請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82042完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林淑怡(Shu-I Lin) | |
| dc.contributor.author | Zhu-Yu Huang | en |
| dc.contributor.author | 黃主諭 | zh_TW |
| dc.date.accessioned | 2022-11-25T05:34:37Z | - |
| dc.date.available | 2026-08-16 | |
| dc.date.copyright | 2021-11-11 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-08-16 | |
| dc.identifier.citation | 陳仁炫. 2004. 土壤與植體營養診斷技術. 植物重要防疫檢疫病害診斷鑑定技術研習會專刊 (三). 行政院農業委員會動植物檢疫局. p. 157-174. 張則周. 2019. 植物營養學. p. 307-374. 五南圖書出版股份有限公司. 臺北. 臺灣. 張淑賢. 1981. 作物需肥診斷技術-本省現行植物分析法. 臺灣省農業試驗所編印 p.53-59。 戴振洋. 2009. 設施番茄介質栽培技術. 台中區農業技術專刊. 行政院農委會臺中區農業改良場. Agüera, E., P. Cabello, and P. De La Haba. 2010. Induction of leaf senescence by low nitrogen nutrition in sunflower (Helianthus annuus) plants. Physiologia plantarum 138:256-267. Albornoz, F. 2016. Crop responses to nitrogen overfertilization: A review. Scientia Hort. 205:79-83. Almeselmani, M., R. Pant, and B. Singh. 2009. Potassium level and physiological response and fruit quality in hydroponically grown tomato. Intl. J. Veg. Sci. 16:85-99. Barbedo, J.G.A. 2019. Detection of nutrition deficiencies in plants using proximal images and machine learning: A review. Computers and Electronics in Agr. 162:482-492. Bates, L.S., R.P. Waldren, and I. Teare. 1973. Rapid determination of free proline for water-stress studies. Plant and Soil 39:205-207. Baxter, A., R. Mittler, and N. Suzuki. 2014. ROS as key players in plant stress signalling. J. Expet. Bot. 65:1229-1240. Bhumsaidon, A. and M. Chamchong. 2016. Variation of lycopene and beta-carotene contents after harvesting of gac fruit and its prediction. Agr. Natural Resources 50:257-263. Bramley, P.M. 2002. Regulation of carotenoid formation during tomato fruit ripening and development. J. Expet. Bot. 53:2107-2113. Cartelat, A., Z. Cerovic, Y. Goulas, S. Meyer, C. Lelarge, J.-L. Prioul, A. Barbottin, M.-H. Jeuffroy, P. Gate, and G. Agati. 2005. Optically assessed contents of leaf polyphenolics and chlorophyll as indicators of nitrogen deficiency in wheat (Triticum aestivum L.). Field Crops Res. 91:35-49. De Mello Prado, R. and G. Caione. 2012. Plant analysis. Soil Fertility:115-134. Du, Z. and W.J. Bramlage. 1992. Modified thiobarbituric acid assay for measuring lipid oxidation in sugar-rich plant tissue extracts. J. Agr. Food Chem. 40:1566-1570. Epstein, E. 1972. Mineral nutrition of plants: principles and perspectives. Willy, New York. Farneselli, M., F. Tei, and E. Simonne. 2014. Reliability of petiole sap test for N nutritional status assessing in processing tomato. J. Plant Nutr. 37:270-278. Fernie, A.R., A. Roscher, R.G. Ratcliffe, and N.J. Kruger. 2002. Activation of pyrophosphate: fructose‐6‐phosphate 1‐phosphotransferase by fructose 2, 6‐bisphosphate stimulates conversion of hexose phosphates to triose phosphates but does not influence accumulation of carbohydrates in phosphate‐deficient tobacco cells. Physiologia plantarum 114:172-181. Fernández-Escobar, R., M. Guerreiro, M. Benlloch, and M. Benlloch-González. 2016. Symptoms of nutrient deficiencies in young olive trees and leaf nutrient concentration at which such symptoms appear. Scientia Hort. 209:279-285. Ferrar, P. and C. Osmond. 1986. Nitrogen supply as a factor influencing photoinhibition and photosynthetic acclimation after transfer of shade-grown Solanum dulcamara to bright light. Planta 168:563-570. Flannery, R.L. and D.K. Markus. 1980. Automated analysis of soil extracts for phosphorus, potassium, calcium, and magnesium. J. Assoc. Offic. Anal. Chem. 63:779-787. Fujita, K., M. Okada, K. Lei, J. Ito, K. Ohkura, J. Adu‐Gyamfi, and P. Mohapatra. 2003. Effect of P‐deficiency on photoassimilate partitioning and rhythmic changes in fruit and stem diameter of tomato (Lycopersicon esculentum) during fruit growth. J. Expet. Bot. 54:2519-2528. Guidi, L., G. Lorefice, A. Pardossi, F. Malorgio, F. Tognoni, and G. Soldatini. 1997. Growth and photosynthesis of Lycopersicon esculentum (L.) plants as affected by nitrogen deficiency. Biologia Plantarum 40:235-244. Hammond, J.P. and P.J. White. 2008. Diagnosing phosphorus deficiency in crop plants. The Ecophysiology of Plant-phosphorus Interactions:225-246. Hartz, T., R. Smith, M. LeStrange, and K.F. Schulbach. 1993. On‐farm monitoring of soil and crop nitrogen status by nitrate‐selective electrode. Commun. Soil Sci. Plant Analysis 24:2607-2615. Hernández, V., P. Hellín, J. Fenoll, and P. Flores. 2020. Impact of nitrogen supply limitation on tomato fruit composition. Scientia Hort. 264:109173. Hikosaka, K. and I. Terashima. 1995. A model of the acclimation of photosynthesis in the leaves of C3 plants to sun and shade with respect to nitrogen use. Plant, Cell Environ. 18:605-618. Hoch, W.A., E.L. Zeldin, and B.H. McCown. 2001. Physiological significance of anthocyanins during autumnal leaf senescence. Tree Physiol. 21:1-8. Hopkins, W.G. 1999. Introduction to plant physiology. John Wiley and Sons, USA. Ihuoma, S.O. and C.A. Madramootoo. 2019. Crop reflectance indices for mapping water stress in greenhouse grown bell pepper. Agr. Water Mgt. 219:49-58. Ihuoma, S.O. and C.A. Madramootoo. 2020. Narrow-band reflectance indices for mapping the combined effects of water and nitrogen stress in field grown tomato crops. Biosystems Eng. 192:133-143. Jaleel, C.A., P. Manivannan, A. Wahid, M. Farooq, H.J. Al-Juburi, R. Somasundaram, and R. Panneerselvam. 2009. Drought stress in plants: a review on morphological characteristics and pigments composition. Int. J. Agric. Biol. 11:100-105. Kanai, S., R.E. Moghaieb, H.A. El-Shemy, R. Panigrahi, P.K. Mohapatra, J. Ito, N.T. Nguyen, H. Saneoka, and K. Fujita. 2011. Potassium deficiency affects water status and photosynthetic rate of the vegetative sink in green house tomato prior to its effects on source activity. Plant Sci. 180:368-374. Kuscu, H., A. Turhan, N. Ozmen, P. Aydinol, and A.O. Demir. 2014. Optimizing levels of water and nitrogen applied through drip irrigation for yield, quality, and water productivity of processing tomato (Lycopersicon esculentum Mill.). Hort., Environ. Biotechnol. 55:103-114. Lange, H., W. Shropshire, and H. Mohr. 1971. An analysis of phytochrome-mediated anthocyanin synthesis. Plant Physiol. 47:649-655. Le Roux, M., C. Ward, F. Botha, and A. Valentine. 2006. Routes of pyruvate synthesis in phosphorus‐deficient lupin roots and nodules. New Phytologist 169:399-408. Lemaire, G., M.-H. Jeuffroy, and F. Gastal. 2008. Diagnosis tool for plant and crop N status in vegetative stage: Theory and practices for crop N management. European J. Agron. 28:614-624. Li, Z., Q. Qiu, Y. Chen, D. Lin, J. Huang, and T. Huang. 2021. Metabolite alteration in response to low phosphorus stress in developing tomato fruits. Plant Physiol. Biochem. 159:234-243. Lohr, D., P. Tillmann, S. Zerche, U. Druege, T. Rath, and E. Meinken. 2016. Non-destructive measurement of nitrogen status of leafy ornamental cuttings by near infrared reflectance spectroscopy (NIRS) for assessment of rooting capacity. Biosystems Eng. 148:157-167. Maathuis, F.J. 2009. Physiological functions of mineral macronutrients. Current Opinion in Plant Biol. 12:250-258. Maggini, R., G. Carmassi, L. Incrocci, and A. Pardossi. 2010. Evaluation of quick test kits for the determination of nitrate, ammonium and phosphate in soil and in hydroponic nutrient solutions. Agrochimica 54:331-341. Marschner, H. 1995. Mineral nutrition of higher plants. 2nd. Edn. Academic Pres. Marschner, H. 1997. Functions of mineral nutrients, macronutrients. Mineral nutrition of higher plants. Martínez, I., M. Periago, G. Provan, and A. Chesson. 2002. Phenolic compounds, lycopene and antioxidant activity in commercial varieties of tomato (Lycopersicon esculentum). J. Sci. Food Agr. 82:323-330. Masclaux, C., M.-H. Valadier, N. Brugière, J.-F. Morot-Gaudry, and B. Hirel. 2000. Characterization of the sink/source transition in tobacco (Nicotiana tabacum L.) shoots in relation to nitrogen management and leaf senescence. Planta 211:510-518. McDonald, A.J.S. 1994. Nutrient supply and plant growth, p. 47-57Physio., Growth Dept. Plants Culture. Springer. McLean, E. 1983. Soil pH and lime requirement. Methods of soil analysis: Part 2 Chemical and microbiological properties 9:199-224. Meena, M., K. Divyanshu, S. Kumar, P. Swapnil, A. Zehra, V. Shukla, M. Yadav, and R. Upadhyay. 2019. Regulation of L-proline biosynthesis, signal transduction, transport, accumulation and its vital role in plants during variable environmental conditions. Heliyon 5:e02952. Mengel, K. and E. Kirkby. 1987. Nutrition and plant growth. K Mengel and EA Kirkby, Principles of Plant Nutrition:247-302. Murphy, J. and J.P. Riley. 1962. A modified single solution method for the determination of phosphate in natural waters. Anal. chim. Acta 27:31-36. Neto, A.J.S., D.C. Lopes, F.A. Pinto, and S. Zolnier. 2017. Vis/NIR spectroscopy and chemometrics for non-destructive estimation of water and chlorophyll status in sunflower leaves. Biosystems Eng. 155:124-133. Ochoa-Velasco, C.E., R. Valadez-Blanco, R. Salas-Coronado, F. Sustaita-Rivera, B. Hernández-Carlos, S. García-Ortega, and N.F. Santos-Sánchez. 2016. Effect of nitrogen fertilization and Bacillus licheniformis biofertilizer addition on the antioxidants compounds and antioxidant activity of greenhouse cultivated tomato fruits (Solanum lycopersicum L. var. Sheva). Scientia Hort. 201:338-345. Padilla, F.M., M. Farneselli, G. Gianquinto, F. Tei, and R.B. Thompson. 2020. Monitoring nitrogen status of vegetable crops and soils for optimal nitrogen management. Agr. Water Mgt. 241:106356. Peña‐Fleitas, M., M. Gallardo, R. Thompson, M. Farneselli, and F. Padilla. 2015. Assessing crop N status of fertigated vegetable crops using plant and soil monitoring techniques. Ann. Appl. Biol. 167:387-405. Plaxton, W.C. and M.C. Carswell. 2018. Metabolic aspects of the phosphate starvation response in plants, p. 349-372Plant Responses Environ. Stresses. Routledge. Porto, J.S., T.N.H. RebouçAs, M.O.B. Moraes, M.P. Bomfim, O.L. Lemos, J. LUZ, and M. QUEIROZ. 2016. Quality and antioxidant activiy of tomato cultivated under different sources and doses of nitrogen. Revista Caatinga 29:780-788. Qi, D., X.-h. ZHAO, X. Le, C.-j. JIANG, X.-g. WANG, H. Yi, W. Jing, and H.-q. YU. 2019. Effects of potassium deficiency on photosynthesis, chloroplast ultrastructure, ROS, and antioxidant activities in maize (Zea mays L.). J. Integrative Agr. 18:395-406. Quirino, B.F., Y.-S. Noh, E. Himelblau, and R.M. Amasino. 2000. Molecular aspects of leaf senescence. Trends Plant Sci. 5:278-282. Rius-Ruiz, F.X., F.J. Andrade, J. Riu, and F.X. Rius. 2014. Computer-operated analytical platform for the determination of nutrients in hydroponic systems. Food Chem. 147:92-97. Rogers, H. and S. Munné-Bosch. 2016. Production and scavenging of reactive oxygen species and redox signaling during leaf and flower senescence: similar but different. Plant Physiol. 171:1560-1568. Shimada, K., K. Fujikawa, K. Yahara, and T. Nakamura. 1992. Antioxidative properties of xanthan on the autoxidation of soybean oil in cyclodextrin emulsion. J. Agr. Food Chem. 40:945-948. Shin, R., R.H. Berg, and D.P. Schachtman. 2005. Reactive oxygen species and root hairs in Arabidopsis root response to nitrogen, phosphorus and potassium deficiency. Plant Cell Physiol. 46:1350-1357. Simonne, A., J. Fuzere, E. Simonne, R. Hochmuth, and M. Marshall. 2007. Effects of nitrogen rates on chemical composition of yellow grape tomato grown in a subtropical climate. J. Plant Nutr. 30:927-935. Siriwoharn, T., R.E. Wrolstad, C.E. Finn, and C.B. Pereira. 2004. Influence of cultivar, maturity, and sampling on blackberry (Rubus L. Hybrids) anthocyanins, polyphenolics, and antioxidant properties. J. Agr. Food Chem. 52:8021-8030. Soto-Zamora, G., E.M. Yahia, J.K. Brecht, and A. Gardea. 2005. Effects of postharvest hot air treatments on the quality and antioxidant levels in tomato fruit. LWT-Food Sci. Technol. 38:657-663. Stewart, A., W. Chapman, G. Jenkins, I. Graham, T. Martin, and A. Crozier. 2001. The effect of nitrogen and phosphorus deficiency on flavonol accumulation in plant tissues. Plant, Cell Environ. 24:1189-1197. Sumanta, N., C.I. Haque, J. Nishika, and R. Suprakash. 2014. Spectrophotometric analysis of chlorophylls and carotenoids from commonly grown fern species by using various extracting solvents. Res. J. Chem. Sci. 2231:606X. Taber, H., P. Perkins-Veazie, S. Li, W. White, S. Rodermel, and Y. Xu. 2008. Enhancement of tomato fruit lycopene by potassium is cultivar dependent. HortScience 43:159-165. Thompson, R., M.G. Pino, M. Joya, C. Segovia, and C.M. Gaitán. 2009. Evaluation of rapid analysis systems for on-farm nitrate analysis in vegetable cropping. Spanish J. Agr. Res.:200-211. Valentinuzzi, F., M. Mason, M. Scampicchio, C. Andreotti, S. Cesco, and T. Mimmo. 2015. Enhancement of the bioactive compound content in strawberry fruits grown under iron and phosphorus deficiency. J. Sci. Food Agr. 95:2088-2094. Van Alfen, N.K. 2014. Encyclopedia of agriculture and food systems. Elsevier, San Diego. Vance, C.P., C. Uhde‐Stone, and D.L. Allan. 2003. Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource. New Phytologist 157:423-447. Vigneau, N., M. Ecarnot, G. Rabatel, and P. Roumet. 2011. Potential of field hyperspectral imaging as a non destructive method to assess leaf nitrogen content in Wheat. Field Crops Res. 122:25-31. Vos, J., P. Van Der Putten, and C. Birch. 2005. Effect of nitrogen supply on leaf appearance, leaf growth, leaf nitrogen economy and photosynthetic capacity in maize (Zea mays L.). Field Crops Res. 93:64-73. Wang, Y.T., S.W. Huang, R.L. Liu, and J.Y. Jin. 2007. Effects of nitrogen application on flavor compounds of cherry tomato fruits. J. Plant Nutr. Soil Sci. 170:461-468. Warner, J., T. Zhang, and X. Hao. 2004. Effects of nitrogen fertilization on fruit yield and quality of processing tomatoes. Can. J. Plant Sci. 84:865-871. Weinert, C.H., F. Sonntag, B. Egert, E. Pawelzik, S.E. Kulling, and I. Smit. 2021. The effect of potassium fertilization on the metabolite profile of tomato fruit (Solanum lycopersicum L.). Plant Physiol. Biochem. 159:89-99. Welbaum, G.E. 2015. Vegetable production and practices. CABI, MA, USA. Widders, I. and W. IE. 1979. Tomato root development as related to potassium nutrition. Zhang, Z., J.P. Lynch, B. Zhang, and Q. Wang. 2017. NPK deficiency modulates oxidative stress in plants, p. 245-265Plant Macronutrient Use Efficiency. Elsevier. Zhao, K.R. Reddy, V.G. Kakani, and V. Reddy. 2005. Nitrogen deficiency effects on plant growth, leaf photosynthesis, and hyperspectral reflectance properties of sorghum. European J. Agron. 22:391-403. Zhao, Z., X. Li, Y. Yin, J. Tang, and S. Zhou. 2010. Analysis of spectral features based on water content of desert vegetation. Guang pu xue yu Guang pu fen xi= Guang pu 30:2500-2503. Zotarelli, L., J.M. Scholberg, M.D. Dukes, R. Muñoz-Carpena, and J. Icerman. 2009. Tomato yield, biomass accumulation, root distribution and irrigation water use efficiency on a sandy soil, as affected by nitrogen rate and irrigation scheduling. Agr. Water Mgt. 96:23-34. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82042 | - |
| dc.description.abstract | 傳統元素分析診斷流程多以植體出現視覺可判別徵狀作為診斷之第一步,之後開始介質及植體取樣進行化學分析。目視法雖可快速診斷,但需仰賴大量經驗,且容易誤判;另外傳統元素分析雖可獲得精準數據,但測定過程耗時,可能錯失最佳調整時機而造成作物生理、產量及品質受損。近年為縮減檢測時間,快速分析系統被提出並研究,或許可取代傳統元素分析。本研究以氮磷鉀三元素虧缺處理,研究快速分析系統中離子比色試紙檢測之可行性,並探討其對番茄植株生理、果實產量與品質之影響。試驗一結果顯示 ‘玉女’ 小果番茄於氮、磷、鉀虧缺處理下,離子比色試紙可做為監測作物氮、磷、鉀狀態的初步診斷工具;氮虧缺週數增加將損及產量、果實抗壞血酸含量和總可溶性固形物;另外,氮、磷、鉀虧缺下,果實內DPPH自由基清除率及總酚類化合物含量短暫顯著提升。試驗二‘768’ 大果番茄氮、磷、鉀分別給予全量、1/2及1/4供給量,結果顯示供給低濃度元素處理兩週後可以快速元素分析法測得元素含量異常,另外當1/4供給量之植株出現視覺判別徵狀時,快速分析系統甚至可監測出1/2供給量植株處於元素虧缺狀態,而此時果實產量及品質受損程度多不顯著。試驗三 ‘728’ 大果番茄進行氮、磷、鉀虧缺處理,於氮虧缺一週後,葉片總酚類化合物含量即顯著提升,而磷及鉀虧缺則於處理兩週後總酚類化合物含量開始顯著提升,顯示植株於虧缺處理後短時間內已啟動逆境抵禦機制。本研究指出快速分析系統操作簡易、快速、無需專業人員操作且可於田間進行,建議可將快速分析系統用於例行性營養元素監測以及時發現營養元素含量是否出現異常,避免作物造成傷害而影響產量及品質。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-25T05:34:37Z (GMT). No. of bitstreams: 1 U0001-0507202116151600.pdf: 2856901 bytes, checksum: 31b279c7d50f4c96020b69518d23bcea (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | 致謝 i 摘要 ii Abstract ii 內容目錄 iv 表目錄 vi 圖目錄 viii 前言 1 前人研究 2 一、 養分供給對植株生長之重要性 2 二、 傳統營養元素診斷 2 三、 快速營養元素檢測系統 3 四、 番茄栽培現狀及營養成分 4 五、 氮磷鉀虧缺對植株生長及生理之影響 5 六、 氮磷鉀虧缺對番茄果實產量及品質之影響 6 材料與方法 7 一、 植物材料 7 二、 栽培條件及管理方式 7 三、 試驗設計與方法 8 四、 調查項目 10 五、 統計分析 19 結果 26 試驗一、氮磷鉀虧缺時間對小果番茄植株外觀及生理之影響 26 試驗二、不同氮磷鉀供給濃度對大果番茄植株外觀及生理之影響 31 試驗三、氮磷鉀虧缺對大果番茄植株外觀及生理之影響 37 討論 132 一、 快速元素分析檢測 132 二、 元素虧缺下葉片外觀及生理指標 133 三、 元素虧缺對果實品質、抗氧化能力及抗氧化物質含量之影響 135 結論 139 參考文獻 140 | |
| dc.language.iso | zh-TW | |
| dc.subject | 果實產量 | zh_TW |
| dc.subject | 果實品質 | zh_TW |
| dc.subject | 快速分析系統 | zh_TW |
| dc.subject | 逆境指標 | zh_TW |
| dc.subject | 營養元素虧缺 | zh_TW |
| dc.subject | stress indicators | en |
| dc.subject | nutritional element deficiency | en |
| dc.subject | rapid analytical system | en |
| dc.subject | fruit yield | en |
| dc.subject | fruit quality | en |
| dc.title | 氮磷鉀虧缺下番茄快速營養狀態診斷及果實品質之研究 | zh_TW |
| dc.title | "Study on Rapid Diagnosis of Tomato Nutritional Status and Fruit Quality under Nitrogen, Phosphorus and Potassium Deficiency" | en |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 鄔家琪(Hsin-Tsai Liu),黃振康(Chih-Yang Tseng) | |
| dc.subject.keyword | 營養元素虧缺,快速分析系統,果實產量,果實品質,逆境指標, | zh_TW |
| dc.subject.keyword | nutritional element deficiency,rapid analytical system,fruit yield,fruit quality,stress indicators, | en |
| dc.relation.page | 148 | |
| dc.identifier.doi | 10.6342/NTU202101276 | |
| dc.rights.note | 同意授權(限校園內公開) | |
| dc.date.accepted | 2021-08-17 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 園藝暨景觀學系 | zh_TW |
| dc.date.embargo-lift | 2026-08-16 | - |
| 顯示於系所單位: | 園藝暨景觀學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-0507202116151600.pdf 未授權公開取用 | 2.79 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
