請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82050完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 駱尚廉(Shang-Lien Lo) | |
| dc.contributor.author | Ting Fang | en |
| dc.contributor.author | 方婷 | zh_TW |
| dc.date.accessioned | 2022-11-25T05:34:47Z | - |
| dc.date.available | 2026-06-24 | |
| dc.date.copyright | 2021-08-18 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-06-24 | |
| dc.identifier.citation | Aber, S., Amani-Ghadim, A. R., Mirzajani, V. (2009). Removal of Cr(VI) from polluted solutions by electrocoagulation: Modeling of experimental results using artificial neural network. Journal of Hazardous Materials, 171(1), 484-490. Al Aji, B., Yavuz, Y., Koparal, A. S. (2012). Electrocoagulation of heavy metals containing model wastewater using monopolar iron electrodes. Separation and Purification Technology, 86, 248-254. Alam, R., Shang, J. Q. (2016). Electrochemical model of electro-flotation. Journal of Water Process Engineering, 12, 78-88. Alexander, B. H., Olsen, G. W., Burris, J. M., Mandel, J. H., Mandel, J. S. (2003). Mortality of employees of a perfluorooctanesulphonyl fluoride manufacturing facility. Occupational and Environmental Medicine, 60(10), 722-729. An, C., Huang, G., Yao, Y., Zhao, S. (2017). Emerging usage of electrocoagulation technology for oil removal from wastewater: A review. Science of The Total Environment, 579, 537-556. Arslan-Alaton, İ., Kabdaşlı, I., Vardar, B., Tünay, O. (2009). Electrocoagulation of simulated reactive dyebath effluent with aluminum and stainless steel electrodes. Journal of Hazardous Materials, 164(2), 1586-1594. Arvaniti, O. S., Andersen, H. R., Thomaidis, N. S., Stasinakis, A. S. (2014). Sorption of Perfluorinated Compounds onto different types of sewage sludge and assessment of its importance during wastewater treatment. Chemosphere, 111, 405-411. Bao, J., Yu, W.-J., Liu, Y., Wang, X., Liu, Z.-Q., Duan, Y.-F. (2020). Removal of perfluoroalkanesulfonic acids (PFSAs) from synthetic and natural groundwater by electrocoagulation. Chemosphere, 248, 125951. Bao, Y., Niu, J., Xu, Z., Gao, D., Shi, J., Sun, X., Huang, Q. (2014). Removal of perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) from water by coagulation: Mechanisms and influencing factors. Journal of Colloid and Interface Science, 434, 59-64. Boulanger, B., Vargo, J. D., Schnoor, J. L., Hornbuckle, K. C. (2005). Evaluation of Perfluorooctane Surfactants in a Wastewater Treatment System and in a Commercial Surface Protection Product. Environmental Science Technology, 39(15), 5524-5530. Buck, R. C., Franklin, J., Berger, U., Conder, J. M., Cousins, I. T., de Voogt, P., Jensen, A. A., Kannan, K., Mabury, S. A., van Leeuwen, S. P. (2011). Perfluoroalkyl and polyfluoroalkyl substances in the environment: Terminology, classification, and origins. Integrated Environmental Assessment and Management, 7(4), 513-541. Calafat, A. M., Needham, L. L., Kuklenyik, Z., Reidy, J. A., Tully, J. S., Aguilar-Villalobos, M., Naeher, L. P. (2006). Perfluorinated chemicals in selected residents of the American continent. Chemosphere, 63(3), 490-496. Chanra, J., Budianto, E., Soegijono, B. (2019). The Role of SDS Surfactant in The Synthesis of Polymer Hybrid Latex Poly-(St-co-BA-co-MMA) with OMMT as Filler via Mini-Emulsion Polymerization. IOP Conference Series: Materials Science and Engineering, 515, 012059. Chen, G., Chen, X., Yue, P. L. (2000). Electrocoagulation and electroflotation of restaurant wastewater. Journal of Environmental Engineering, 126(9), 858-863. Chen, J., Zhang, P.-y., Liu, J. (2007). Photodegradation of perfluorooctanoic acid by 185 nm vacuum ultraviolet light. Journal of Environmental Sciences, 19(4), 387-390. Chen, W., Zhang, X., Mamadiev, M., Wang, Z. (2017). Sorption of perfluorooctane sulfonate and perfluorooctanoate on polyacrylonitrile fiber-derived activated carbon fibers: in comparison with activated carbon. RSC Advances, 7(2), 927-938. Chularueangaksorn, P., Tanaka, S., Fujii, S., Kunacheva, C. (2014). Adsorption of perfluorooctanoic acid (PFOA) onto anion exchange resin, non-ion exchange resin, and granular-activated carbon by batch and column. Desalination and Water Treatment, 52(34-36), 6542-6548. Clint, J. H. (2012). Surfactant Aggregation: Springer Netherlands. Daneshvar, N., Sorkhabi, H. A., Kasiri, M. (2004). Decolorization of dye solution containing Acid Red 14 by electrocoagulation with a comparative investigation of different electrode connections. Journal of Hazardous Materials, 112(1-2), 55-62. Deng, S., Zhou, Q., Yu, G., Huang, J., Fan, Q. (2011). Removal of perfluorooctanoate from surface water by polyaluminium chloride coagulation. Water Research, 45(4), 1774-1780. Devlin, T. R., Kowalski, M. S., Pagaduan, E., Zhang, X., Wei, V., Oleszkiewicz, J. A. (2019). Electrocoagulation of wastewater using aluminum, iron, and magnesium electrodes. Journal of Hazardous Materials, 368, 862-868. DeWitt, J. C., Peden-Adams, M. M., Keller, J. M., Germolec, D. R. (2012). Immunotoxicity of perfluorinated compounds: recent developments. Toxicol Pathol, 40(2), 300-311. Dinglasan-Panlilio, M. J. A., Mabury, S. A. (2006). Significant Residual Fluorinated Alcohols Present in Various Fluorinated Materials. Environmental Science Technology, 40(5), 1447-1453. Elazzouzi, M., Haboubi, K., Elyoubi, M. S. (2019). Enhancement of electrocoagulation-flotation process for urban wastewater treatment using Al and Fe electrodes: techno-economic study. Materials Today: Proceedings, 13, 549-555. Emamjomeh, M., Kakavand, S., Jamali, H., Alizadeh, S., Safdari, M., Mousavi, S. E. S., Hashim, K. S., Mousazadeh, M. (2020). The treatment of printing and packaging wastewater by electrocoagulation–flotation: the simultaneous efficacy of critical parameters and economics. Desalination and Water Treatment, 205. Emamjomeh, M. M., Sivakumar, M. (2009). Review of pollutants removed by electrocoagulation and electrocoagulation/flotation processes. Journal of Environmental Management, 90(5), 1663-1679. Fei, C., McLaughlin Joseph, K., Tarone Robert, E., Olsen, J. (2007). Perfluorinated Chemicals and Fetal Growth: A Study within the Danish National Birth Cohort. Environmental Health Perspectives, 115(11), 1677-1682. Fekete, É., Lengyel, B., Cserfalvi, T., Pajkossy, T. (2016). Electrochemical dissolution of aluminium in electrocoagulation experiments. Journal of Solid State Electrochemistry, 20(11), 3107-3114. Fiedler, S., Pfister, G., Schramm, K.-W. (2010). Poly- and perfluorinated compounds in household consumer products. Toxicological Environmental Chemistry, 92(10), 1801-1811. Gao, S., Yang, J., Tian, J., Ma, F., Tu, G., Du, M. (2010). Electro-coagulation–flotation process for algae removal. Journal of Hazardous Materials, 177(1), 336-343. Garcia-Segura, S., Eiband, M. M. S. G., de Melo, J. V., Martínez-Huitle, C. A. (2017). Electrocoagulation and advanced electrocoagulation processes: A general review about the fundamentals, emerging applications and its association with other technologies. Journal of Electroanalytical Chemistry, 801, 267-299. Ge, J., Qu, J., Lei, P., Liu, H. (2004). New bipolar electrocoagulation–electroflotation process for the treatment of laundry wastewater. Separation and Purification Technology, 36(1), 33-39. Ghosh, D., Medhi, C. R., Purkait, M. K. (2008). Treatment of fluoride containing drinking water by electrocoagulation using monopolar and bipolar electrode connections. Chemosphere, 73(9), 1393-1400. Giesy, J. P., Kannan, K. (2001). Global Distribution of Perfluorooctane Sulfonate in Wildlife. Environmental Science Technology, 35(7), 1339-1342. Giesy, J. P., Naile, J. E., Khim, J. S., Jones, P. D., Newsted, J. L. (2010). Aquatic Toxicology of Perfluorinated Chemicals Reviews of Environmental Contamination and Toxicology (pp. 1-52). New York, NY: Springer New York. Gomes, J. A. G., Daida, P., Kesmez, M., Weir, M., Moreno, H., Parga, J. R., Irwin, G., McWhinney, H., Grady, T., Peterson, E., Cocke, D. L. (2007). Arsenic removal by electrocoagulation using combined Al–Fe electrode system and characterization of products. Journal of Hazardous Materials, 139(2), 220-231. Han, X., Snow, T. A., Kemper, R. A., Jepson, G. W. (2003). Binding of Perfluorooctanoic Acid to Rat and Human Plasma Proteins. Chemical Research in Toxicology, 16(6), 775-781. Hansen, K. J., Johnson, H. O., Eldridge, J. S., Butenhoff, J. L., Dick, L. A. (2002). Quantitative Characterization of Trace Levels of PFOS and PFOA in the Tennessee River. Environmental Science Technology, 36(8), 1681-1685. Haque, M. E., Das, A. R., Rakshit, A. K., Moulik, S. P. (1996). Properties of Mixed Micelles of Binary Surfactant Combinations. Langmuir, 12(17), 4084-4089. Harada, K., Nakanishi, S., Sasaki, K., Furuyama, K., Nakayama, S., Saito, N., Yamakawa, K., Koizumi, A. (2006). Particle size distribution and respiratory deposition estimates of airborne perfluorooctanoate and perfluorooctanesulfonate in Kyoto area, Japan. Bulletin of environmental contamination and toxicology, 76(2), 306-310. Holt, P. K., Barton, G. W., Mitchell, C. A. (2005). The future for electrocoagulation as a localised water treatment technology. Chemosphere, 59(3), 355-367. Hori, H., Hayakawa, E., Einaga, H., Kutsuna, S., Koike, K., Ibusuki, T., Kiatagawa, H., Arakawa, R. (2004). Decomposition of Environmentally Persistent Perfluorooctanoic Acid in Water by Photochemical Approaches. Environmental Science Technology, 38(22), 6118-6124. Hori, H., Yamamoto, A., Hayakawa, E., Taniyasu, S., Yamashita, N., Kutsuna, S., Kiatagawa, H., Arakawa, R. (2005). Efficient Decomposition of Environmentally Persistent Perfluorocarboxylic Acids by Use of Persulfate as a Photochemical Oxidant. Environmental Science Technology, 39(7), 2383-2388. Hu, C.-Y., Lo, S.-L., Kuan, W.-H., Lee, Y.-D. (2008). Treatment of high fluoride-content wastewater by continuous electrocoagulation–flotation system with bipolar aluminum electrodes. Separation and Purification Technology, 60(1), 1-5. Hu, C. Y., Lo, S. L., Kuan, W. H., Lee, Y. D. (2005). Removal of fluoride from semiconductor wastewater by electrocoagulation–flotation. Water Research, 39(5), 895-901. Hu, C. Y., Lo, S. L., Li, C. M., Kuan, W. H. (2005). Treating chemical mechanical polishing (CMP) wastewater by electro-coagulation-flotation process with surfactant. Journal of Hazardous Materials, 120(1), 15-20. Isa, M. H., Ezechi, E. H., Ahmed, Z., Magram, S. F., Kutty, S. R. M. (2014). Boron removal by electrocoagulation and recovery. Water Research, 51, 113-123. Jian, J.-M., Guo, Y., Zeng, L., Liang-Ying, L., Lu, X., Wang, F., Zeng, E. Y. (2017). Global distribution of perfluorochemicals (PFCs) in potential human exposure source–A review. Environment International, 108, 51-62. Johnson, J. D., Gibson, S. J., Ober, R. E. (1984). Cholestyramine-enhanced fecal elimination of carbon-14 in rats after administration of ammonium [14C]perfluorooctanoate or potassium [14C]perfluorooctanesulfonate. Fundamental and Applied Toxicology, 4(6), 972-976. Kennedy, G. L., Hall, G. T., Brittelli, M. R., Barnes, J. R., Chen, H. C. (1986). Inhalation toxicity of ammonium perfluorooctanoate. Food and Chemical Toxicology, 24(12), 1325-1329. Kennedy, G. L., Jr., Butenhoff, J. L., Olsen, G. W., O'Connor, J. C., Seacat, A. M., Perkins, R. G., Biegel, L. B., Murphy, S. R., Farrar, D. G. (2004). The toxicology of perfluorooctanoate. Crit Rev Toxicol, 34(4), 351-384. Khandegar, V., Saroha, A. K. (2013). Electrocoagulation for the treatment of textile industry effluent – A review. Journal of Environmental Management, 128, 949-963. Kim, M.-K., Kim, T., Kim, T.-K., Joo, S.-W., Zoh, K.-D. (2020). Degradation mechanism of perfluorooctanoic acid (PFOA) during electrocoagulation using Fe electrode. Separation and Purification Technology, 247, 116911. Kim, T.-H., Yu, S., Choi, Y., Jeong, T.-Y., Kim, S. D. (2018). Profiling the decomposition products of perfluorooctane sulfonate (PFOS) irradiated using an electron beam. Science of The Total Environment, 631-632, 1295-1303. Kishimoto, N., Kobayashi, M. (2016). Effects of three additives on the removal of perfluorooctane sulfonate (PFOS) by coagulation using ferric chloride or aluminum sulfate. Water Science and Technology, 73(12), 2971-2977. Lau, C., Anitole, K., Hodes, C., Lai, D., Pfahles-Hutchens, A., Seed, J. (2007). Perfluoroalkyl Acids: A Review of Monitoring and Toxicological Findings. Toxicological Sciences, 99(2), 366-394. Lau, C., Thibodeaux, J. R., Hanson, R. G., Narotsky, M. G., Rogers, J. M., Lindstrom, A. B., Strynar, M. J. (2006). Effects of Perfluorooctanoic Acid Exposure during Pregnancy in the Mouse. Toxicological Sciences, 90(2), 510-518. Lee, S. Y., Gagnon, G. A. (2016). Growth and structure of flocs following electrocoagulation. Separation and Purification Technology, 163, 162-168. Lee, Y.-C., Lo, S.-L., Chiueh, P.-T., Chang, D.-G. (2009). Efficient decomposition of perfluorocarboxylic acids in aqueous solution using microwave-induced persulfate. Water Research, 43(11), 2811-2816. Lee, Y.-C., Wang, P.-Y., Lo, S.-L., Huang, C. P. (2017). Recovery of perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) from dilute water solution by foam flotation. Separation and Purification Technology, 173, 280-285. Li, X., Zhang, P., Jin, L., Shao, T., Li, Z., Cao, J. (2012). Efficient Photocatalytic Decomposition of Perfluorooctanoic Acid by Indium Oxide and Its Mechanism. Environmental Science Technology, 46(10), 5528-5534. Li, Y., Liu, J., Jia, Z. (2006). Fabrication of boehmite AlOOH nanofibers by a simple hydrothermal process. Materials Letters, 60(29), 3586-3590. Li, Y.-F., Chien, W.-Y., Liu, Y.-J., Lee, Y.-C., Lo, S.-L., Hu, C.-Y. (2021). Perfluorooctanoic acid (PFOA) removal by flotation with cationic surfactants. Chemosphere, 266, 128949. Lin, H., Wang, Y., Niu, J., Yue, Z., Huang, Q. (2015). Efficient Sorption and Removal of Perfluoroalkyl Acids (PFAAs) from Aqueous Solution by Metal Hydroxides Generated in Situ by Electrocoagulation. Environmental Science Technology, 49(17), 10562-10569. Lin, J.-C., Hu, C.-Y., Lo, S.-L. (2016). Effect of surfactants on the degradation of perfluorooctanoic acid (PFOA) by ultrasonic (US) treatment. Ultrasonics Sonochemistry, 28, 130-135. Lindstrom, A. B., Strynar, M. J., Libelo, E. L. (2011). Polyfluorinated Compounds: Past, Present, and Future. Environmental Science Technology, 45(19), 7954-7961. Liu, J., Wang, N., Szostek, B., Buck, R. C., Panciroli, P. K., Folsom, P. W., Sulecki, L. M., Bellin, C. A. (2010). 6-2 Fluorotelomer alcohol aerobic biodegradation in soil and mixed bacterial culture. Chemosphere, 78(4), 437-444. Liu, Y., Hu, X.-M., Zhao, Y., Wang, J., Lu, M.-X., Peng, F.-H., Bao, J. (2018). Removal of perfluorooctanoic acid in simulated and natural waters with different electrode materials by electrocoagulation. Chemosphere, 201, 303-309. Liu, Y.-J., Lo, S.-L., Liou, Y.-H., Hu, C.-Y. (2015). Removal of nonsteroidal anti-inflammatory drugs (NSAIDs) by electrocoagulation–flotation with a cationic surfactant. Separation and Purification Technology, 152, 148-154. Loewen, M., Halldorson, T., Wang, F., Tomy, G. (2005). Fluorotelomer Carboxylic Acids and PFOS in Rainwater from an Urban Center in Canada. Environmental Science Technology, 39(9), 2944-2951. Ludwicki, J. K., Góralczyk, K., Struciński, P., Wojtyniak, B., Rabczenko, D., Toft, G., Lindh, C. H., Jönsson, B. A. G., Lenters, V., Heederik, D., Czaja, K., Hernik, A., Pedersen, H. S., Zvyezday, V., Bonde, J. P. (2015). Hazard quotient profiles used as a risk assessment tool for PFOS and PFOA serum levels in three distinctive European populations. Environment International, 74, 112-118. Mahvi, A. H., Ebrahimi, S. J. A., Mesdaghinia, A., Gharibi, H., Sowlat, M. H. (2011). Performance evaluation of a continuous bipolar electrocoagulation/electrooxidation-electroflotation (ECEO-EF) reactor designed for simultaneous removal of ammonia and phosphate from wastewater effluent. Journal of Hazardous Materials, 192(3), 1267-1274. Mak, Y. L., Taniyasu, S., Yeung, L. W. Y., Lu, G., Jin, L., Yang, Y., Lam, P. K. S., Kannan, K., Yamashita, N. (2009). Perfluorinated Compounds in Tap Water from China and Several Other Countries. Environmental Science Technology, 43(13), 4824-4829. Malik, M. A. (2010). Water Purification by Plasmas: Which Reactors are Most Energy Efficient? Plasma Chemistry and Plasma Processing, 30(1), 21-31. Midasch, O., Drexler, H., Hart, N., Beckmann, M. W., Angerer, J. (2007). Transplacental exposure of neonates to perfluorooctanesulfonate and perfluorooctanoate: a pilot study. International Archives of Occupational and Environmental Health, 80(7), 643-648. Modirshahla, N., Behnajady, M. A., Mohammadi-Aghdam, S. (2008). Investigation of the effect of different electrodes and their connections on the removal efficiency of 4-nitrophenol from aqueous solution by electrocoagulation. Journal of Hazardous Materials, 154(1), 778-786. Mollah, M. Y. A., Morkovsky, P., Gomes, J. A. G., Kesmez, M., Parga, J., Cocke, D. L. (2004). Fundamentals, present and future perspectives of electrocoagulation. Journal of Hazardous Materials, 114(1), 199-210. Mollah, M. Y. A., Schennach, R., Parga, J. R., Cocke, D. L. (2001). Electrocoagulation (EC) — science and applications. Journal of Hazardous Materials, 84(1), 29-41. Moody, C. A., Hebert, G. N., Strauss, S. H., Field, J. A. (2003). Occurrence and persistence of perfluorooctanesulfonate and other perfluorinated surfactants in groundwater at a fire-training area at Wurtsmith Air Force Base, Michigan, USA. Journal of Environmental Monitoring, 5(2), 341-345. Moriwaki, H., Takagi, Y., Tanaka, M., Tsuruho, K., Okitsu, K., Maeda, Y. (2005). Sonochemical Decomposition of Perfluorooctane Sulfonate and Perfluorooctanoic Acid. Environmental Science Technology, 39(9), 3388-3392. Murugananthan, M., Bhaskar Raju, G., Prabhakar, S. (2004). Separation of pollutants from tannery effluents by electro flotation. Separation and Purification Technology, 40(1), 69-75. Nidheesh, P. V., Kumar, A., Syam Babu, D., Scaria, J., Suresh Kumar, M. (2020). Treatment of mixed industrial wastewater by electrocoagulation and indirect electrochemical oxidation. Chemosphere, 251, 126437. Niu, J., Lin, H., Xu, J., Wu, H., Li, Y. (2012). Electrochemical Mineralization of Perfluorocarboxylic Acids (PFCAs) by Ce-Doped Modified Porous Nanocrystalline PbO2 Film Electrode. Environmental Science Technology, 46(18), 10191-10198. Ono, S., Moronuki, S., Mori, Y., Koshi, A., Liao, J., Asoh, H. (2017). Effect of Electrolyte Concentration on the Structure and Corrosion Resistance of Anodic Films Formed on Magnesium through Plasma Electrolytic Oxidation. Electrochimica Acta, 240, 415-423. Organization, W. H. (2015). Interim report of the commission on ending childhood obesity: World Health Organization. Pearse, M. J. (2003). Historical use and future development of chemicals for solid–liquid separation in the mineral processing industry. Minerals Engineering, 16(2), 103-108. Pistocchi, A., Loos, R. (2009). A Map of European Emissions and Concentrations of PFOS and PFOA. Environmental Science Technology, 43(24), 9237-9244. Prevedouros, K., Cousins, I. T., Buck, R. C., Korzeniowski, S. H. (2006). Sources, Fate and Transport of Perfluorocarboxylates. Environmental Science Technology, 40(1), 32-44. Purwaningsih, H., Ervianto, Y., Mitha Pratiwi, V., Susanti, D., Purniawan, A. (2019). Effect of Cetyl Trimethyl Ammonium Bromide as Template of Mesoporous Silica MCM-41 from Rice Husk by Sol-Gel Method. IOP Conference Series: Materials Science and Engineering, 515, 012051. Sheng, J. J. (2011). Chapter 7 - Surfactant Flooding. In J. J. Sheng (Ed.), Modern Chemical Enhanced Oil Recovery (pp. 239-335). Boston: Gulf Professional Publishing. Singh, S., Lo, S.-L., Srivastava, V. C., Qiao, Q., Sharma, P. (2021). Mineralization of perfluorooctanoic acid by combined aerated electrocoagulation and Modified peroxi-coagulation methods. Journal of the Taiwan Institute of Chemical Engineers, 118, 169-178. So, M. K., Taniyasu, S., Yamashita, N., Giesy, J. P., Zheng, J., Fang, Z., Im, S. H., Lam, P. K. S. (2004). Perfluorinated Compounds in Coastal Waters of Hong Kong, South China, and Korea. Environmental Science Technology, 38(15), 4056-4063. Steenland, K., Fletcher, T., Savitz, D. A. (2010). Epidemiologic Evidence on the Health Effects of Perfluorooctanoic Acid (PFOA). Environmental Health Perspectives, 118(8), 1100-1108. Strynar, M. J., Lindstrom, A. B. (2008). Perfluorinated Compounds in House Dust from Ohio and North Carolina, USA. Environmental Science Technology, 42(10), 3751-3756. Tang, H., Xiang, Q., Lei, M., Yan, J., Zhu, L., Zou, J. (2012). Efficient degradation of perfluorooctanoic acid by UV–Fenton process. Chemical Engineering Journal, 184, 156-162. Vasudevan, S., Kannan, B. S., Lakshmi, J., Mohanraj, S., Sozhan, G. (2011). Effects of alternating and direct current in electrocoagulation process on the removal of fluoride from water. Journal of Chemical Technology Biotechnology, 86(3), 428-436. Vecitis, C. D., Park, H., Cheng, J., Mader, B. T., Hoffmann, M. R. (2008). Enhancement of Perfluorooctanoate and Perfluorooctanesulfonate Activity at Acoustic Cavitation Bubble Interfaces. The Journal of Physical Chemistry C, 112(43), 16850-16857. Vecitis, C. D., Park, H., Cheng, J., Mader, B. T., Hoffmann, M. R. (2008). Kinetics and Mechanism of the Sonolytic Conversion of the Aqueous Perfluorinated Surfactants, Perfluorooctanoate (PFOA), and Perfluorooctane Sulfonate (PFOS) into Inorganic Products. The Journal of Physical Chemistry A, 112(18), 4261-4270. Viana, R. B., da Silva, A. B. F., Pimentel, A. S. (2012). Infrared Spectroscopy of Anionic, Cationic, and Zwitterionic Surfactants. Advances in Physical Chemistry, 2012, 903272. Vik, E. A., Carlson, D. A., Eikum, A. S., Gjessing, E. T. (1984). Electrocoagulation of potable water. Water Research, 18(11), 1355-1360. Wang, Y., Lin, H., Jin, F., Niu, J., Zhao, J., Bi, Y., Li, Y. (2016). Electrocoagulation mechanism of perfluorooctanoate (PFOA) on a zinc anode: Influence of cathodes and anions. Science of The Total Environment, 557-558, 542-550. Wang, Y., Niu, J., Li, Y., Zheng, T., Xu, Y., Liu, Y. (2015). Performance and mechanisms for removal of perfluorooctanoate (PFOA) from aqueous solution by activated carbon fiber. RSC Advances, 5(106), 86927-86933. Wu, X., Xie, G., Xu, X., Wu, W., Yang, B. (2018). Adverse bioeffect of perfluorooctanoic acid on liver metabolic function in mice. Environ Sci Pollut Res Int, 25(5), 4787-4793. Xiao, F., Simcik, M. F., Gulliver, J. S. (2013). Mechanisms for removal of perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) from drinking water by conventional and enhanced coagulation. Water Research, 47(1), 49-56. Xiao, F., Zhang, X., Penn, L., Gulliver, J. S., Simcik, M. F. (2011). Effects of Monovalent Cations on the Competitive Adsorption of Perfluoroalkyl Acids by Kaolinite: Experimental Studies and Modeling. Environmental Science Technology, 45(23), 10028-10035. Xu, L., Wu, J. (2018). The Removal of Perfluorinated Carboxylic Acids (PFCAs) on Zinc Anode by Electrocoagulation and the Effects of Chemical Flocculants. E3S Web of Conferences, 38, 02023. Yang, B., Han, Y., Deng, Y., Li, Y., Zhuo, Q., Wu, J. (2016). Highly efficient removal of perfluorooctanoic acid from aqueous solution by H2O2-enhanced electrocoagulation-electroflotation technique. Emerging Contaminants, 2(1), 49-55. Yang, B., Han, Y., Yu, G., Zhuo, Q., Deng, S., Wu, J., Zhang, P. (2016). Efficient removal of perfluoroalkyl acids (PFAAs) from aqueous solution by electrocoagulation using iron electrode. Chemical Engineering Journal, 303, 384-390. Yu, Q., Zhang, R., Deng, S., Huang, J., Yu, G. (2009). Sorption of perfluorooctane sulfonate and perfluorooctanoate on activated carbons and resin: Kinetic and isotherm study. Water Research, 43(4), 1150-1158. Yuliani, G., Arifin, R. N., Setiabudi, A. (2017). On the Application of Electrocoagulation/Flotation (ECF) Technique for Cationic Dye Removals Using Aluminium Electrode and Sodium Dodecyl Sulfate (SDS). Key Engineering Materials, 751, 726-730. Zhang, T., Pan, G., Zhou, Q. (2016). Temperature effect on photolysis decomposing of perfluorooctanoic acid. Journal of Environmental Sciences, 42, 126-133. Zou, T., Fu, W., Liang, X., Wang, S., Gao, X., Zhang, Z., Fang, Y. (2019). Preparation and performance of form-stable TBAB hydrate/SiO2 composite PCM for cold energy storage. International Journal of Refrigeration, 101, 117-124. 錢維億(2020)。以界面活性劑作為水中全氟辛酸之浮除收集劑。臺北醫學大學公共衛生學系暨研究所碩士論文,臺北市。 取自https://hdl.handle.net/11296/vr7qf4 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82050 | - |
| dc.description.abstract | "全氟辛酸(Perfluorooctanoic acid , PFOA)為全氟化合物(Perfluorinated chemicals , PFCs)的一種,在1950年代大量被使用,所以其不只在環境中存在,動植物體內、蔬菜水果甚至人體血漿內均存在,因其具有環境持久性及生物累積性而逐漸被重視。流行病學相關研究指出,暴露全氟辛酸可能會造成肝毒性、發育毒性、生殖毒性甚至癌症。 2017年歐盟將全氟辛酸、其鹽類及相關化合物列入REACH法規附17。 2019年舉辦第九屆斯德哥爾摩公約會議,將全氟辛酸、其鹽類及相關化合物列入關於持久性有機污染物的《斯德哥爾摩公約》附件A。 本研究使用電混凝浮除技術(ECF)為電混凝(EC)和電浮除(EF)之結合達到去除含全氟辛酸之廢水,並使用不同種類之界面活性劑為蒐集劑,探討不同條件對全氟辛酸之去除效率影響。研究結果表示,在單極鋁板條件下加入初始濃度為1 mM PFOA,使用癸基三甲基溴化銨(Decyltrimethylammonium Bromide , DTAB)僅需10分鐘反應時間PFOA可達98% 去除,加入加入ZnCl2後可達100%去除。將實驗最佳添加濃度使用於實廠廢水並與自製廢水結果相比較,結果顯示,最佳界面活性劑濃度之添加量及濃度適用於實廠廢水PFOA之去除。 為了解PFOA在電混凝浮除之去除機制,將浮除膠羽使用傅立葉轉換紅外光譜(FTIR)、場發射掃描電子顯微鏡(SEM)、化學分析影像能譜儀(XPS)及X光繞射儀(XRD)進行分析觀察膠羽特徵。從膠羽結果可看到具有Al-F鍵結及Al-O鍵結,推斷膠羽為氫氧化鋁之化合物。最後將探討電混凝浮除之能效(G50),加入DTAB之G50值為2882 g/kWh,其效能遠高於過去文獻的1000倍以上,具經濟可行性。" | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-25T05:34:47Z (GMT). No. of bitstreams: 1 U0001-2206202120541300.pdf: 15079669 bytes, checksum: cc7f836cd243e94234f188dd01f6b908 (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | 致謝 i 摘要 ii Abstract iii 目錄 v 圖目錄 ix 表目錄 xii 第一章 緒論 1 1.1 研究緣起 1 1.2 研究目的 4 1.3 研究內容 4 第二章 文獻回顧 5 2.1 全氟化合物 5 2.1.1 全氟化合物種類及特性 5 2.1.2 全氟辛酸之歷史 8 2.1.3 全氟辛酸相關法令及管制措施 9 2.1.4 全氟化合物毒性 11 2.2 我國全氟化合物現況 15 2.3全氟化合物之處理技術 19 2.3.1 吸附 19 2.2.4 聲化學降解 21 2.3.2 傳統混凝 22 2.3.3泡沫浮除法 24 2.3.4電混凝/電混凝浮除法 26 2.3.1 影響電混凝之參數 29 2.3.2 電混凝運用去除全氟化物 33 2.4界面活性劑 34 2.4.1 界面活性劑之添加對全氟化合物去除之影響 34 2.4.2 界面活性劑之種類及特性 37 第三章 材料與方法 39 3.1 實驗內容與架構 39 3.2 實驗材料與設備 40 3.3 分析方法 45 3.4 實驗步驟與方法 49 3.4.1 背景試驗 49 3.4.2 電混凝浮除試驗 50 3.4.3 PFOA去除率計算 51 3.4.4 半去除率能效(G50)之計算 51 3.4.5 品保品管 52 第四章 結果與討論 53 4.1 背景實驗 53 4.2 添加不同種類之界面活性劑對PFOA去除率之影響 54 4.3 極板數量之影響 56 4.3.1 添加OTAB在單極板和雙極板系統之影響 56 4.3.2 添加DTAB在單極板和雙極板系統之影響 57 4.3.3 添加CTAB在單極板和雙極板系統之影響 58 4.3.4 添加TBAB在單極板和雙極板系統之影響 59 4.4 初始PFOA濃度之影響 61 4.4.1 添加OTAB於不同初始PFOA濃度之影響 61 4.4.2 添加DTAB於不同初始PFOA濃度之影響 62 4.4.3 添加CTAB於不同初始PFOA濃度之影響 63 4.4.4 添加TBAB於不同初始PFOA濃度之影響 64 4.5 電流及鋅鹽之影響 65 4.5.1 在不同電流下添加OTAB及鋅鹽之影響 65 4.5.2 在不同電流下添加DTAB及鋅鹽之影響 66 4.5.3 在不同電流下添加CTAB及鋅鹽之影響 67 4.5.4 在不同電流下添加TBAB及鋅鹽之影響 68 4.6 界面活性劑濃度與濁度和PH之關係 69 4.7 界面活性劑最佳添加濃度 73 4.8 實廠廢水去除效果 74 4.8.1 在實廠廢水加入OTAB對去除率之影響 75 4.8.2 在實廠廢水加入DTAB對去除率之影響 76 4.8.3 在實廠廢水加入CTAB對去除率之影響 77 4.8.4 在實廠廢水加入TBAB對去除率之影響 78 4.9 電混凝浮除後之膠羽分析 79 4.9.1 場發射電子顯微鏡/能量色散X射線光譜儀 80 4.9.2 傅立葉紅外光譜儀分析儀 83 4.9.3 X射線光電子能譜儀分析儀 88 4.9.4 X光繞射儀分析儀 93 4.10 添加不同種類之界面活性劑能效比較 95 4.11 各PFOA降解方法之能效(G50)比較 97 第五章 結論與建議 98 5.1 結論 98 5.2 建議 100 參考文獻 101 附錄 111 | |
| dc.language.iso | zh-TW | |
| dc.subject | 氫氧化物膠羽 | zh_TW |
| dc.subject | 全氟辛酸(PFOA) | zh_TW |
| dc.subject | 界面活性劑 | zh_TW |
| dc.subject | 電混凝浮除法 | zh_TW |
| dc.subject | 半去除率能效(G50) | zh_TW |
| dc.subject | perfluorooctanoic acid (PFOA) | en |
| dc.subject | Hydroxide flocs | en |
| dc.subject | energy yield for 50% removal (G50) | en |
| dc.subject | electrocoagulation-flotation method (ECF) | en |
| dc.subject | surfactant | en |
| dc.title | 以電混凝浮除法去除水中之全氟辛酸(PFOA) | zh_TW |
| dc.title | Removal of Perfluorooctanoic Acid(PFOA)by Electrocoagulation-flotation from Water | en |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 郭繼汾(Hsin-Tsai Liu),胡景堯(Chih-Yang Tseng) | |
| dc.subject.keyword | 全氟辛酸(PFOA),界面活性劑,電混凝浮除法,半去除率能效(G50),氫氧化物膠羽, | zh_TW |
| dc.subject.keyword | perfluorooctanoic acid (PFOA),surfactant,electrocoagulation-flotation method (ECF),energy yield for 50% removal (G50),Hydroxide flocs, | en |
| dc.relation.page | 127 | |
| dc.identifier.doi | 10.6342/NTU202101099 | |
| dc.rights.note | 同意授權(限校園內公開) | |
| dc.date.accepted | 2021-06-25 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 環境工程學研究所 | zh_TW |
| dc.date.embargo-lift | 2026-06-25 | - |
| 顯示於系所單位: | 環境工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2206202120541300.pdf 未授權公開取用 | 14.73 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
