請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82036完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 呂東武(Tung-Wu Lu) | |
| dc.contributor.author | Pei-An Lee | en |
| dc.contributor.author | 李佩安 | zh_TW |
| dc.date.accessioned | 2022-11-25T05:34:30Z | - |
| dc.date.available | 2026-07-14 | |
| dc.date.copyright | 2021-08-18 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-07-14 | |
| dc.identifier.citation | REFERENCES [1] A. Cui, H. Li, D. Wang, J. Zhong, Y. Chen, H. Lu, Global, regional prevalence, incidence and risk factors of knee osteoarthritis in population-based studies, EClinicalMedicine 29 (2020) 100587. [2] B.T. Maurer, A.G. Stern, B. Kinossian, K.D. Cook, H.R. Schumacher Jr, Osteoarthritis of the knee: isokinetic quadriceps exercise versus an educational intervention, Archives of physical medicine and rehabilitation 80(10) (1999) 1293-1299. [3] J.F.B. Md, D.K. Kiely, S. Herman, S.G. Leveille, K. Mizer, W.R. Frontera, et al., The relationship between leg power and physical performance in mobility‐limited older people, Journal of the American Geriatrics Society 50(3) (2002) 461-467. [4] T.-M. Wang, H.-C. Yen, T.-W. Lu, H.-L. Chen, C.-F. Chang, Y.-H. Liu, et al., Bilateral knee osteoarthritis does not affect inter-joint coordination in older adults with gait deviations during obstacle-crossing, J Biomech 42(14) (2009) 2349-56. https://www.ncbi.nlm.nih.gov/pubmed/19679309. [5] P. Levinger, D.T. Lai, H.B. Menz, A.D. Morrow, J.A. Feller, J.R. Bartlett, et al., Swing limb mechanics and minimum toe clearance in people with knee osteoarthritis, Gait posture 35(2) (2012) 277-281. [6] T. Tsonga, M. Michalopoulou, P. Malliou, G. Godolias, S. Kapetanakis, G. Gkasdaris, et al., Analyzing the history of falls in patients with severe knee osteoarthritis, Clinics in orthopedic surgery 7(4) (2015) 449-456. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4667112/pdf/cios-7-449.pdf. [7] J.F. Suggs, Y.-M. Kwon, S.M. Durbhakula, G.R. Hanson, G. Li, In vivo flexion and kinematics of the knee after TKA: comparison of a conventional and a high flexion cruciate-retaining TKA design, Knee Surgery, Sports Traumatology, Arthroscopy 17(2) (2009) 150-156. [8] G.L. Hatfield, C.L. Hubley-Kozey, J.L.A. Wilson, M.J. Dunbar, The effect of total knee arthroplasty on knee joint kinematics and kinetics during gait, The Journal of arthroplasty 26(2) (2011) 309-318. [9] K.F. Orishimo, I.J. Kremenic, A.J. Deshmukh, S.J. Nicholas, J.A. Rodriguez, Does total knee arthroplasty change frontal plane knee biomechanics during gait?, Clinical Orthopaedics and Related Research® 470(4) (2012) 1171-1176. [10] D.T. Felson, A. Naimark, J. Anderson, L. Kazis, W. Castelli, R.F. Meenan, The prevalence of knee osteoarthritis in the elderly. The Framingham Osteoarthritis Study, Arthritis and rheumatism 30(8) (1987) 914-8. [11] C.J. Lamoth, O.G. Meijer, A. Daffertshofer, P.I. Wuisman, P.J. Beek, Effects of chronic low back pain on trunk coordination and back muscle activity during walking: changes in motor control, European Spine Journal 15(1) (2006) 23-40. [12] C.J. Lamoth, J.F. Stins, M. Pont, F. Kerckhoff, P.J. Beek, Effects of attention on the control of locomotion in individuals with chronic low back pain, Journal of neuroengineering and rehabilitation 5(1) (2008) 1-8. [13] N. Arden, M.C. Nevitt, Osteoarthritis: epidemiology, Best practice research. Clinical rheumatology 20(1) (2006) 3-25. [14] T.P. Andriacchi, S. Koo, S.F. Scanlan, Gait mechanics influence healthy cartilage morphology and osteoarthritis of the knee, The Journal of Bone and Joint Surgery. American volume. 91(Suppl 1) (2009) 95. [15] M.T. Hannan, D.T. Felson, T. Pincus, Analysis of the discordance between radiographic changes and knee pain in osteoarthritis of the knee, The Journal of rheumatology 27(6) (2000) 1513-1517. [16] J.M. Jordan, C.G. Helmick, J.B. Renner, G. Luta, A.D. Dragomir, J. Woodard, et al., Prevalence of knee symptoms and radiographic and symptomatic knee osteoarthritis in African Americans and Caucasians: the Johnston County Osteoarthritis Project, The Journal of rheumatology 34(1) (2007) 172-180. [17] S. Muraki, H. Oka, T. Akune, A. Mabuchi, Y. En-Yo, M. Yoshida, et al., Prevalence of radiographic knee osteoarthritis and its association with knee pain in the elderly of Japanese population-based cohorts: the ROAD study, Osteoarthritis and cartilage 17(9) (2009) 1137-1143. [18] K.R. Kaufman, C. Hughes, B.F. Morrey, M. Morrey, K.-N. An, Gait characteristics of patients with knee osteoarthritis, J. Biomech. 34(7) (2001) 907-915. [19] J.L. Astephen, K.J. Deluzio, G.E. Caldwell, M.J. Dunbar, C.L. Hubley-Kozey, Gait and neuromuscular pattern changes are associated with differences in knee osteoarthritis severity levels, J. Biomech. 41(4) (2008) 868-876. [20] J.L. Astephen, K.J. Deluzio, G.E. Caldwell, M.J. Dunbar, Biomechanical changes at the hip, knee, and ankle joints during gait are associated with knee osteoarthritis severity, Journal of orthopaedic research 26(3) (2008) 332-341. [21] R.S. Hinman, M.A. Hunt, M.W. Creaby, T.V. Wrigley, F.J. McManus, K.L. Bennell, Hip muscle weakness in individuals with medial knee osteoarthritis, Arthritis care research 62(8) (2010) 1190-1193. [22] Y.-H. Liu, T.-M. Wang, I.-P. Wei, T.-W. Lu, S.-W. Hong, C.-C. Kuo, Effects of bilateral medial knee osteoarthritis on intra-and inter-limb contributions to body support during gait, J. Biomech. 47(2) (2014) 445-450. [23] T.-M. Wang, W.-C. Hsu, C.-F. Chang, C.-C. Hu, T.-W. Lu, Effects of knee osteoarthritis on body's center of mass motion in older adults during level walking, Biomedical Engineering: Applications, Basis and Communications 22(03) (2010) 205-212. [24] L. Wegener, C. Kisner, D. Nichols, Static and dynamic balance responses in persons with bilateral knee osteoarthritis, Journal of Orthopaedic Sports Physical Therapy 25(1) (1997) 13-18. [25] L.D. Duffell, D.F. Southgate, V. Gulati, A.H. McGregor, Balance and gait adaptations in patients with early knee osteoarthritis, Gait Posture 39(4) (2014) 1057-61. https://www.ncbi.nlm.nih.gov/pubmed/24582072. [26] M.E. Tinetti, S.F. Ginter, Identifying mobility dysfunctions in elderly patients: standard neuromuscular examination or direct assessment?, Jama 259(8) (1988) 1190-1193. [27] Y. Yoshida, J. Zeni Jr, L. Snyder-Mackler, Do patients achieve normal gait patterns 3 years after total knee arthroplasty?, journal of orthopaedic sports physical therapy 42(12) (2012) 1039-1049. [28] G. Hajduk, K. Nowak, G. Sobota, D. Kusz, K. Kopeć, E. Błaszczak, et al., Kinematic gait parameters changes in patients after total knee arthroplasty: Comparison between cruciate-retaining and posterior-substituting design, Acta of bioengineering and biomechanics 18(3) (2016) 137--142. [29] C.E. Milner, Is gait normal after total knee arthroplasty? Systematic review of the literature, Journal of Orthopaedic Science 14(1) (2009) 114-120. [30] T. Otsuki, K. Nawata, M. Okuno, Quantitative evaluation of gait pattern in patients with osteoarthrosis of the knee before and after total knee arthroplasty. Gait analysis using a pressure measuring system, Journal of orthopaedic science 4(2) (1999) 99-105. [31] A. Soison, S. Riratanapong, N. Chouwajaroen, C. Chantowart, L. Buranapiyawong, S. Kaewkot, et al., Prevalence of fall in patients with total knee arthroplasty living in the community, Journal of the Medical Association of Thailand= Chotmaihet Thangphaet 97(12) (2014) 1338-1343. [32] H. Matsumoto, M. Okuno, T. Nakamura, K. Yamamoto, H. Hagino, Fall incidence and risk factors in patients after total knee arthroplasty, Archives of orthopaedic and trauma surgery 132(4) (2012) 555-563. [33] T. Smith, M. Pearson, S. Latham, Are people following hip and knee arthroplasty at greater risk of experiencing a fall and fracture? Data from the Osteoarthritis Initiative, Archives of orthopaedic and trauma surgery 136(6) (2016) 865-872. [34] T.K. Fehring, S. Odum, W.L. Griffin, J.B. Mason, M. Nadaud, Early failures in total knee arthroplasty, Clinical Orthopaedics and Related Research (1976-2007) 392 (2001) 315-318. [35] F. Migliorini, P. Aretini, A. Driessen, Y. El Mansy, V. Quack, M. Tingart, et al., Better outcomes after mini-subvastus approach for primary total knee arthroplasty: a Bayesian network meta-analysis, European Journal of Orthopaedic Surgery Traumatology 30(6) (2020) 979-992. [36] D.F. Dalury, W.A. Jiranek, A comparison of the midvastus and paramedian approaches for total knee arthroplasty, The Journal of arthroplasty 14(1) (1999) 33-37. [37] E. Cila, V. Güzel, M. Özalay, J. Tan, A.S. Şimşek, U. Kanatlı, et al., Subvastus versus medial parapatellar approach in total knee arthroplasty, Archives of orthopaedic and trauma surgery 122(2) (2002) 65-68. [38] T. Boerger, P. Aglietti, N. Mondanelli, L. Sensi, Mini-subvastus versus medial parapatellar approach in total knee arthroplasty, Clinical Orthopaedics and Related Research® 440 (2005) 82-87. [39] H.-C. Liu, J.-H. Wang, C.-C. Yen, T.-K. Yao, Lateral Parapatellar Approach for Total Knee Arthroplasty in Valgus Knee or Patellar Subluxation, Arthroplasty 2000, Springer2001, pp. 165-170. [40] H. Sekiya, K. Takatoku, H. Takada, N. Sugimoto, Y. Hoshino, Lateral approach is advantageous in total knee arthroplasty for valgus deformed knee, European Journal of Orthopaedic Surgery Traumatology 24(1) (2014) 111-115. [41] S. Gunst, V. Villa, R. Magnussen, E. Servien, S. Lustig, P. Neyret, Equivalent results of medial and lateral parapatellar approach for total knee arthroplasty in mild valgus deformities, International orthopaedics 40(5) (2016) 945-951. [42] S. Cristea, V. Predescu, Ș. Dragosloveanu, Ș. Cuculici, N. Mărăndici, Surgical Approaches for Total Knee Arthroplasty, ARTHROPLASTY (2016) 25. [43] F. Migliorini, P. Aretini, A. Driessen, Y. El Mansy, V. Quack, M. Tingart, et al., Better outcomes after mini-subvastus approach for primary total knee arthroplasty: a Bayesian network meta-analysis, European Journal of Orthopaedic Surgery Traumatology (2020) 1-14. [44] T. Masjudin, Z. Kamari, A comparison between subvastus and midvastus approaches for staged bilateral total knee arthroplasty: a prospective, randomised study, Malaysian orthopaedic journal 6(3) (2012) 31. [45] H.-W. Liu, W.-D. Gu, N.-W. Xu, J.-Y. Sun, Surgical approaches in total knee arthroplasty: a meta-analysis comparing the midvastus and subvastus to the medial peripatellar approach, The Journal of arthroplasty 29(12) (2014) 2298-2304. [46] N. Mehta, M.S. Bhat, A. Goyal, P. Mishra, D. Joshi, D. Chaudhary, Quadriceps sparing (subvastus/midvastus) approach versus the conventional medial parapatellar approach in primary knee arthroplasty, Journal of Arthroscopy and Joint Surgery 4(1) (2017) 15-20. [47] R.J. Kearns, D.P. Connor, M.R. Brinker, Management of falls after total knee arthroplasty, Orthopedics 31(3) (2008) 225-225. [48] A. Swinkels, J.H. Newman, T.J. Allain, A prospective observational study of falling before and after knee replacement surgery, Age and ageing 38(2) (2009) 175-181. [49] A.C. Chan, D.A. Jehu, M.Y. Pang, Falls after total knee arthroplasty: frequency, circumstances, and associated factors—a prospective cohort study, Physical therapy 98(9) (2018) 767-778. [50] D.L. Hoyert, E. Arias, B.L. Smith, S.L. Murphy, K.D. Kochanek, Deaths: final data for 1999, National vital statistics reports: from the Centers for Disease Control and Prevention, National Center for Health Statistics, National Vital Statistics System 49(8) (2001) 1-113. [51] S.N. Robinovitch, F. Feldman, Y.J. Yang, R. Schonnop, P.M. Leung, T. Sarraf, et al., Video capture of the circumstances of falls in elderly people residing in long-term care: an observational study, Lancet 381(9860) (2013) 47-54. <Go to ISI>://WOS:000313044300026. [52] F. El-Khoury, B. Cassou, M.A. Charles, P. Dargent-Molina, The effect of fall prevention exercise programmes on fall induced injuries in community dwelling older adults: systematic review and meta-analysis of randomised controlled trials, BMJ-British Medical Journal 347 (2013) 13. <Go to ISI>://WOS:000326599500005. [53] L.Z. Rubenstein, K.R. Josephson, The epidemiology of falls and syncope, Clin. Geriatr. Med. 18(2) (2002) 141-+. <Go to ISI>://WOS:000176451000002. [54] N. Khalaj, N.A. Abu Osman, A.H. Mokhtar, M. Mehdikhani, W.A. Wan Abas, Balance and risk of fall in individuals with bilateral mild and moderate knee osteoarthritis, PLoS One 9(3) (2014) e92270. https://www.ncbi.nlm.nih.gov/pubmed/24642715. [55] C. Capaday, The special nature of human walking and its neural control, Trends Neurosci. 25(7) (2002) 370-376. <Go to ISI>://WOS:000176558300014. [56] M.H. Woollacott, P.F. Tang, Balance control during walking in the older adult: Research and its implications, Physical therapy 77(6) (1997) 646-660. <Go to ISI>://WOS:A1997XD06700005. [57] D.A. Winter, Human balance and posture control during standing and walking, Gait posture 3(4) (1995) 193-214. [58] J.C. Paul, A. Patel, K. Bianco, E. Godwin, Q. Naziri, S. Maier, et al., Gait stability improvement after fusion surgery for adolescent idiopathic scoliosis is influenced by corrective measures in coronal and sagittal planes, Gait posture 40(4) (2014) 510-515. [59] M.E. Hahn, L.S. Chou, Age-related reduction in sagittal plane center of mass motion during obstacle crossing, J. Biomech. 37(6) (2004) 837-844. <Go to ISI>://WOS:000221894400006. [60] H.-J. Lee, L.-S. Chou, Detection of gait instability using the center of mass and center of pressure inclination angles, Archives of Physical Medicine and Rehabilitation 87(4) (2006) 569-575. <Go to WoS>://WOS:000237045800017. [61] S.-C. Huang, T.-W. Lu, H.-L. Chen, T.-M. Wang, L.-S. Chou, Age and height effects on the center of mass and center of pressure inclination angles during obstacle-crossing, Medical engineering physics 30(8) (2008) 968-975. [62] S.-W. Hong, T.-H. Leu, T.-M. Wang, J.-D. Li, W.-P. Ho, T.-W. Lu, Control of body's center of mass motion relative to center of pressure during uphill walking in the elderly, Gait Posture 42(4) (2015) 523-528. http://www.sciencedirect.com/science/article/pii/S0966636215008139. [63] R. Burgess-Limerick, B. Abernethy, R.J. Neal, Relative phase quantifies interjoint coordination, J. Biomech. 26(1) (1993) 91-94. [64] N. Stergiou, S.D. Scholten, J.L. Jensen, D. Blanke, Intralimb coordination following obstacle clearance during running: the effect of obstacle height, Gait Posture 13(3) (2001) 210-220. [65] T.-W. Lu, H.-C. Yen, H.-L. Chen, Comparisons of the inter-joint coordination between leading and trailing limbs when crossing obstacles of different heights, Gait posture 27(2) (2008) 309-315. [66] J.P. Piek, N. Gasson, N. Barrett, I. Case, Limb and gender differences in the development of coordination in early infancy, Hum. Mov. Sci. 21(5-6) (2002) 621-639. [67] H.-C. Yen, H.-L. Chen, M.-W. Liu, H.-C. Liu, T.-W. Lu, Age effects on the inter-joint coordination during obstacle-crossing, J. Biomech. 42(15) (2009) 2501-2506. [68] T.-M. Wang, H.-C. Yen, T.-W. Lu, H.-L. Chen, C.-F. Chang, Y.-H. Liu, et al., Bilateral knee osteoarthritis does not affect inter-joint coordination in older adults with gait deviations during obstacle-crossing, J. Biomech. 42(14) (2009) 2349-2356. [69] J. Hamill, R.E. van Emmerik, B.C. Heiderscheit, L. Li, A dynamical systems approach to lower extremity running injuries, Clin. Biomech. 14(5) (1999) 297-308. [70] C. Van Uden, J. Bloo, J. Kooloos, A. Van Kampen, J. De Witte, R. Wagenaar, Coordination and stability of one-legged hopping patterns in patients with anterior cruciate ligament reconstruction: preliminary results, Clin. Biomech. 18(1) (2003) 84-87. [71] J.A.S. Kelso, Phase-Transitions and Critical-Behavior in Human Bimanual Coordination, Am. J. Physiol. 246(6) (1984) 1000-1004. <Go to ISI>://WOS:A1984SX69300052. [72] K. Davids, P. Glazier, D. Araujo, R. Bartlett, Movement systems as dynamical systems - The functional role of variability and its implications for sports medicine, Sports Med. 33(4) (2003) 245-260. <Go to ISI>://WOS:000182313700001. [73] P.S. Glazier, K. Davids, Constraints on the Complete Optimization of Human Motion, Sports Med. 39(1) (2009) 15-28. <Go to ISI>://WOS:000262895000002. [74] N. Stergiou, L.M. Decker, Human movement variability, nonlinear dynamics, and pathology: Is there a connection?, Hum. Mov. Sci. 30(5) (2011) 869-888. <Go to ISI>://WOS:000295996100004. [75] N. Stergiou, J.L. Jensen, B.T. Bates, S.D. Scholten, G. Tzetzis, A dynamical systems investigation of lower extremity coordination during running over obstacles, Clin. Biomech. 16(3) (2001) 213-221. <Go to ISI>://WOS:000167502300006. [76] R. Rosen, Dynamical System Theory in Biology: Stability theory and its applications, Wiley-Interscience1970. [77] P.F. Lamb, M. Stockl, On the use of continuous relative phase: Review of current approaches and outline for a new standard, Clin. Biomech. 29(5) (2014) 484-493. <Go to ISI>://WOS:000337880900002. [78] J.A.S. Kelso, Dynamic Patterns: The Self-organization of Brain and Behavior, MIT Press1997. [79] T.W. Lu, H.C. Yen, H.L. Chen, Comparisons of the inter-joint coordination between leading and trailing limbs when crossing obstacles of different heights, Gait Posture 27(2) (2008) 309-315. <Go to ISI>://WOS:000253331300018. [80] J.A.S. Kelso, K.G. Holt, P. Rubin, P.N. Kugler, PATTERNS OF HUMAN INTERLIMB COORDINATION EMERGE FROM THE PROPERTIES OF NON-LINEAR, LIMIT-CYCLE OSCILLATORY PROCESSES - THEORY AND DATA, J. Mot. Behav. 13(4) (1981) 226-261. <Go to ISI>://WOS:A1981NM13400001. [81] H.-L. Lu, T.-W. Lu, H.-C. Lin, H.-J. Hsieh, W.-P. Chan, Effects of belt speed on the body's center of mass motion relative to the center of pressure during treadmill walking, Gait Posture 51 (2017) 109-115. https://www.ncbi.nlm.nih.gov/pubmed/27744249. [82] H.-L. Chien, T.-W. Lu, M.-W. Liu, Control of the motion of the body's center of mass in relation to the center of pressure during high-heeled gait, Gait Posture 38(3) (2013) 391-6. https://www.ncbi.nlm.nih.gov/pubmed/23337731. [83] D. Mandeville, L.R. Osternig, L.S. Chou, The effect of total knee replacement surgery on gait stability, Gait Posture 27(1) (2008) 103-9. https://www.ncbi.nlm.nih.gov/pubmed/17419059. [84] H.-L. Chien, T.-W. Lu, M.-W. Liu, S.-W. Hong, C.-C. Kuo, Kinematic and kinetic adaptations in the lower extremities of experienced wearers during high-heeled gait, Biomedical Engineering: Applications, Basis and Communications 26(03) (2014) 1450042. [85] M.-Y. Kuo, S.-W. Hong, T.-H. Leu, C.-C. Kuo, T.-W. Lu, J.-H. Wang, Kinematic strategies for obstacle-crossing in patients with isolated posterior cruciate ligament deficiency, Gait posture 57 (2017) 21-27. [86] K.-W. Wu, J.-D. Li, H.-P. Huang, Y.-H. Liu, T.-M. Wang, Y.-T. Ho, et al., Bilateral asymmetry in kinematic strategies for obstacle-crossing in adolescents with severe idiopathic thoracic scoliosis, Gait posture 71 (2019) 211-218. [87] K. Al-Zahrani, A. Bakheit, A study of the gait characteristics of patients with chronic osteoarthritis of the knee, Disability and rehabilitation 24(5) (2002) 275-280. [88] H. Gök, S. Ergin, G. Yavuzer, Kinetic and kinematic characteristics of gait in patients with medial knee arthrosis, Acta Orthopaedica Scandinavica 73(6) (2002) 647-652. [89] S.P. Messier, Osteoarthritis of the knee and associated factors of age and obesity: effects on gait, Medicine and science in sports and exercise 26(12) (1994) 1446-1452. [90] T.-W. Lu, H.-L. Chen, T.-M. Wang, Obstacle crossing in older adults with medial compartment knee osteoarthritis, Gait posture 26(4) (2007) 553-559. [91] H.-L. Chen, T.-W. Lu, T.-M. Wang, S.-C. Huang, Biomechanical strategies for successful obstacle crossing with the trailing limb in older adults with medial compartment knee osteoarthritis, J. Biomech. 41(4) (2008) 753-761. [92] M.V. Hurley, D.L. Scott, J. Rees, D.J. Newham, Sensorimotor changes and functional performance in patients with knee osteoarthritis, Annals of the rheumatic diseases 56(11) (1997) 641-648. [93] Y. Wang, K. Zhang, J. Zeng, S. Yan, Coordination of lower limbs in patients with knee osteoarthritis during walking, Gait Posture 83 (2021) 160-166. [94] J.H. Park, H. Lee, J.-s. Cho, I. Kim, J. Lee, S.H. Jang, Effects of knee osteoarthritis severity on inter-joint coordination and gait variability as measured by hip-knee cyclograms, Scientific reports 11(1) (2021) 1-8. [95] M. Boonstra, A. Jenniskens, M. Barink, C. Van Uden, J. Kooloos, N. Verdonschot, et al., Functional evaluation of the TKA patient using the coordination and variability of rising, Journal of Electromyography and Kinesiology 17(1) (2007) 49-56. [96] R.W. Nutton, F.A. Wade, F.J. Coutts, M.L. van der Linden, Short term recovery of function following total knee arthroplasty: a randomised study of the medial parapatellar and midvastus approaches, Arthritis 2014 (2014). [97] H.-L. Chen, T.-W. Lu, Comparisons of the joint moments between leading and trailing limb in young adults when stepping over obstacles, Gait posture 23(1) (2006) 69-77. [98] S.-C. Chen, H.-J. Hsieh, T.-W. Lu, C.-H. Tseng, A method for estimating subject-specific body segment inertial parameters in human movement analysis, Gait Posture 33(4) (2011) 695-700. <Go to ISI>://WOS:000291139600032. [99] T.-W. Lu, Geometric and Mechanical Modelling of the Human Locomotor System, Orthopaedic Engineering, University of Oxford, England, United Kingdom, 1997, p. 249. [100] H. Elfman, Forces and energy changes in the leg during walking, Am. J. Physiol. 125 (1939) 339-356. [101] B. Bresler, J.P. Frankel, The forces and moments in the leg during level walking, Trans. ASME 72 (1950) 27-35. [102] A. Seireg, R.J. Arvikar, A mathematical model for evaluation of forces in lower extremeties of the musculo-skeletal system J Biomech 6 (1973) 313-326. [103] A. Cappozzo, F. Catani, U. Della Croce, A. Leardini, Position and orientation in space of bones during movement: anatomical frame definition and determination, Clin. Biomech. 10(4) (1995) 171-178. [104] T.-W. Lu, Geometric and mechanical modelling of the human locomotor system, University of Oxford, 1997. [105] G. Wu, P.R. Cavanagh, ISB recommendations for standardization in the reporting of kinematic data, J. Biomech. 28(10) (1995) 1257-1261. [106] A. Leardini, A. Cappozzo, F. Catani, S. Toksvig-Larsen, A. Petitto, V. Sforza, et al., Validation of a functional method for the estimation of hip joint centre location, J. Biomech. 32(1) (1999) 99-103. [107] C.L. Romano, C. Frigo, G. Randelli, A. Pedotti, Analysis of the gait of adults who had residua of congenital dysplasia of the hip, J Bone Joint Surg-Am Vol 78(10) (1996) 1468-1479. [108] T.W. Lu, Geometric and mechanical modelling of the human locomotor system, University of Oxford, Oxford, 1997. [109] S.C. Chen, H.J. Hsieh, T.W. Lu, C.H. Tseng, A method for estimating subject-specific body segment inertial parameters in human movement analysis, Gait Posture 33(4) (2011) 695-700. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve db=PubMed dopt=Citation list_uids=21458993 [110] T.-W. Lu, H.-L. Chien, H.-L. Chen, Joint loading in the lower extremities during elliptical exercise, Medicine and Science in Sports and Exercise 39(9) (2007) 1651-1658. <Go to ISI>://WOS:000249445700028. [111] D.A. Winter, Biomechanics and Motor Control of Human Movement, Wiley2009. [112] H.-J. Hsieh, T.-W. Lu, S.-C. Chen, C.-M. Chang, C. Hung, A new device for in situ static and dynamic calibration of force platforms, Gait Posture 33(4) (2011) 701-705. <Go to ISI>://WOS:000291139600033. [113] H.J. Woltring, A Fortran package for generalized, cross-validatory spline smoothing and differentiation, Advances in Engineering Software (1978) 8(2) (1986) 104-113. [114] Y.-C. Pai, J. Patton, Center of mass velocity-position predictions for balance control, Journal of biomechanics 30(4) (1997) 347-354. [115] B.T. Peters, J.M. Haddad, B.C. Heiderscheit, R.E. Van Emmerik, J. Hamill, Limitations in the use and interpretation of continuous relative phase, J. Biomech. 36(2) (2003) 271-274. [116] M. Kadaba, H. Ramakrishnan, M. Wootten, J. Gainey, G. Gorton, G. Cochran, Repeatability of kinematic, kinetic, and electromyographic data in normal adult gait, Journal of orthopaedic research 7(6) (1989) 849-860. [117] S.-L. Chiu, T.-W. Lu, L.-S. Chou, Altered inter-joint coordination during walking in patients with total hip arthroplasty, Gait posture 32(4) (2010) 656-660. [118] J.M. Haddad, R.E. van Emmerik, S.N. Whittlesey, J. Hamill, Adaptations in interlimb and intralimb coordination to asymmetrical loading in human walking, Gait posture 23(4) (2006) 429-434. [119] R.V. Briani, M.F. Pazzinatto, M.C. Waiteman, D. de Oliveira Silva, F.M. de Azevedo, Association between increase in vertical ground reaction force loading rate and pain level in women with patellofemoral pain after a patellofemoral joint loading protocol, The Knee 25(3) (2018) 398-405. [120] A. Lawrence, X. Xu, M.D. Bible, S. Calve, C.P. Neu, A. Panitch, Synthesis and characterization of a lubricin mimic (mLub) to reduce friction and adhesion on the articular cartilage surface, Biomaterials 73 (2015) 42-50. [121] Y.C. Pai, J. Patton, Center of mass velocity-position predictions for balance control, J. Biomech. 30(4) (1997) 347-354. <Go to ISI>://WOS:A1997WN13500005. [122] V.K. Srikanth, J.L. Fryer, G. Zhai, T.M. Winzenberg, D. Hosmer, G. Jones, A meta-analysis of sex differences prevalence, incidence and severity of osteoarthritis, Osteoarthritis and cartilage 13(9) (2005) 769-781. [123] Zimmerbiomet, NexGen® Complete Knee Solution | Proven., https://www.zimmerbiomet.com/medical-professionals/knee/product/nexgen-complete-knee-solution.html#. [124] M.-S. Kwon, Y.-R. Kwon, Y.-S. Park, J.-W. Kim, Comparison of gait patterns in elderly fallers and non-fallers, Technology and health care 26(S1) (2018) 427-436. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82036 | - |
| dc.description.abstract | 在全世界40歲以上的中老年人口中,超過22%患有退化性膝關節炎,全人工膝關節置換術已證實為主要有效的治療方式。然而,全人工膝關節置換術是否有助於改善平衡控制、下肢生物力學、降低跌倒風險、術後達到完全康復所需的時間,及全人工膝關節置換術之不同切入方式對全身平衡控制的影響,上述問題還未有明確的答案。本研究針對晚期雙側退化性膝關節炎的患者,根據足底壓力中心到身體質量中心和垂直線的傾角及此傾角的變化率,鑑別接受全人工膝關節置換術前後對於全身平衡控制的長期影響;下肢關節間協調性、矢狀面—額狀面平衡協調性的長期影響;比較由股內側肌切開及髕骨外側切開,進行全人工膝關節置換術的患者,在行走時平衡控制的術後表現。本研究之結果顯示,由整個步態週期中顯著較大的傾角但較小的傾角變化率得知,退化性膝關節炎損壞了老年人在步態過程中的平衡控制,這可能與此族群跌倒風險增加有關。患者之膝—踝協調變異性與平衡協調變異性也較大。接受全人工膝關節置換術術後三個月,有些偏差仍然存在,然而傾角的變化率、膝—踝協調性的變異和平衡控制的相似性已經恢復正常。術後一年,患者與健康控制組比,沒有任何上述變數有顯著差異。與髕骨外側切開進行全人工膝關節置換術相比,由股內側肌切開的患者,術後三個月在平衡控制方面顯示較好的恢復狀況。結論為:(一)退化性膝關節炎患者失去平衡、跌倒的風險增加;(二)人工膝關節置換術可有效減少全身平衡控制、關節間協調性及矢狀面—額狀面平衡協調性的偏差,儘管各個關節角度和力矩在術後一年存在殘餘偏差,平衡控制和協調能力預計在術後一年會完全恢復;(三)患者在術後一年可能採取個別關節代償策略,也就是改變個別關節之角度及力矩,以達到接近正常的全身平衡控制和協調性行走的目標(四)與髕骨外側切開進行全人工膝關節置換術相比,由股內側肌切開的患者,在術後三個月在平衡控制方面顯示較好的恢復狀況;(五)人工膝關節置換術之術後復健應包含步態平衡控制及協調訓練,並可藉由定期評估、監測平衡控制,提早發現失去平衡風險增加的跡象,特別是對於接受經髕骨外側切開進行全人工膝關節置換術之患者;(六)提高關節間協調性的運動,尤其是針對膝踝關節協調性,可能有助於改善這群患者的步態表現。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-25T05:34:30Z (GMT). No. of bitstreams: 1 U0001-1307202122033600.pdf: 6663289 bytes, checksum: 5b066ab7d2f77e4d73c6b106e6757051 (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | TABLE OF CONTENTS ACKNOWLEDGEMENTS iii 摘要 iv ABSTRACT v TABLE OF CONTENTS vii LIST OF TABLES xi LIST OF FIGURES xiv ABBREVIATIONS xviii CHAPTER 1. INTRODUCTION 1 1.1 Overview 1 1.2 Knee Osteoarthritis 3 1.2.1 Overview 3 1.2.2 Biomechanics of Patients with Knee Osteoarthritis 4 1.3 Total Knee Arthroplasty for Knee Osteoarthritis 5 1.3.1 Overview 5 1.3.2 Biomechanics of Patients After Total Knee Arthroplasty 6 1.4 Different Approaches for Total Knee Arthroplasty 7 1.5 Falling and Balance 9 1.6 Gait Analysis 10 1.6.1 Divisions of Gait Cycle 10 1.6.2 Functional Tasks of Gait 11 1.6.3 Balance Control 12 1.6.4 Inter-Joint Coordination 14 1.6.5 Coordination Between the Sagittal and Frontal Center of Mass Relative to the Center of Pressure 14 1.7 Limitations of Previous Studies 15 1.7.1 Balance Control of Knee Osteoarthritis 15 1.7.2 Balance Control of Total Knee Arthroplasty 16 1.7.3 Kinematics and Kinetics of Total Knee Arthroplasty 17 1.7.4 Inter-Joint Coordination of Total Knee Arthroplasty 18 1.7.5 Coordination Between the Sagittal and Frontal of the Center of Mass Motion Relative to the Center of Pressure of Total Knee Arthroplasty 19 1.7.6 Balance Control of Different Approaches for Total Knee Arthroplasty 19 1.8 Aims and Scope of the Dissertation 20 CHAPTER 2. METHODS 23 2.1 Subjects 24 2.2 Experimental Setting and Data Collection 26 2.3 Biomechanical Analysis Models 29 2.3.1 Coordinate Systems 30 2.3.2 Anthropometric Parameters 33 2.4 Data Analysis 34 2.4.1 Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) questionnaire 34 2.4.2 Spatial-Temporal Variables 34 2.4.3 Joint Angles and Moments 35 2.4.4 Determination of Center of Mass and Center of Pressure 38 2.4.5 Inclination Angles and Their Rate of Changes 42 2.4.6 Variables of Lower Limb Inter-Joint Coordination 44 2.4.7 Variables of Sagittal-Frontal Balance Coordination 45 2.4.8 Statistical Analysis 47 CHAPTER 3. COMPROMISED BALANCE CONTROL IN KNEE OSTEOARTHRITIS 49 3.1 Introduction 49 3.2 Materials and Methods 49 3.2.1 Subjects 50 3.2.2 Data Analysis 52 3.3 Results 52 3.4 Discussion 59 CHAPTER 4. RECOVERY OF BALANCE CONTROL IN KNEE OSTEOARTHRITIS AFTER TOTAL KNEE ARTHROPLASTY 63 4.1 Introduction 63 4.2 Materials and Methods 64 4.2.1 Subjects 64 4.2.2 Data Analysis 65 4.3 Results 66 4.4 Discussion 73 CHAPTER 5. KINEMATIC AND KINETIC STRATEGIES IN KNEE OSTEOARTHRITIS AFTER TOTAL KNEE ARTHROPLASTY 77 5.1 Introduction 77 5.2 Materials and Methods 78 5.2.1 Subjects 78 5.2.2 Data Analysis 78 5.3 Results 79 5.4 Discussion 89 CHAPTER 6. INTER-JOINT COORDINATION IN KNEE OSTEOARTHRITIS AFTER TOTAL KNEE ARTHROPLASTY 93 6.1 Introduction 93 6.2 Materials and Methods 94 6.2.1 Subjects 94 6.2.2 Data Analysis 94 6.3 Results 95 6.4 Discussion 102 CHAPTER 7. COORDINATION BETWEEN SAGITTAL AND FRONTAL CENTER OF MASS MOTION RELATIVE TO CENTER OF PRESSURE IN KNEE OSTEOARTHRITIS AFTER TOTAL KNEE ARTHROPLASTY 105 7.1 Introduction 105 7.2 Materials and Methods 106 7.2.1 Subjects 106 7.2.2 Data Analysis 106 7.3 Results 107 7.4 Discussion 113 CHAPTER 8. BETTER BALANCE CONTROL AFTER MID-VASTUS APPROACH THAN LATERAL PARAPATELLAR APPROACH FOR TOTAL KNEE ARTHROPLASTY 117 8.1 Introduction 117 8.2 Materials and Methods 118 8.2.1 Subjects 118 8.2.2 Data Analysis 118 8.3 Results 119 8.4 Discussion 125 CHAPTER 9. CONCLUSIONS AND SUGGESTIONS 128 9.1 Conclusions 128 9.1.1 Compromised balance control in knee osteoarthritis 128 9.1.2 Recovery of balance control 129 9.1.3 Kinematic and kinetic adaptations 130 9.1.4 Inter-joint coordination 131 9.1.5 Coordination between sagittal and frontal center of mass motion relative to center of pressure 132 9.1.6 Better balance control after mid-vastus approach than lateral parapatellar approach for total knee arthroplasty 133 9.2 Suggestions and Further Studies 134 9.2.1 Clinical Applications 135 9.2.2 Future Studies 135 9.3 General Summary 136 REFERENCES 137 APPENDIX 145 (A) Institutional Research Board Approval Certificate 145 (B) Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) questionnaire 147 (C) Journal Article Publication 150 (D) Conference Article Publication 150 | |
| dc.language.iso | en | |
| dc.subject | 股內側肌切開術 | zh_TW |
| dc.subject | 退化性膝關節炎 | zh_TW |
| dc.subject | 全人工膝關節置換術 | zh_TW |
| dc.subject | 長期追蹤 | zh_TW |
| dc.subject | 全身平衡 | zh_TW |
| dc.subject | 協調性 | zh_TW |
| dc.subject | 髕骨外側切開術 | zh_TW |
| dc.subject | Total knee arthroplasty | en |
| dc.subject | Lateral parapatellar approach | en |
| dc.subject | Coordination | en |
| dc.subject | Whole-body balance | en |
| dc.subject | Long-term follow up | en |
| dc.subject | Knee osteoarthritis | en |
| dc.subject | Mid-vastus approach | en |
| dc.title | 雙側退化性膝關節炎患者接受全人工膝關節置換前後之步行平衡控制策略及下肢生物力學之研究 | zh_TW |
| dc.title | Gait Balance Control Strategies and Lower Limb Biomechanics in Bilateral Medial Knee Osteoarthritis Before and After Total Knee Arthroplasty | en |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 蘇芳慶(Hsin-Tsai Liu),楊世偉(Chih-Yang Tseng),陳文斌,陳祥和 | |
| dc.subject.keyword | 退化性膝關節炎,全人工膝關節置換術,長期追蹤,全身平衡,協調性,髕骨外側切開術,股內側肌切開術, | zh_TW |
| dc.subject.keyword | Knee osteoarthritis,Total knee arthroplasty,Long-term follow up,Whole-body balance,Coordination,Lateral parapatellar approach,Mid-vastus approach, | en |
| dc.relation.page | 151 | |
| dc.identifier.doi | 10.6342/NTU202101448 | |
| dc.rights.note | 同意授權(限校園內公開) | |
| dc.date.accepted | 2021-07-14 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 醫學工程學研究所 | zh_TW |
| dc.date.embargo-lift | 2026-07-14 | - |
| 顯示於系所單位: | 醫學工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1307202122033600.pdf 未授權公開取用 | 6.51 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
