Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82039
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor牟中原(Chung-Yuan Mou)
dc.contributor.authorChiao-Chun Changen
dc.contributor.author張巧君zh_TW
dc.date.accessioned2022-11-25T05:34:34Z-
dc.date.available2023-08-31
dc.date.copyright2021-11-17
dc.date.issued2021
dc.date.submitted2021-08-18
dc.identifier.citation1. Cheng, X.-B.; Zhang, R.; Zhao, C.-Z.; Zhang, Q., Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review. Chem. Rev. 2017, 117 (15), 10403-10473. 2. Lo, C.-A.; Chang, C.-C.; Tsai, Y.-W.; Jiang, S.-K.; Hwang, B. J.; Mou, C.-Y.; Wu, H.-L., Regulated Li Electrodeposition Behavior through Mesoporous Silica Thin Film in Anode-Free Lithium Metal Batteries. ACS Applied Energy Materials 2021, 4 (5), 5132-5142. 3. Goodenough, J. B., How we made the Li-ion rechargeable battery. Nature Electronics 2018, 1 (3), 204-204. 4. Yoshino, A., The birth of the lithium‐ion battery. Angew. Chem. Int. Ed. 2012, 51 (24), 5798-5800. 5. Whittingham, M. S., Lithium Batteries and Cathode Materials. Chem. Rev. 2004, 104 (10), 4271-4302. 6. Tarascon, J.-M.; Armand, M., Issues and challenges facing rechargeable lithium batteries. Materials for sustainable energy: a collection of peer-reviewed research and review articles from Nature Publishing Group 2011, 171-179. 7. Zu, C.-X.; Li, H., Thermodynamic analysis on energy densities of batteries. Energy Environmental Science 2011, 4 (8), 2614-2624. 8. Nishi, Y., The development of lithium ion secondary batteries. The Chemical Record 2001, 1 (5), 406-413. 9. Padhi, A. K.; Nanjundaswamy, K. S.; Goodenough, J. B., Phospho‐olivines as positive‐electrode materials for rechargeable lithium batteries. J. Electrochem. Soc. 1997, 144 (4), 1188. 10. Ohzuku, T.; Ueda, A.; Yamamoto, N., Zero‐Strain Insertion Material of Li [ Li1 / 3Ti5 / 3 ]  O 4 for Rechargeable Lithium Cells. J. Electrochem. Soc. 1995, 142 (5), 1431-1435. 11. Wu, F.; Yushin, G., Conversion cathodes for rechargeable lithium and lithium-ion batteries. Energy Environmental Science 2017, 10 (2), 435-459. 12. Metzger, M., Studies on Fundamental Materials Degradation Mechanisms in Lithium-ion Batteries Via On-line Electrochemical Mass Spectrometry. Verlag Dr. Hut: 2017. 13. Li, J.; Ma, Z.-F., Past and Present of LiFePO4: From Fundamental Research to Industrial Applications. Chem 2019, 5 (1), 3-6. 14. Nanda, S.; Gupta, A.; Manthiram, A., Anode-Free Full Cells: A Pathway to High-Energy Density Lithium-Metal Batteries. Advanced Energy Materials 2021, 11 (2), 2000804. 15. Noh, H.-J.; Youn, S.; Yoon, C. S.; Sun, Y.-K., Comparison of the structural and electrochemical properties of layered Li[NixCoyMnz]O2 (x = 1/3, 0.5, 0.6, 0.7, 0.8 and 0.85) cathode material for lithium-ion batteries. J. Power Sources 2013, 233, 121-130. 16. Kim, M. G.; Shin, H. J.; Kim, J.-H.; Park, S.-H.; Sun, Y.-K., XAS Investigation of Inhomogeneous Metal-Oxygen Bond Covalency in Bulk and Surface for Charge Compensation in Li-Ion Battery Cathode Li[Ni[sub 1∕3]Co[sub 1∕3]Mn[sub 1∕3]]O[sub 2] Material. J. Electrochem. Soc. 2005, 152 (7), A1320. 17. Sun, H.; Zhao, K., Electronic Structure and Comparative Properties of LiNixMnyCozO2 Cathode Materials. The Journal of Physical Chemistry C 2017, 121 (11), 6002-6010. 18. Lu, Z.; MacNeil, D. D.; Dahn, J. R., Layered Li[Ni[sub x]Co[sub 1−2x]Mn[sub x]]O[sub 2] Cathode Materials for Lithium-Ion Batteries. Electrochem. Solid-State Lett. 2001, 4 (12), A200. 19. Tsutomu, O.; Yoshinari, M., Layered Lithium Insertion Material of LiNi1/2Mn1/2O2 : A Possible Alternative to LiCoO2 for Advanced Lithium-Ion Batteries. Chem. Lett. 2001, 30 (8), 744-745. 20. Li, X.; Qiao, Y.; Guo, S.; Xu, Z.; Zhu, H.; Zhang, X.; Yuan, Y.; He, P.; Ishida, M.; Zhou, H., Direct Visualization of the Reversible O2−/O− Redox Process in Li-Rich Cathode Materials. Adv. Mater. 2018, 30 (14), 1705197. 21. Liu, Q.; Li, S.; Wang, S.; Zhang, X.; Zhou, S.; Bai, Y.; Zheng, J.; Lu, X., Kinetically Determined Phase Transition from Stage II (LiC12) to Stage I (LiC6) in a Graphite Anode for Li-Ion Batteries. The Journal of Physical Chemistry Letters 2018, 9 (18), 5567-5573. 22. Ashuri, M.; He, Q.; Shaw, L. L., Silicon as a potential anode material for Li-ion batteries: where size, geometry and structure matter. Nanoscale 2016, 8 (1), 74-103. 23. Su, X.; Wu, Q.; Li, J.; Xiao, X.; Lott, A.; Lu, W.; Sheldon, B. W.; Wu, J., Silicon-Based Nanomaterials for Lithium-Ion Batteries: A Review. Advanced Energy Materials 2014, 4 (1), 1300882. 24. Luo, J.; Fang, C.-C.; Wu, N.-L., High Polarity Poly(vinylidene difluoride) Thin Coating for Dendrite-Free and High-Performance Lithium Metal Anodes. Advanced Energy Materials 2018, 8 (2), 1701482. 25. Cheng, X.-B.; Hou, T.-Z.; Zhang, R.; Peng, H.-J.; Zhao, C.-Z.; Huang, J.-Q.; Zhang, Q., Dendrite-Free Lithium Deposition Induced by Uniformly Distributed Lithium Ions for Efficient Lithium Metal Batteries. Adv. Mater. 2016, 28 (15), 2888-2895. 26. Park, M. S.; Ma, S. B.; Lee, D. J.; Im, D.; Doo, S.-G.; Yamamoto, O., A Highly Reversible Lithium Metal Anode. Scientific Reports 2014, 4 (1), 3815. 27. Miao, R.; Yang, J.; Feng, X.; Jia, H.; Wang, J.; Nuli, Y., Novel dual-salts electrolyte solution for dendrite-free lithium-metal based rechargeable batteries with high cycle reversibility. J. Power Sources 2014, 271, 291-297. 28. Qian, J.; Adams, B. D.; Zheng, J.; Xu, W.; Henderson, W. A.; Wang, J.; Bowden, M. E.; Xu, S.; Hu, J.; Zhang, J.-G., Anode-Free Rechargeable Lithium Metal Batteries. Adv. Funct. Mater. 2016, 26 (39), 7094-7102. 29. Weber, R.; Genovese, M.; Louli, A.; Hames, S.; Martin, C.; Hill, I. G.; Dahn, J., Long cycle life and dendrite-free lithium morphology in anode-free lithium pouch cells enabled by a dual-salt liquid electrolyte. Nature Energy 2019, 4 (8), 683-689. 30. Assegie, A. A.; Cheng, J.-H.; Kuo, L.-M.; Su, W.-N.; Hwang, B.-J., Polyethylene oxide film coating enhances lithium cycling efficiency of an anode-free lithium-metal battery. Nanoscale 2018, 10 (13), 6125-6138. 31. Assegie, A. A.; Chung, C.-C.; Tsai, M.-C.; Su, W.-N.; Chen, C.-W.; Hwang, B.-J., Multilayer-graphene-stabilized lithium deposition for anode-Free lithium-metal batteries. Nanoscale 2019, 11 (6), 2710-2720. 32. Wondimkun, Z. T.; Beyene, T. T.; Weret, M. A.; Sahalie, N. A.; Huang, C.-J.; Thirumalraj, B.; Jote, B. A.; Wang, D.; Su, W.-N.; Wang, C.-H., Binder-free ultra-thin graphene oxide as an artificial solid electrolyte interphase for anode-free rechargeable lithium metal batteries. J. Power Sources 2020, 450, 227589. 33. Peled, E.; Menkin, S., Review—SEI: Past, Present and Future. J. Electrochem. Soc. 2017, 164 (7), A1703-A1719. 34. Shi, S.; Lu, P.; Liu, Z.; Qi, Y.; Hector, L. G.; Li, H.; Harris, S. J., Direct Calculation of Li-Ion Transport in the Solid Electrolyte Interphase. Journal of the American Chemical Society 2012, 134 (37), 15476-15487. 35. Peled, E.; Golodnitsky, D.; Ardel, G., Advanced model for solid electrolyte interphase electrodes in liquid and polymer electrolytes. J. Electrochem. Soc. 1997, 144 (8), L208. 36. Menkin, S.; Golodnitsky, D.; Peled, E., Artificial solid-electrolyte interphase (SEI) for improved cycleability and safety of lithium–ion cells for EV applications. Electrochem. Commun. 2009, 11 (9), 1789-1791. 37. Jin, Y.; Kneusels, N.-J. H.; Marbella, L. E.; Castillo-Martínez, E.; Magusin, P. C. M. M.; Weatherup, R. S.; Jónsson, E.; Liu, T.; Paul, S.; Grey, C. P., Understanding Fluoroethylene Carbonate and Vinylene Carbonate Based Electrolytes for Si Anodes in Lithium Ion Batteries with NMR Spectroscopy. Journal of the American Chemical Society 2018, 140 (31), 9854-9867. 38. Metzger, M.; Strehle, B.; Solchenbach, S.; Gasteiger, H. A., Origin of H2Evolution in LIBs: H2O Reduction vs. Electrolyte Oxidation. J. Electrochem. Soc. 2016, 163 (5), A798-A809. 39. Metzger, M.; Marino, C.; Sicklinger, J.; Haering, D.; Gasteiger, H. A., Anodic Oxidation of Conductive Carbon and Ethylene Carbonate in High-Voltage Li-Ion Batteries Quantified by On-Line Electrochemical Mass Spectrometry. J. Electrochem. Soc. 2015, 162 (7), A1123-A1134. 40. Bernhard, R.; Metzger, M.; Gasteiger, H. A., Gas Evolution at Graphite Anodes Depending on Electrolyte Water Content and SEI Quality Studied by On-Line Electrochemical Mass Spectrometry. J. Electrochem. Soc. 2015, 162 (10), A1984-A1989. 41. Berkes, B. B.; Jozwiuk, A.; Vračar, M.; Sommer, H.; Brezesinski, T.; Janek, J., Online Continuous Flow Differential Electrochemical Mass Spectrometry with a Realistic Battery Setup for High-Precision, Long-Term Cycling Tests. Anal. Chem. 2015, 87 (12), 5878-5883. 42. Bernhard, R.; Meini, S.; Gasteiger, H. A., On-Line Electrochemical Mass Spectrometry Investigations on the Gassing Behavior of Li4Ti5O12Electrodes and Its Origins. J. Electrochem. Soc. 2014, 161 (4), A497-A505. 43. Stenzel, Y. P.; Horsthemke, F.; Winter, M.; Nowak, S., Chromatographic Techniques in the Research Area of Lithium Ion Batteries: Current State-of-the-Art. Separations 2019, 6 (2), 26. 44. Self, J.; Aiken, C. P.; Petibon, R.; Dahn, J. R., Survey of Gas Expansion in Li-Ion NMC Pouch Cells. J. Electrochem. Soc. 2015, 162 (6), A796-A802. 45. Gachot, G.; Ribière, P.; Mathiron, D.; Grugeon, S.; Armand, M.; Leriche, J.-B.; Pilard, S.; Laruelle, S., Gas chromatography/mass spectrometry as a suitable tool for the Li-ion battery electrolyte degradation mechanisms study. Anal. Chem. 2011, 83 (2), 478-485. 46. Rinkel, B. L. D.; Hall, D. S.; Temprano, I.; Grey, C. P., Electrolyte Oxidation Pathways in Lithium-Ion Batteries. Journal of the American Chemical Society 2020, 142 (35), 15058-15074. 47. Menkin, S.; O'Keefe, C. A.; Gunnarsdottir, A. B.; Dey, S.; Pesci, F.; Shen, Z.; Aguadero, A.; Grey, C. P., Towards an Understanding of the SEI Formation and Lithium Preferential Plating on Copper. ECS Meeting Abstracts 2020, MA2020-02 (45), 3773-3773. 48. Shitaw, K. N.; Yang, S. C.; Jiang, S. K.; Huang, C. J.; Sahalie, N. A.; Nikodimos, Y.; Weldeyohannes, H. H.; Wang, C. H.; Wu, S. H.; Su, W. N., Decoupling Interfacial Reactions at Anode and Cathode by Combining Online Electrochemical Mass Spectroscopy with Anode‐Free Li‐Metal Battery. Adv. Funct. Mater. 2020, 2006951. 49. Hatsukade, T.; Schiele, A.; Hartmann, P.; Brezesinski, T.; Janek, J., Origin of Carbon Dioxide Evolved during Cycling of Nickel-Rich Layered NCM Cathodes. ACS Applied Materials Interfaces 2018, 10 (45), 38892-38899. 50. Tsiouvaras, N.; Meini, S.; Buchberger, I.; Gasteiger, H. A., A Novel On-Line Mass Spectrometer Design for the Study of Multiple Charging Cycles of a Li-O2Battery. J. Electrochem. Soc. 2013, 160 (3), A471-A477. 51. Meini, S.; Piana, M.; Tsiouvaras, N.; Garsuch, A.; Gasteiger, H. A., The Effect of Water on the Discharge Capacity of a Non-Catalyzed Carbon Cathode for Li-O2 Batteries. Electrochem. Solid-State Lett. 2012, 15 (4), A45. 52. Schweidler, S.; de Biasi, L.; Garcia, G.; Mazilkin, A.; Hartmann, P.; Brezesinski, T.; Janek, J., Investigation into Mechanical Degradation and Fatigue of High-Ni NCM Cathode Material: A Long-Term Cycling Study of Full Cells. ACS Applied Energy Materials 2019, 2 (10), 7375-7384. 53. Kim, A. Y.; Strauss, F.; Bartsch, T.; Teo, J. H.; Hatsukade, T.; Mazilkin, A.; Janek, J.; Hartmann, P.; Brezesinski, T., Stabilizing Effect of a Hybrid Surface Coating on a Ni-Rich NCM Cathode Material in All-Solid-State Batteries. Chem. Mater. 2019, 31 (23), 9664-9672. 54. Bartsch, T.; Strauss, F.; Hatsukade, T.; Schiele, A.; Kim, A. Y.; Hartmann, P.; Janek, J.; Brezesinski, T., Gas Evolution in All-Solid-State Battery Cells. ACS Energy Letters 2018, 3 (10), 2539-2543. 55. Michalak, B.; Berkes, B. B.; Sommer, H.; Bergfeldt, T.; Brezesinski, T.; Janek, J., Gas Evolution in LiNi0.5Mn1.5O4/Graphite Cells Studied In Operando by a Combination of Differential Electrochemical Mass Spectrometry, Neutron Imaging, and Pressure Measurements. Anal. Chem. 2016, 88 (5), 2877-2883. 56. Berkes, B. B.; Schiele, A.; Sommer, H.; Brezesinski, T.; Janek, J., On the gassing behavior of lithium-ion batteries with NCM523 cathodes. J. Solid State Electrochem. 2016, 20 (11), 2961-2967. 57. Yang, J.; Wang, C.-Y.; Wang, C.-C.; Chen, K.-H.; Mou, C.-Y.; Wu, H.-L., Advanced nanoporous separators for stable lithium metal electrodeposition at ultra-high current densities in liquid electrolytes. Journal of Materials Chemistry A 2020, 8 (10), 5095-5104. 58. Barrett, E. P.; Joyner, L. G.; Halenda, P. P., The Determination of Pore Volume and Area Distributions in Porous Substances. I. Computations from Nitrogen Isotherms. Journal of the American Chemical Society 1951, 73 (1), 373-380. 59. Perlich, J.; Rubeck, J.; Botta, S.; Gehrke, R.; Roth, S.; Ruderer, M.; Prams, S.; Rawolle, M.; Zhong, Q.; Körstgens, V., Grazing incidence wide angle x-ray scattering at the wiggler beamline BW4 of HASYLAB. Rev. Sci. Instrum. 2010, 81 (10), 105105. 60. Danqi Qu; Sarah Guillot; Hamers, R. J., Exploration of the in situ Gas-phase Decomposition of Organosilicon Electrolyte in Lithium-ion batteries by Gas Chromatography and Mass Spectrometry. 61. Thommes, M., Physical Adsorption Characterization of Nanoporous Materials. Chem. Ing. Tech. 2010, 82 (7), 1059-1073. 62. Zienkiewicz-Strzałka, M.; Skibińska, M.; Pikus, S., Small-angle X-ray scattering (SAXS) studies of the structure of mesoporous silicas. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 2017, 411, 72-77. 63. Brown, Z. L.; Jurng, S.; Lucht, B. L., Investigation of the Lithium Solid Electrolyte Interphase in Vinylene Carbonate Electrolytes Using Cu
dc.identifier.citationLiFePO4Cells. J. Electrochem. Soc. 2017, 164 (9), A2186-A2189. 64. Beyene, T. T.; Bezabh, H. K.; Weret, M. A.; Hagos, T. M.; Huang, C.-J.; Wang, C.-H.; Su, W.-N.; Dai, H.; Hwang, B.-J., Concentrated dual-salt electrolyte to stabilize Li metal and increase cycle life of anode free Li-metal batteries. J. Electrochem. Soc. 2019, 166 (8), A1501. 65. Brown, Z. L.; Heiskanen, S.; Lucht, B. L., Using Triethyl Phosphate to Increase the Solubility of LiNO3 in Carbonate Electrolytes for Improving the Performance of the Lithium Metal Anode. J. Electrochem. Soc. 2019, 166 (12), A2523-A2527. 66. Beyene, T. T.; Jote, B. A.; Wondimkun, Z. T.; Olbassa, B. W.; Huang, C.-J.; Thirumalraj, B.; Wang, C.-H.; Su, W.-N.; Dai, H.; Hwang, B.-J., Effects of Concentrated Salt and Resting Protocol on Solid Electrolyte Interface Formation for Improved Cycle Stability of Anode-Free Lithium Metal Batteries. ACS Applied Materials Interfaces 2019, 11 (35), 31962-31971. 67. Nilsson, V.; Kotronia, A.; Lacey, M.; Edström, K.; Johansson, P., Highly Concentrated LiTFSI–EC Electrolytes for Lithium Metal Batteries. ACS Applied Energy Materials 2020, 3 (1), 200-207. 68. Wu, K.; Yang, J.; Liu, Y.; Zhang, Y.; Wang, C.; Xu, J.; Ning, F.; Wang, D., Investigation on gas generation of Li4Ti5O12/LiNi1/3Co1/3Mn1/3O2 cells at elevated temperature. J. Power Sources 2013, 237, 285-290. 69. Chen, X.; Hou, T.-Z.; Li, B.; Yan, C.; Zhu, L.; Guan, C.; Cheng, X.-B.; Peng, H.-J.; Huang, J.-Q.; Zhang, Q., Towards stable lithium-sulfur batteries: Mechanistic insights into electrolyte decomposition on lithium metal anode. Energy Storage Materials 2017, 8, 194-201. 70. Qian, J.; Henderson, W. A.; Xu, W.; Bhattacharya, P.; Engelhard, M.; Borodin, O.; Zhang, J.-G., High rate and stable cycling of lithium metal anode. Nature Communications 2015, 6 (1), 6362. 71. Michan, A. L.; Parimalam, B. S.; Leskes, M.; Kerber, R. N.; Yoon, T.; Grey, C. P.; Lucht, B. L., Fluoroethylene Carbonate and Vinylene Carbonate Reduction: Understanding Lithium-Ion Battery Electrolyte Additives and Solid Electrolyte Interphase Formation. Chem. Mater. 2016, 28 (22), 8149-8159. 72. Ding, F.; Xu, W.; Chen, X.; Zhang, J.; Engelhard, M. H.; Zhang, Y.; Johnson, B. R.; Crum, J. V.; Blake, T. A.; Liu, X.; Zhang, J.-G., Effects of Carbonate Solvents and Lithium Salts on Morphology and Coulombic Efficiency of Lithium Electrode. J. Electrochem. Soc. 2013, 160 (10), A1894-A1901. 73. Galushkin, N. Е.; Yazvinskaya, N. N.; Galushkin, D. N., Mechanism of Gases Generation during Lithium-Ion Batteries Cycling. J. Electrochem. Soc. 2019, 166 (6), A897-A908. 74. Yang, Y.-L.; Ramaswamy, S. G.; Jakoby, W. B., Enzymatic Hydrolysis of Organic Cyclic Carbonates*. J. Biol. Chem. 1998, 273 (14), 7814-7817. 75. Mogi, R.; Inaba, M.; Iriyama, Y.; Abe, T.; Ogumi, Z., Study on the decomposition mechanism of alkyl carbonate on lithium metal by pyrolysis-gas chromatography-mass spectroscopy. J. Power Sources 2003, 119-121, 597-603. 76. Wandt, J.; Freiberg, A. T. S.; Ogrodnik, A.; Gasteiger, H. A., Singlet oxygen evolution from layered transition metal oxide cathode materials and its implications for lithium-ion batteries. Mater. Today 2018, 21 (8), 825-833. 77. Jung, R.; Metzger, M.; Maglia, F.; Stinner, C.; Gasteiger, H. A., Oxygen Release and Its Effect on the Cycling Stability of LiNixMnyCozO2(NMC) Cathode Materials for Li-Ion Batteries. J. Electrochem. Soc. 2017, 164 (7), A1361-A1377. 78. Aurbach, D.; Zinigrad, E.; Cohen, Y.; Teller, H., A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions. Solid State Ionics 2002, 148 (3), 405-416. 79. Seok, J.; Zhang, N.; Ulgut, B.; Jin, A.; Yu, S.-H.; Abruña, H. D., Electrolyte screening studies for Li metal batteries. Chem. Commun. 2020, 56 (79), 11883-11886. 80. Lin, L.; Qin, K.; Zhang, Q.; Gu, L.; Suo, L.; Hu, Y.-s.; Li, H.; Huang, X.; Chen, L., Li-Rich Li2[Ni0.8Co0.1Mn0.1]O2 for Anode-Free Lithium Metal Batteries. Angew. Chem. Int. Ed. 2021, 60 (15), 8289-8296. 81. Zhang, S. S.; Fan, X.; Wang, C., An in-situ enabled lithium metal battery by plating lithium on a copper current collector. Electrochem. Commun. 2018, 89, 23-26. 82. Tran, N.; Croguennec, L.; Ménétrier, M.; Weill, F.; Biensan, P.; Jordy, C.; Delmas, C., Mechanisms Associated with the “Plateau” Observed at High Voltage for the Overlithiated Li1.12(Ni0.425Mn0.425Co0.15)0.88O2 System. Chem. Mater. 2008, 20 (15), 4815-4825. 83. Armstrong, A. R.; Holzapfel, M.; Novák, P.; Johnson, C. S.; Kang, S.-H.; Thackeray, M. M.; Bruce, P. G., Demonstrating Oxygen Loss and Associated Structural Reorganization in the Lithium Battery Cathode Li[Ni0.2Li0.2Mn0.6]O2. Journal of the American Chemical Society 2006, 128 (26), 8694-8698. 84. Huang, C.-J.; Thirumalraj, B.; Tao, H.-C.; Shitaw, K. N.; Sutiono, H.; Hagos, T. T.; Beyene, T. T.; Kuo, L.-M.; Wang, C.-C.; Wu, S.-H.; Su, W.-N.; Hwang, B. J., Decoupling the origins of irreversible coulombic efficiency in anode-free lithium metal batteries. Nature Communications 2021, 12 (1), 1452. 85. Jung, R.; Metzger, M.; Maglia, F.; Stinner, C.; Gasteiger, H. A., Chemical versus Electrochemical Electrolyte Oxidation on NMC111, NMC622, NMC811, LNMO, and Conductive Carbon. The Journal of Physical Chemistry Letters 2017, 8 (19), 4820-4825. 86. Xing, L.; Li, W.; Wang, C.; Gu, F.; Xu, M.; Tan, C.; Yi, J., Theoretical Investigations on Oxidative Stability of Solvents and Oxidative Decomposition Mechanism of Ethylene Carbonate for Lithium Ion Battery Use. The Journal of Physical Chemistry B 2009, 113 (52), 16596-16602. 87. Luo, K.; Roberts, M. R.; Hao, R.; Guerrini, N.; Pickup, D. M.; Liu, Y.-S.; Edström, K.; Guo, J.; Chadwick, A. V.; Duda, L. C.; Bruce, P. G., Charge-compensation in 3d-transition-metal-oxide intercalation cathodes through the generation of localized electron holes on oxygen. Nature Chemistry 2016, 8 (7), 684-691. 88. Koga, H.; Croguennec, L.; Ménétrier, M.; Douhil, K.; Belin, S.; Bourgeois, L.; Suard, E.; Weill, F.; Delmas, C., Reversible Oxygen Participation to the Redox Processes Revealed for Li1.20Mn0.54Co0.13Ni0.13O2. J. Electrochem. Soc. 2013, 160 (6), A786-A792. 89. Lee, G. H.; Wu, J.; Kim, D.; Cho, K.; Cho, M.; Yang, W.; Kang, Y. M., Reversible Anionic Redox Activities in Conventional LiNi1/3Co1/3Mn1/3O2 Cathodes. Angew. Chem. Int. Ed. 2020, 59 (22), 8681-8688. 90. Kasse, R. M.; Geise, N. R.; Ko, J. S.; Weker, J. N.; Steinrück, H.-G.; Toney, M. F., Understanding additive controlled lithium morphology in lithium metal batteries. Journal of Materials Chemistry A 2020, 8 (33), 16960-16972. 91. Rajasekaran, N.; Mohan, S., Structure, microstructure and corrosion properties of brush-plated Cu–Ni alloy. J. Appl. Electrochem. 2009, 39 (10), 1911-1916. 92. Li, Y.; Li, Y.; Pei, A.; Yan, K.; Sun, Y.; Wu, C.-L.; Joubert, L.-M.; Chin, R.; Koh, A. L.; Yu, Y., Atomic structure of sensitive battery materials and interfaces revealed by cryo–electron microscopy. Science 2017, 358 (6362), 506-510. 93. Wang, X.; Zhang, M.; Alvarado, J.; Wang, S.; Sina, M.; Lu, B.; Bouwer, J.; Xu, W.; Xiao, J.; Zhang, J.-G.; Liu, J.; Meng, Y. S., New Insights on the Structure of Electrochemically Deposited Lithium Metal and Its Solid Electrolyte Interphases via Cryogenic TEM. Nano Lett. 2017, 17 (12), 7606-7612. 94. Liu, Y.; Lin, D.; Li, Y.; Chen, G.; Pei, A.; Nix, O.; Li, Y.; Cui, Y., Solubility-mediated sustained release enabling nitrate additive in carbonate electrolytes for stable lithium metal anode. Nature Communications 2018, 9 (1), 3656.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82039-
dc.description.abstract"無陽極鋰金屬電池(Anode Free Lithium Metal Battery, AFLMB)具有潛力成為下一代的電池系統;其組裝時不添加過量的鋰金屬,利用有限的鋰金屬離子進行充放電,AFLMB不僅提升能量密度、降低成本還能增加安全性。然而鋰金屬在陽極端電鍍與剝除的過程中,高活性的枝晶狀鋰金屬的形成容易與電解液發生不可逆反應並產生氣體,造成鋰金屬的損耗,使得AFLMB面臨庫倫效率衰退快速的問題。1因此開發線上氣相層析系統分析反應過程的氣體能進一步提供電池反應中的關鍵訊息。 在本研究工作中,將具有規則孔洞的中孔洞矽薄膜 (Mesoporous Silica Thin Film, MSTF) 修飾於不鏽鋼集流板上作為AFLMB的陽極,使鋰金屬電鍍於陽極表面的形貌更加平整,避免枝晶狀鋰金屬的生成。在醚類電解液系統中,透過MSTF修飾的負極應用在AFLMB,電池庫倫效率有20% 的提升,及負極上的電鍍鋰金屬形貌平整圓潤。2為了進一步提高AFLMB的能量密度,我們將具有更高比電容的三元鋰金屬氧化物 (NMC) 正極材料與MSTF修飾的負極組裝,在具有更高操作電壓的碳酸酯類電解液中進行效能測試。由於鋰金屬先天在碳酸酯類電解液中的電鍍/剝除行為可逆性較差,在碳酸酯類電解液中MSTF薄膜無法透過調節鋰金屬的電鍍形貌來改善AFLMB的充放電循環的表現。由於AFLMB在碳酸酯類溶液中的充放電循環表現較差,我們進一步將富含鋰的層狀鋰金屬氧化物正極材料組裝於AFLMB中,此正極材料能夠在第一圈充電過程中提供多餘鋰金屬,儲存於在負極材料上形成,提供多餘的鋰存量彌補鋰金屬於反覆電鍍剝除過程中所消耗的鋰金屬,藉此提升AFLMB充放電循環的表現。 為了近一步了解鋰金屬電鍍形貌及電解液分解之間的關係,在研究過程中,同時利用掃描式電子顯微鏡及線上氣體分析技術觀察鋰金屬形貌的變化並了解不同形貌之鋰金屬與電解液之間的分解反應活性。"zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-25T05:34:34Z (GMT). No. of bitstreams: 1
U0001-0807202120405300.pdf: 16334711 bytes, checksum: 6cebe55a187f3d0226f7c5ae8b6cc3b7 (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents口試委員審定書 i 謝誌 ii 摘要 iii Abstract iv Table of Contents vi List of Figures ix List of Tables xiv List of Schemes xv Abbreviation xvi Chapter 1 Introduction 1 1.1 Background 1 1.2 Electrodes of Li-ion battery 4 1.2.1 Cathode materials 5 1.2.2 Anode materials 9 1.3 The concept of Anode-free lithium metal battery 11 1.3.1 Optimization of the Electrolyte 12 1.3.2 Modification of current collector 14 1.4 Electrolyte decomposition 16 1.5 Motivation 18 Chapter 2 Material and Methods 19 2.1 Chemical 19 2.2 Instruments 21 2.2.1 Scanning electron microscopy (SEM) 21 2.2.2 Nitrogen adsorption-desorption isotherm 21 2.2.3 Cyclic voltammetry (CV) 22 2.2.4 Galvanostatic charge/discharge measurements 22 2.2.5 Grazing incidence X-ray scattering 23 2.2.6 On-line gas chromatography (on-line GC) 25 2.3 Synthetic procedures 28 2.3.1 Synthesis of pore-expanded mesoporous silica nanoparticles (ex-MSNs) 28 2.3.2 Synthesis of mesoporous silica thin films (MSTFs) on stainless steel 29 2.4 Battery preparation 30 2.4.1 Cathode electrode preparation 30 2.4.2 Conventional electrolyte preparation 31 2.4.3 CR2032 coin cell 31 2.4.4 GIWAXS sample preparation 33 2.4.5 Gas analysis battery cell assembly 34 2.5 On-line gas analysis system 35 Chapter 3 Gas Evolution Behaviors of MSTF Modified Anode on AFLMB 37 3.1 Characterization of MSTF on stainless steel 37 3.1.1 Scanning electron microscopy 37 3.1.2 Nitrogen adsorption-desorption isotherm 39 3.1.3 Grazing incidence small-angle X-ray scattering 40 3.2 LFP cathode of AFLMB 42 3.2.1 Battery performance 42 3.2.2 Li deposition morphology on anode 46 3.2.3 Gas evolution during charge/discharge process 48 3.3 Li(Ni1-x-yCoxMny)O2 cathode of AFLMB 54 3.3.1 Carbonate-based electrolyte 55 3.3.2 NMC532 cathode of AFLMB 57 3.3.3 NMC811 cathode of AFLMB 69 3.3.4 MSTF structure after cycling 77 3.4 Li-rich cathode of AFLMB 80 3.4.1 Battery performance 81 3.4.2 MSTF modified anode 85 3.4.3 Li deposition behavior during cycling 91 3.5 Comparison of different cathode in AFLMB 97 3.5.1 Cyclic voltammogram and battery performance 97 3.5.2 Li deposition morphology on anode 100 3.5.3 Gas evolution during charge/discharge process 101 Chapter 4 Conclusion 103 Reference 105
dc.language.isoen
dc.subject富鋰金屬氧化物zh_TW
dc.subject無陽極鋰金屬電池zh_TW
dc.subject中孔洞矽薄膜zh_TW
dc.subject線上層析氣體分析zh_TW
dc.subjectanode-free Li metal batteryen
dc.subjectmesoporous silica thin filmen
dc.subjecton-line gas chromatographyen
dc.subjectLi-rich cathodesen
dc.title利用線上層析系統分析中孔洞矽薄膜修飾之無陽極鋰金屬電池zh_TW
dc.titleOn-line Gas Chromatography Studies of Mesoporous Silica Thin Film Modified Anode Free Li-Metal Batteryen
dc.date.schoolyear109-2
dc.description.degree碩士
dc.contributor.author-orcid0000-0002-9817-4628
dc.contributor.oralexamcommittee吳恆良(Hsin-Tsai Liu),黃炳照(Chih-Yang Tseng)
dc.subject.keyword無陽極鋰金屬電池,中孔洞矽薄膜,線上層析氣體分析,富鋰金屬氧化物,zh_TW
dc.subject.keywordanode-free Li metal battery,mesoporous silica thin film,on-line gas chromatography,Li-rich cathodes,en
dc.relation.page112
dc.identifier.doi10.6342/NTU202101354
dc.rights.note同意授權(限校園內公開)
dc.date.accepted2021-08-19
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept化學研究所zh_TW
dc.date.embargo-lift2023-08-31-
顯示於系所單位:化學系

文件中的檔案:
檔案 大小格式 
U0001-0807202120405300.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
15.95 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved