳、鄭婷文、陳冠勳、連怡婷、林政谷、黃卓君、夏凱、王惠亮。2020。由Neopestalotiopsis rosae引起之臺灣草莓新病害與藥劑篩選。植物醫學 4: 39-47。 郭宏遠、何超然。2010。台灣番茄市場及品種簡介。苗栗區農業專訊 50: 11-13。 陳柏良。2015。利用多黏類芽孢桿菌防治草莓炭疽病。國立臺灣大學植物病理與微生物學系碩士論文。臺北。臺灣。 陳鈺婷。2013。草莓灰黴病生物防治之應用研究。國立臺灣大學植物病理與微生物學系碩士論文。臺北。臺灣。 葉俊巖。2009。番茄病害管理。桃園區農業技術專輯 1: 21-26。 劉依昌、黃瑞彰、蔡孟旅、黃秀雯。2016。小果番茄設施栽培及健康管理技術。臺南區農業改良場技術專刊 164: 3-47。 羅國偉。2012。草莓田間管理技術。桃園區農業技術專輯 9: 9-11。 羅國偉。2012。草莓育苗技術及栽培管理。桃園區農業技術專輯 9: 6-8。 鐘珮哲、吳竑毅、江詩筑、蔡季芸。2021。草莓新興病害-葉枯病病原鑑定及防治方法評估。苗栗區農業改良場研究彙報 10: 01-14。 鐘珮哲、吳竑毅。2020。草莓育苗病害管理策略。苗栗區農業專訊 69: 9-11。 Agostini, L. T., Duarte, R. T., Volpe, X. L., Agostini, T. T., Carvalho, G. A., Abrahão, Y. P., and Palanczyk, R. A. 2014. Compatibility among insecticides, acaricides, and Bacillus thuringiensis used to control Tetranychus urticae (Acari: Tetranychidae) and Heliothis virescens (Lepidoptera: Noctuidae) in cotton fields. African Journal of Agricultural Research 9: 941-949. Anand, R., and Chanway, C. 2012. N2-fixation and growth promotion in cedar colonized by an endophytic strain of Paenibacillus polymyxa. Biology and Fertility of Soils 49: 235-239. Ash, C., Priest, F. G., and Collins, M. D. 1993. Molecular identification of rRNA group 3 bacilli using a PCR probe test: proposal for the creation of a new group Paenibacillus. Antonie van Leeuwenhoek 64: 253. Ayoubi, N., and Soleimani, M. J. 2016. Strawberry fruit rot caused by Neopestalotiopsis iranensis sp. nov., and N. mesopotamica. Current Microbiology 72: 329-336. Baggio, J. S., Forcelini, B. B., Wang, N.Y., Ruschel, R. G., Mertely, J. C., and Peres, N. A. 2021. Outbreak of leaf spot and fruit rot in Florida strawberry caused by Neopestalotiopsis spp. Plant Disease 105: 305–315. Beyers, T., Vos, C., Aerts, R., Heyens, K., Vogels, L., Seels, B., Hofte, M., Cammue, B. P. A., and De Coninck, B. 2014. Resistance against Botrytis cinerea in smooth leaf pruning wounds of tomato does not depend on major disease signalling pathways. Plant Pathology 63: 165-173. Burges, H. D. 1998. Formulation of microbial biopesticides: Beneficial microorganisms, nematodes and seed treatments. Springer, Dordrecht. Chamorro, M., Aguado, A., and De los Santos, B. 2016. First report of root and crown rot caused by Pestalotiopsis clavispora (Neopestalotiopsis clavispora) on strawberry in Spain. Plant Disease 100: 1495–1495. Dondero, N. C., and Holbert, P. E. 1957. The endospore of Bacillus polymyxa. Journal of Bacteriology 74: 43-47. Essa, T. A., Kamel, S. M., Ismail, A. M., and El-Ganainy, S. M. 2018. Characterization and chemical control of Neopestalotiopsis rosae the causal agent of strawberry root and crown rot in Egypt. Egyptian Journal of Phytopathology 46: 1–19. Fan, L., Zhang, D. J., Liu, Z. H., Tao, L. M., and Luo, Y. C. 2012. Antifungal lipopeptide produced by Paenibacillus polymyxa HY96-2. Natural Product Research and Development 24: 729–735. Fao, 2021. Food and agriculture data. Rome: food and agriculture organization of united nations (FAO). Available at: http://www.fao.org/faostat/en/#data/QC/. Gao, P., Qin, J., Li, D., and Zhou, S. 2018. Inhibitory effect and possible mechanism of a Pseudomonas strain QBA5 against gray mold on tomato leaves and fruits caused by Botrytis cinerea. PLoS ONE 13: e0190932. Gao, Y., Liang, J., Xiao, R., Zang, P., Zhao, Y., and Zhang, L. 2018. Effect of four trace elements on Paenibacillus polymyxa Pp-7250 proliferation, activity and colonization in ginseng. AMB Express 8: 164. Ge, B., Liu, B., Nwet, T. T., Zhao, W., Shi, L., and Zhang, K. 2016. Bacillus methylotrophicus strain NKG-1, isolated from Changbai mountain, China, has potential applications as a biofertilizer or biocontrol agent. PLOS ONE 11: e0166079. Gilardi, G., Bergeretti, F., Gullino, M. L., and Garibaldi, A. 2019. First report of Neopestalotiopsis clavispora causing root and crown rot on strawberry in Italy. Plant Disease 103: 2959–2959. Gossen, B. D., Peng, G., Wolf, T. M., and McDonald, M. R. 2008. Improving spray retention to enhance the efficacy of foliar-applied disease- and pest- management products in field and row crops. Canadian Journal of Plant Pathology 30: 505–516. Haggag, W. M., and Timmusk, S. 2008. Colonization of peanut roots by biofilm-forming Paenibacillus polymyxa initiates biocontrol against crown rot disease. Journal of Applied Microbiology 104: 961–969. Hao, T., and Chen, S. 2017. Colonization of wheat, maize and cucumber by Paenibacillus polymyxa WLY78. PLOS ONE 12: e0169980. He, X., Li, Q., Wang, N., and Chen, S. 2021. Effects of an EPS biosynthesis gene cluster of Paenibacillus Polymyxa WLY78 on biofilm formation and nitrogen fixation under aerobic conditions. Microorganisms 9: 289. Hemelrijck, Van. W., Ceustermans, A., Campenhout, J. V., Lieten, P., and Bylemans, D. 2017. Crown rot in strawberry caused by Pestalotiopsis. Acta Horticulturae 1156: 781–786. Huo, Z., Zhang, N., Raza, W., Huang, X., Yong, X., Liu, Y., Wang, D., Li, S., Shen, Q., and Zhang, R. 2012. Comparison of the spores of Paenibacillus polymyxa prepared at different temperatures. Biotechnology Letters 34: 925–933. Ji, X., Li, J., Meng, Z., Zhang, S., Dong, B., and Qiao, K. 2019. Synergistic effect of combined application of a new fungicide fluopimomide with a biocontrol agent Bacillus methylotrophicus TA-1 for management of gray mold in tomato. Plant Disease 103: 1991-1997. Kajimura, Y., and Kaneda M. 1996. Fusaricidin A, a new depsipeptide antibiotic produced by Bacillus polymyxa KT-8 taxonomy, fermentation, isolation, structure elucidation and biological activity. Journal of Antibiotics 49: 129-135. Kajimura, Y., and Kaneda, M. 1997. Fusaricidins B, C and D, new depsipeptide antibuotics produced by Bacillus polymyxa KT-8: isolation, structure elucidation and biological activity. Journal of Antibiotics 50: 220-228. Kefi, A., Slimene, I. B., Karkouch, I., Rihouey, C., Azaeiz, S., Bejaoui, M., and Limam, F. 2015. Characterization of endophytic Bacillus strains from tomato plants (Lycopersicon esculentum) displaying antifungal activity against Botrytis cinerea. World Journal of Microbiology and Biotechnology 31: 1967-1976. Khardziani, T., Kachlishvili, E., Sokhadze, K., Elisashvili, V., Weeks, R., Chikindas, M. L., and Chistyakov, V. 2017. Elucidation of Bacillus subtilis KATMIRA 1933 potential for spore production in submerged fermentation of plant raw materials. Probiotics and Antimicrobial Proteins 9: 435–443. Khodaei, D., Hamidi-Esfahani, Z. 2019. Influence of bioactive edible coatings loaded with Lactobacillus plantarum on physicochemical properties of fresh strawberries. Postharvest Biology and Technology 156: 110944. Korolev, N., Mamiev, M., Zahavi, T., and Elad, Y. 2011. Screening of Botrytis cinerea isolates from vineyards in Israel for resistance to fungicides. European Journal of Plant Pathology 129: 591–608. Kummanid, J., Akimitsu, K., and Nalumpang, S. 2017. Mutations of the β-tubulin gene fragments from Carbendazim-resistant isolates of Pestalotiopsis sp. causing strawberry leaf blight in Chiang Mai, Thailand. Journal of Phytopathology 165: 515–521. Kuroda, J., Fukai, T., and Nomura, T. 2001. Collision-induced dissociation of ring-opened cyclic depsipeptides with a guanidino group by electrospray ionization/ion trap mass spectrometry. Journal of Mass Spectrometry 36: 30-7. Kwon, Y. S., Lee, D. Y., Rakwal, R., Baek, S. B., Lee, J. H., Kwak, Y. S., Seo, Y. S., Chung, W. S., Bae, D. W., and Kim, S. G. 2016. Proteomic analyses of the interaction between the plant-growth promoting rhizobacterium Paenibacillus polymyxa E681 and Arabidopsis thaliana. Proteomics 16: 122–135. Lee, B., Farag, M. A., Park, H. B., Kloepper, J. W., Lee, S. H., and Ryu, C. M. 2012. Induced resistance by a long-chain-bacterial volatile: elicitation of plant systemic defense by C13 volatile produced by paenibacillus polymyxa. PLOS ONE 7: e48744. Lee, Y., Kim, Y. S., Balaraju, K., Seo, Y. S., Park, J., Ryu, C. M., Park, S. H., Kim, J. F., Kang, S., and Jeon, Y. 2020. Molecular changes associated with spontaneous phenotypic variation of Paenibacillus polymyxa, a commonly used biocontrol agent, and temperature-dependent control of variation. Scientific Reports 10: 16585. Li, Y., and Chen, S. 2019. Fusaricidin produced by Paenibacillus polymyxa WLY78 induces systemic resistance against fusarium wilt of cucumber. International Journal of Molecular Sciences 20: 5240. Liang, X. S., Liu, C., Long, Z., and Guo, X. H. 2018. Rapid and simple detection of endospore counts in probiotic bacillus cultures using dipicolinic acid (DPA) as a marker. AMB Express 8: 101. Liu, W., Wu, X., Bi, X., Zhang, H., Dong, D., Zhang, T., and Wu, H. 2018. Fusaricidins in Paenibacillus polymyxa A21 and their antagonistic activity against Botrytis cinerea on tomato. Frontiers of Agricultural Science and Engineering 5: 262-270. Lounaci, L., Guemouri-athmani, S., Boureghda, H., Achouak, W., and Heulin, T. 2016. Suppression of crown and root rot of wheat by the rhizobacterium Paenibacillus polymyxa. Phytopathologia Mediterranea 55: 355-365. Machín, A., González, P., Vicente, E., Sánchez, M., Estelda, C., Ghelfi, J., and Silvera-Pérez, E. 2019. First report of root and crown rot caused by Neopestalotiopsis clavispora on strawberry in Uruguay. Plant Disease 103: 2946–2946. Marian, M., and Shimizu, M. 2019. Improving performance of microbial biocontrol agents against plant diseases. Journal of General Plant Pathology 85: 329–336. Masmoudi, F., Khedher, S. B., Kamoun, A., Zouari, N., Tounsi, S., and Trigui, M. 2017. Combinatorial effect of mutagenesis and medium component optimization on Bacillus amyloliquefaciens antifungal activity and efficacy in eradicating Botrytis cinerea. Microbiological Research 197: 29-38. Monteiro, S. M., Clemente, J. J., Henriques, A. O., Gomes, R. J., Carrondo, M. J., and Cunha, A. E. 2008. A procedure for high-yield spore production by Bacillus subtilis. Biotechnology Progress 21: 1026–1031. Morales-Mora, L. A., Martínez-Salgado, S. J., Valencia de Ita, M. A., Andrade-Hoyos, P., Silva-Rojas, H. V., and Romero-Arenas, O. 2019. First report of leaf spot and anthracnosis caused by Pestalotiopsis sp. on strawberry in Puebla, Mexico. Plant Disease 103: 2668–2668. Morris, O. N. 1975. Effect of some chemical insecticides on the germination and replication of commercial Bacillus thuringiensis. Journal of Invertebrate Pathology 26: 199–204. Moyano, C., Gómez, V., and Melgarejo, P. 2004. Resistance to pyrimethanil and other fungicides in Botrytis cinerea populations collected on vegetable crops in Spain. Journal of Phytopathology 152: 484–490. Myresiotis, C. K., Karaoglanidis, G. S., and Tzavella-Klonari, K. 2007. Resistance of Botrytis cinerea isolates from vegetable crops to anilinopyrimidine, phenylpyrrole, hydroxyanilide, benzimidazole, and dicarboximide fungicides. Plant Disease 91: 407–413. Niu, B., Rueckert, C., Blom, J., Wang, Q., and Borriss, R. 2011. The Genome of the plant growth-promoting rhizobacterium Paenibacillus polymyxa M-1 contains nine sites dedicated to nonribosomal synthesis of lipopeptides and polyketides. Journal of Bacteriology 193: 5862-5863. Niu, B., Vater, J., Rueckert, C., Blom, J., Lehmann, M., Ru, J. J., Chen, X. H., Wang, Q., and Borriss, R. 2013. Polymyxin P is the active principle in suppressing phytopathogenic Erwinia spp. by the biocontrol rhizobacterium Paenibacillus polymyxa M-1. BMC Microbiology 13: 137–150. Obregón, V. G., Meneguzzi, N. G., Ibañez, J. M., Lattar, T. E., and Kirschbaum, D. S. 2018. First Report of Neopestalotiopsis clavispora causing root and crown rot on strawberry plants in Argentina. Plant Disease 102: 1856–1856. Padda, K. P., Puri, A., and Chanway, C. P. 2015. Effect of GFP tagging of Paenibacillus polymyxa p2b-2r on its ability to promote growth of canola and tomato seedlings. Biology and Fertility of Soils 52: 377–387. Phi, Q. T., Park, Y.M., Seul, K. J., Ryu, C. M., Park, S. H., Kim, J. G., and Ghim, S. Y. 2010. Assessment of root-associated Paenibacillus polymyxa groups on growth promotion and induced systemic resistance in pepper. Journal of Microbiology and Biotechnology 20:1605-13. Prabakaran, G., Balaraman, K., Hoti, S. L., and Manonmani, A. M. 2007. A cost-effective medium for the large-scale production of Bacillus sphaericus H5a5b (VCRC B42) for mosquito control. Biological Control 41: 379–383. Quirós-Sauceda, A. E., Ayala-Zavala, J. F., Olivas, G. I., and González-Aguilar, G. A. 2014. Edible coatings as encapsulating matrices for bioactive compounds: a review. Journal of Food Science Technology 51: 1674–1685. Ravindran, V., Abdollahi, M. R., and Bootwalla, S. M. 2014. Nutrient analysis, metabolizable energy, and digestible amino acids of soybean meals of different origins for broilers. Poultry Science 93: 2567–2577. Raza, W., and Shen, Q. 2010. Growth, Fe3 + reductase activity, and siderophore production by Paenibacillus polymyxa SQR‐21 under differential iron conditions. Current Microbiology 61: 390–395. Raza, W., Yang, R., and Shen, Q. R. 2008. Paenibacillus polymyxa: antibiotic, hydrolytic enzymes and hazard assessment. Journal of Plant Pathology 90: 419-430. Raza, W., Yung, J., Ling, N., Huang, Q., and Shen, Q. 2015. Production of volatile organic compounds by an antagonistic strain Paenibacillus polymyxa WR-2 in the presence of root exudates and organic fertilizer and their antifungal activity against Fusarium oxysporum f. sp. niveum. Biological Control 80: 89–95. Rebollar-Alviter, A., Silva-Rojas, H. V., Fuentes-Aragón, D., Acosta-González, U., Martínez-Ruiz, M., and Parra-Robles, B. E. 2020. An emerging strawberry fungal disease associated with root rot, crown rot and leaf spot caused by Neopestalotiopsis rosae in Mexico. Plant Disease 104: 2054–2059. Ren, H., Su, Y.T., and Guo, X. H. 2018. Rapid optimization of spore production from Bacillus amyloliquefaciens in submerged cultures based on dipicolinic acid fluorimetry assay. AMB Express 8: 21. Richa, A., and Christopher, C. 2013. N2-fixation and growth promotion in cedar colonized by an endophytic strain of Paenibacillus polymyxa. Biology and Fertility of Soils 49: 235–239. Rodrigues, F. A., Silva, I. T., Antunes Cruz, M. F., and Carré-Missio, V. 2014. The infection process of Pestalotiopsis Longisetula leaf spot on strawberry leaves. Journal of Phytopathology 162: 690–692. Rosslenbroich H. J., and Stuebler, D. 2000. Botrytis cinerea-history of chemical control and novel fungicides for its management. Crop Protection 19: 557-561. Rybakova, D., Rack-Wetzlinger, U., Cernava, T., Schaefer, A., Schmuck, M., and Berg, G. 2017. Aerial warfare: A volatile dialogue between the plant pathogen Verticillium longisporum and its antagonist Paenibacillus polymyxa. Frontiers in Plant Science 8: 1294 Ryu, C. M., Kim, J., Choi, O., Kim, S. H., and Park, C. S. 2006. Improvement of biological control capacity of Paenibacillus polymyxa E681 by seed pelleting on sesame. Biological Control 39: 282–289. Salman, M., and Abuamsha, R. 2012. Potential for integrated biological and chemical control of damping-off disease caused by Pythium ultimum in tomato. BioControl 57: 711–718. Salvatierra-Martinez, R., Arancibia, W., Araya, M., Aguilera, S., Olalde, V., Bravo, J., and Stoll, A. 2018. Colonization ability as an indicator of enhanced biocontrol capacity: An example using two Bacillus amyloliquefaciens strains and Botrytis cinerea infection of tomatoes. Journal of Phytopathology 166: 601– 612. Setlow P., and Johnson E. A. 2007. Spores and their significance. Current Opinion in Microbiology 6: 550–556. Shi, L., Nwet, T. T., Ge, B., Zhao, W., Liu, B., Cui, H., and Zhang, K. 2018. Antifungal and plant growth-promoting activities of Streptomyces roseoflavus strain NKZ-259. Biological Control 125: 57-64. Sigillo, L., Ruocco, M., Gualtieri, L., Pane, C., and Zaccardelli, M. 2019. First report of Neopestalotiopsis clavispora causing crown rot in strawberry in Italy. Journal of Plant Pathology 102: 281–281. Singh, A. K., Ghodke, I., and Chhatpar, H. S. 2009. Pesticide tolerance of Paenibacillus sp. D1 and its chitinase. Journal of Environmental Management 91: 358–362. Sun, Q., Harishchandra, D., Jia, J., Zuo, Q., Zhang, G., Wang, Q., Yan, J., Zhang, W., and Li, X. 2021. Role of Neopestalotiopsis rosae in causing root rot of strawberry in Beijing, China. Crop Protection 147: 105710. Sutthisa, W., and Soparut, P. 2019. Interaction of antagonistic bacteria that effective to control rice bacterial leaf blight disease with agricultural chemicals and bio-products. Journal of Pure and Applied Microbiology 13: 1517–1524. Tambadou, F., Caradec, T., Gagez, A., Bonner, A., Sopéna, V., Bridiau N., Thiéry, V., Didelot, S., Barthélémy, C., and Chevrot, R. 2015. Characterization of the colistin (polymyxin E1 and E2) biosynthetic gene cluster. Archives of Microbiology 197: 521-532. Tsai, S. H., Chen, Y. T., Yang, Y. L., Lee, B. Y., Huang, C. J., and Chen, C. Y. 2021. The potential biocontrol agent Paenibacillus polymyxa TP3 produces fusaricidin-type compounds involved in the antagonism against gray mold pathogen Botrytis cinerea. Phytopathology Epub ahead of print. Tumbarski, Y., Nikolova, R., Petkova, N., Ivanov, I., and Lante, A. 2019. Biopreservation of fresh strawberries by carboxymethyl cellulose edible coatings enriched with a bacteriocin from Bacillus methylotrophicus BM47. Food Technology and Biotechnology 57: 230–237. Vater, J., Niu B., Kristin D., and Borriss, R. 2015. Characterization of novel fusaricidins produced by Paenibacillus polymyxa M1 using MALDI-TOF mass spectrometry. Jorunal of American Society for Mass Spectrometry 26: 1548-1558. Velickova, E., Winkelhausen, E., Kuzmanova S., Alves V. D., and Moldão-Martins, M. 2013. Impact of chitosan-beeswax edible coatings on the quality of fresh strawberries (Fragaria ananassa cv Camarosa) under commercial storage conditions. LWT-Food Science and Technology 52: 80–92. Wang, Y., Shi, Y., Li, B., Shan, C., Ibrahim, M., Jabeen, A., Xie, G., and Sun, G. 2012. Phosphate solubilization of Paenibacillus polymyxa and Paenibacillus macerans from mycorrhizal and non-mycorrhizal cucumber plants. African Journal of Microbiology Research 6: 4567-4573. Wen, F. Y., Liao, F. P., Lin, J. R., and Zhong, Y. S. 2010. Cloning, expression and application of β-1,3-1-4-glucanase gene from Paenibacillus polymyxa CP7. Journal of Integrative Agriculture 43: 4614-4623. Weselowski, B., Nathoo, N., Eastman, A.W., MacDonald, J., and Yuan, Z, C. 2016. Isolation, identification and characterization of Paenibacillus polymyxa CR1 with potentials for biopesticide, biofertilization, biomass degradation and biofuel production. BMC Microbiology 16: 244. Wu, H. Y., Tsai, C. Y., Wu, Y. M., Ariyawansa, H. A., Chung, C. L., and Chung, P. C. 2021. First report of Neopestalotiopsis rosae causing leaf blight and crown rot on strawberry in Taiwan. Plant Disease 105: 487–487. Xu, L., Wang, W., Wei, H. G., Shen, G. M., and Li, Y. G. 2006. Effect of Paenibacillus polymyxa HY96-2 on bacterial wilt of tomato. Chinese Journal of Biological Control 22: 216–220. Xu, S., and Kim, B. S. 2016. Evaluation of Paenibacillus polymyxa strain SC09-21 for biocontrol of Phytophthora blight and growth stimulation in pepper plants. Tropical Plant Pathology 41: 162–168. Xu, S., Yao, J., Wu, F., Mei, L., and Wang, Y. 2018. Evaluation of Paenibacillus polymyxa carboxymethylcellulose/poly (vinyl alcohol) formulation for control of Carya cathayensis canker caused by Botryosphaeria Dothidea. Forest Pathology 48: e12464. Yang, J., Kharbanda, P. D., and Mirza, M. 2004. Evaluation of Paenibacillus polymyxa PKB1 for biocontrol of Pythium disease of cucumber in a hydroponic System. Acta Horticulturae 635: 59-66. Yaoyao, E., Yuan, J., Yang, F., Wang, L., Ma, J. H., Li, J., Pu, X., Raza, W., Huang, Q., and Shen Q. 2017. PGPR strain Paenibacillus polymyxa SQR-21 potentially benefits watermelon growth by re-shaping root protein expression. AMB Express 7: 104. Yi, J., Zhang, D., Cheng, Y., Tan, J., and Luo, Y. 2019.The impact of Paenibacillus polymyxa HY96-2 luxS on biofilm formation and control of tomato bacterial wilt. Applied Microbiology and Biotechnology 103: 9643–9657. Yu, W., Yin, C., Zhou, C., and Ye, B. 2012. Prediction of the mechanism of action of fusaricidin on Bacillus subtilis. PLoS ONE 7: e50003. Zhai, Y., Zhu, J. X., Tan, T. M., Xu, J. P., Shen, A. R., Yang, X. B., Li, J. L., Zeng, L. B., and Wei, L. 2021. Isolation and characterization of antagonistic Paenibacillus Polymyxa HX-140 and its biocontrol potential against Fusarium wilt of cucumber seedlings. BMC Microbiology 21: 75. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82068 | - |
| dc.description.abstract | 為了減少化學農藥的使用與風險,需要開發化學農藥的替代資材,微生物農藥即為其中之一。多黏類芽孢桿菌(Paenibacillus polymyxa)菌株TP3分離自田間草莓植株的地上部組織,先前的研究顯示其施用於草莓植株具有對灰黴病與炭疽病之防治功效。多黏類芽孢桿菌也會產生具有環境耐受性以及倉儲壽命長的內生孢子,適合選用開發為微生物農藥。本研究以黃豆粉培養基替代AK產孢培養基可產生十倍量的內生孢子,使生產成本降低、提升應用可行性;當於黃豆粉培養基添加米糠、海草粉等碳素源,可增加TP3內生孢子產量,為大量生產TP3之培養基配方的參考依據。透過對峙培養以及孢子發芽抑制試驗,得知TP3具對草莓葉枯病之防治潛力,盆栽試驗證實TP3對草莓葉枯病具有防治效果,並在TP3施用十天內維持防治效果。多項推薦使用於草莓與番茄之化學殺菌劑與殺蟲劑不會抑制TP3的生長,如將TP3與其可耐受之殺菌劑共同施用時,可提升對葉枯病的防治效果;將TP3延伸應用至番茄灰黴病的防治,試驗得知TP3對番茄灰黴病菌之菌絲生長與孢子發芽均具有抑制能力,由盆栽試驗及葉表菌數調查得知TP3施用十天內具有病害防治效果,但TP3菌數會逐漸下降。由於菌株TP3處理可增加番茄葉片由激發子flg22誘導之癒傷葡聚醣沈積,推測誘導抗性(induced resistance)是TP3防治番茄病害的機制之一。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-25T05:35:08Z (GMT). No. of bitstreams: 1 U0001-3012202116245800.pdf: 3411153 bytes, checksum: cc4fdc6284cfb0b42d057b99b33ddbe9 (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | 中文摘要 i 英文摘要 ii 壹、前言 1 貳、前人研究 2 一、臺灣草莓產業 2 二、草莓葉枯病菌 3 三、臺灣之番茄產業 4 四、番茄灰黴病 5 五、微生物農藥 6 六、多黏類芽孢桿菌 7 七、多黏類芽孢桿菌於植物病害防治之應用 8 八、多黏類芽孢桿菌TP3 9 九、多黏類芽孢桿菌的產孢培養條件 10 參、材料與方法 12 一、 供試植物的栽培 12 1. 草莓植株之培養條件 12 2. 番茄植株之培養條件 12 二、多黏類芽孢桿菌之培養與保存 12 1. TP3之培養與保存 12 3. 發酵生產高濃度之TP3內生孢子濃縮液 13 三、供試菌株之培養 14 1. 草莓葉枯病菌 14 2. 番茄灰黴病菌 14 四、TP3內生孢子生產優化試驗 14 1. 培養溫度對TP3產生內生孢子之影響 14 2. 添加碳素源對TP3內生孢子數量及其對病原菌拮抗能力之影響 15 五、病原菌對峙試驗 15 六、真菌孢子發芽抑制試驗 15 七、TP3於草莓葉表原位防治葉枯病試驗 16 八、盆栽防治試驗 16 1. 連續施用TP3對草莓葉枯病之防治效果 16 2. 施用TP3防治草莓葉枯病之效期試驗 16 3.連續施用TP3對番茄灰黴病菌之防治效果 17 4. 施用TP3防治番茄灰黴病之效期試驗 17 九、TP3之化學農藥耐受性試驗 17 1 . 以濾紙圓盤法(paper disc method)測試TP3對於化學農藥之耐受性 17 2. TP3與農藥共同施用防治草莓葉枯病試驗 17 十、番茄葉表之TP3菌數調查 18 十一、以組織化學染色法檢測番茄防禦反應 18 十二、田間驗證試驗 19 1. TP3之田間施用方法 19 2. TP3施用於田間草莓植株對果實之葉枯病菌感染影響試驗 19 3. TP3施用於田間草莓植株對花及幼果數量影響試驗 19 十三、 統計分析方法 19 肆、結果 21 一、黃豆粉培養基適於生產TP3內生孢子 21 二、TP3培養條件與不正常形態菌落的產生 21 三、多黏類芽孢桿菌TP3可抑制草莓葉枯病菌之菌絲生長與孢子發芽 22 三、以黃豆粉培養基培養之TP3內生孢子培養液可用於防治草莓葉枯病,且具有10天的持效性 22 四、菌株TP3具有對多項化學殺菌劑與殺蟲劑之耐受性,且共同施用可提昇對草莓葉枯病的防治功效 22 五、TP3田間施用可降低草莓果實受葉枯病菌之感染及增加花及幼果數量 23 六、由對峙培養及孢子發芽試驗得知TP3具有抑制番茄灰黴病菌菌絲生長及孢子發芽之能力 23 七、以黃豆粉培養基培養之TP3處理番茄葉片,對灰黴病有至少十天之保護效期,並且可留存於葉表 24 伍、討論 25 草莓葉枯病之生物防治 25 田間試驗 27 陸、參考文獻 32 柒、圖表集 46 表一、多黏類芽孢桿菌TP3與各項化學殺蟲劑、殺菌劑之耐受性 47 圖一、比較黃豆粉培養基與AK產孢培養基之TP3內生孢子產量 48 圖二、以2%黃豆粉培養基培養TP3之內生孢子產量 49 圖三、多黏類芽孢桿菌TP3內生孢子生產之優化 50 圖四、多黏類芽孢桿菌TP3以不同比例之粗原料進行培養之內生孢子產量 51 圖五、比較常溫與冷藏半年之由黃豆粉培養基所培養之TP3內生孢子數量變化 52 圖六、多黏類芽孢桿菌TP3於黃豆粉培養基上之不正常形態菌落及其拮抗能力差異 54 圖七、多黏類芽孢桿菌TP3與草莓葉枯病菌對峙培養 55 圖八、多黏類芽孢桿菌TP3之菌體抑制草莓葉枯病菌之孢子發芽 56 圖九、多黏類芽孢桿菌TP3培養上清液抑制草莓葉枯病菌之孢子發芽 57 圖十、多黏類芽孢桿菌TP3於草莓葉表原位抑制葉枯病之病徵發展 58 圖十一、 黃豆粉培養基培養之多黏類芽孢桿菌TP3抑制草莓葉枯病之效果 59 圖十二、於接種前不同天數處理多黏類芽孢桿菌TP3對草莓葉枯病之防治效果 60 圖十三、多黏類芽孢桿菌TP3與化學殺菌劑分別及共同使用對草莓葉枯病之防治效果 61 圖十四、田間施用多黏類芽孢桿菌TP3對草莓果實之病害防治效果 62 圖十五、田間施用多黏類芽孢桿菌TP3對草莓花及幼果數量之影響 63 圖十六、多黏類芽孢桿菌TP3抑制番茄灰黴病菌之菌絲生長 64 圖十七、多黏類芽孢桿菌TP3營養細胞抑制番茄灰黴病菌孢子發芽情形 65 圖十八、多黏類芽孢桿菌TP3抑制番茄灰黴病之效果 66 圖十九、於接種前不同天數處理多黏類芽孢桿菌TP3對番茄灰黴病之防治效果 67 圖二十、多黏類芽孢桿菌TP3 噴灑後不同天數留存於番茄葉表之菌量 68 圖二十一、多黏類芽孢桿菌TP3促進番茄葉片由flg22誘導之癒傷葡聚醣沉積 69 捌、附錄 70 附圖一、於相位差顯微鏡觀察TP3內生孢子培養液 71 | |
| dc.language.iso | zh-TW | |
| dc.subject | 番茄灰黴病 | zh_TW |
| dc.subject | 多黏類芽桿孢菌 | zh_TW |
| dc.subject | 微生物農藥 | zh_TW |
| dc.subject | 草莓葉枯病 | zh_TW |
| dc.subject | Paenibacillus polymyxa | en |
| dc.subject | tomato gray mold | en |
| dc.subject | strawberry leaf blight | en |
| dc.subject | microbial pesticide | en |
| dc.title | 多黏類芽孢桿菌TP3之內生孢子生產及植物病害防治應用 | zh_TW |
| dc.title | Endospore production of Paenibacillus polymyxa TP3 and application in plant disease control | en |
| dc.date.schoolyear | 110-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 洪挺軒(Hsin-Tsai Liu),鍾嘉綾(Chih-Yang Tseng),林乃君,黃健瑞 | |
| dc.subject.keyword | 多黏類芽桿孢菌,微生物農藥,草莓葉枯病,番茄灰黴病, | zh_TW |
| dc.subject.keyword | Paenibacillus polymyxa,microbial pesticide,strawberry leaf blight,tomato gray mold, | en |
| dc.relation.page | 71 | |
| dc.identifier.doi | 10.6342/NTU202104600 | |
| dc.rights.note | 同意授權(限校園內公開) | |
| dc.date.accepted | 2022-01-04 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 植物醫學碩士學位學程 | zh_TW |
| dc.date.embargo-lift | 2024-01-01 | - |
| 顯示於系所單位: | 植物醫學碩士學位學程 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-3012202116245800.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 3.33 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
