Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電機工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82006
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor傅立成(Li-Chen Fu)
dc.contributor.authorKuan-Wei Huangen
dc.contributor.author黃冠瑋zh_TW
dc.date.accessioned2022-11-25T05:33:57Z-
dc.date.available2024-08-17
dc.date.copyright2021-11-06
dc.date.issued2021
dc.date.submitted2021-08-17
dc.identifier.citation[1] G. Binning, C. F. Quate, and C. Gerber, “Atomic force microscope,” Physical Review Letters, vol. 56, pp.930–933, 1986. [2] R. Kneedler, S. Borodyansky, D. Klyachko, L. A. Vasilyev, A. H. Buxbaum, and T. B. Morrison, “3D metrology solution for the 65-nm node,” Proc. of SPIE, 2004, pp. 905–911, vol. 5567. [3] G. A. Dahlen et al., “TEM validation of CD AFM image reconstruction,” Proc. of SPIE, 2007, pp. 1–12, vol. 6518. [4] H.-C. Liu, Jason R. Osborne, Gregory A. Dahlen, Johann Greschner, Thomas Bayer, Samuel Kalt, and Georg Fritz, “Recent CD AFM probe developments for sub-45 nm technology nodes,” Proc. of Metrology, Inspection, and Process Control for Microlithography XXII, 2008, pp 1-7, vol. 6922. [5] G. Dai, W. Häßler-Grohne, D. Hüser, H. Wolff, H. Danzebrink, L. Koenders, and H. Bosse, “Development of a 3D-AFM for true 3D measurements of nanostructures,” Meas. Sci. Technol, vol. 22, no. 9, 2011. [6] J. Foucher, S. W. Schmidt, C. Penzkofer, and B. Irmer, “Overcoming silicon limitations: New 3D-AFM carbon tips with constantly high-resolution for sub-28nm node semiconductor requirements,” Proc. of SPIE, 2012, pp. 32-1–32-6, vol. 8324. [7] F. Krohs and S. Fatikow, “Novel high-resolution sidewall imaging using standard Atomic Force Microscopy equipment: Exceeding surface scanning using customized FIB-milled AFM tips in torsional feedback mode,” Proc. of 2013 Seventh International Conference on Sensing Technology (ICST), 2013, pp. 608-611. [8] D. Hussian, Y. Wen, H. Zhang, J. Song, and H. Xie, “Atomic Force Microscopy Sidewall Imaging with a Quartz Tuning Fork Force Sensor,” Sensors, vol. 18, no. 1, pp. 100, Jan. 2018. [9] S. J. Cho et al., “Three-dimensional imaging of undercut and sidewall structures by atomic force microscopy,” Rev. Sci. Instrum., vol. 82, no. 2, Jan. 2011. [10] M. Fouchier, E. Paragon, and B. Bardet, “An atomic force microscopybased method for line edge roughness measurement,” J. Appl. Phys., vol. 113, no. 10, Mar. 2013. [11] G. Dai, K. Hahm, F. Scholze, M. Henn, H. Gross, J. Fluegge, and H. Bosse, “Measurements of CD and sidewall profile of EUV photomask structures using CD-AFM and tilting-AFM,” Meas. Sci. Technol., vol. 25, 2014. [12] S. H. Lee, “Probe-rotating atomic force microscopy for determining material properties,” Rev. Sci. Instrum., vol. 85, no. 3, Mar. 2014. [13] J. W. Wu et al., “Effective tilting angles for a dual probes AFM system to achieve high-precision scanning,” IEEE/ASME Trans. on Mechatronics, vol. 21, no. 5, pp. 2512-2521, Oct. 2016. [14] Y. Wen, H. Lu, Y. Shen and H. Xie, “Nanorobotic Manipulation System for 360° Characterization Atomic Force Microscopy,” IEEE Transactions on Industrial Electronics, vol. 67, no. 4, pp. 2916-2924, Apr. 2020. [15] S.-H. Hsu and L.-C. Fu, “Robust output high-gain feedback controllers for the atomic force microscope under high data sampling rate,” Proc. of the 1999 IEEE International Conference on Control Applications, 1999, pp. 1626-1631, vol. 2. [16] O. M. El Rifai and K. Youcef-Toumi, “On automating atomic force microscopes: an adaptive control approach,” Proc. of 2004 43rd IEEE Conference on Decision and Control (CDC), 2004, pp. 1574-1579, vol. 2. [17] J.-W. Wu et al., “Design and Control of Phase-Detection Mode Atomic Force Microscopy for Reconstruction of Cell Contours in Three Dimensions,” IEEE Transactions on Nanotechnology, vol. 13, no. 4, pp. 639-649, Jul. 2014. [18] U. Aridogan, Y. Shan, and K. K. Leang, “Design and Analysis of Discrete-Time Repetitive Control for Scanning Probe Microscopes,” ASME. J. Dyn. Sys., Meas., Control, vol. 131, no. 6, Nov. 2009. [19] R. J. E. Merry, M. J. C. Ronde, R. van de Molengraft, K. R. Koops and M. Steinbuch, “Directional Repetitive Control of a Metrological AFM,” IEEE Transactions on Control Systems Technology, vol. 19, no. 6, pp. 1622-1629, Nov. 2011. [20] S. Xie and J. Ren, “Iterative Learning-based Model Predictive Control for Precise Trajectory Tracking of Piezo Nanopositioning Stage,” Proc. of 2018 Annual American Control Conference (ACC), 2018, pp. 2922-2927. [21] Y. Wu, Q. Zou and C. Su, “A Current Cycle Feedback Iterative Learning Control Approach for AFM Imaging,” IEEE Transactions on Nanotechnology, vol. 8, no. 4, pp. 515-527, July 2009. [22] S. Necipoglu, S. A. Cebeci, Y. E. Has, L. Guvenc and C. Basdogan, “Robust Repetitive Controller for Fast AFM Imaging,” IEEE Transactions on Nanotechnology, vol. 10, no. 5, pp. 1074-1082, Sep. 2011. [23] J. Yu, Y. Fang, Y. Zhang, and X. Dong, “A variable-speed scanning method for AFM fast imaging,” Proc. of the 30th Chinese Control Conference, 2011, pp. 3673-3678. [24] A. Ahmad, A. Schuh, and I. Rangelow, “Adaptive AFM scan speed control for high aspect ratio fast structure tracking,” Review of Scientific Instruments, vol. 85, no. 10, Oct. 2014. [25] X. Ren, Y. Fang, H. Lu, and Y. Wu, “An on-line scanning time allocation based variable speed scanning method for atomic force microscopies,” Proc. of 2015 International Conference on Manipulation, Manufacturing and Measurement on the Nano-scale (3M-NANO), 2015, pp. 245-250. [26] J. Ren and Q. Zou, “Adaptive-scanning, near-minimum-deformation atomic force microscope imaging of soft sample in liquid: Live mammalian cell example,” Proc. of 2016 American Control Conference (ACC), 2016, pp. 1235-1240. [27] Y. Liu, C. Huang, H. Chen, and L. Fu, “An On-line Variable Speed Scanning Method with Machine Learning Based Feedforward Control for Atomic Force Microscopy,” Proc. of 2019 12th Asian Control Conference (ASCC), 2019, pp. 138-143. [28] C.-C. H. M.-H. Chou, Y.-L. Liu, H.-C. Chen, and L.-C. Fu, “Novel Micro Scanning with Integrated Atomic Force Microscope and Confocal Laser Scanning Microscope,” Proc. of IEEE Conference on Control Technology and Applications (CCTA), 2019, pp. 870-875. [29] J. Curie and P. Curie, “Développement par compression de l'électricité polaire dans les cristaux hémièdres à faces inclinées,” Comptes rendus, vol. 91, pp. 294-295, 1880. [30] P. J. Chen and S. T. Montgomery, “A macroscopic theory for the existence of the hysteresis and butterfly loops in ferroelectricity,” Ferroelectrics, vol. 23, no. 1, pp. 199-207, 1980. [31] S. Stucklin, M. R. Gullo, T. Akiyama and M. Scheidiger, “Atomic force microscopy for industry with the Akiyama-Probe sensor,” Proc. of 2008 International Conference on Nanoscience and Nanotechnology, 2008, pp. 79-82. [32] Javier Sánchez, Nelson Monzón, and Agustín Salgado, “An Analysis and Implementation of the Harris Corner Detector,” Image Processing On Line, vol. 8, pp. 305–328, Oct. 2018. [33] C. Harris, and M. Stephens, “A Combined Corner and Edge Detector,” Proc. of the 4th Alvey Vision Conference, 1988, pp. 147-151. [34] H. Bay, T. Tuytelaars and L. Van Gool, “SURF: Speeded Up Robust Features,” Proc. of Computer Vision – ECCV, 2006, pp. 404-417. [35] B. Kamgar-Parsi, “Quantization error in regular grids: triangular pixels, IEEE Trans on Image Process, vol. 7, pp. 1496-1500,
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82006-
dc.description.abstract原子力顯微鏡是一種極為高精度的掃描儀器,能夠透過原子探針重建奈米等級的樣本三維表面輪廓。此儀器能廣泛應用於不同領域,如奈米材料科技、半導體製程、微機電結構檢測、生物醫學等。其中,半導體製程技術日益精進,逐漸縮小化的半導體元件針對其側壁的檢測顯得更加重要。以微機電檢測為例,經過製成加工後得到的樣本,需要檢查於樣本側壁上的線寬粗糙度(LWR)以及線緣粗糙度(LER)。國際半導體發展路線圖(ITRS),更是有規定相關的關鍵尺寸(CD),以確保樣本製造符合設計規定。 然而近年來,傳統原子力顯微鏡掃描逐漸顯現出它的缺點,尤其是針對常見的四方形或圓形之島型結構樣本,已逐漸無法完成高精準度的多側壁樣本掃描。此外,對於高解析度重建的深度或島型結構樣本都將受制於傳統原子力顯微鏡的幾何探針形狀。最終,以現有的掃描方式而言,將無法有效解決側壁掃描時產生的失真與低解析度問題。 本論文提出針對樣本側壁的檢測方法,並引進旋轉的概念,將旋轉平台安裝於傳統原子力顯微鏡系統中。我們首先設計旋轉平台與壓電平台之合作式系統,使樣本能安裝於旋轉平台上,達成全方向性旋轉以解決傳統原子力顯微鏡探針幾何所造成的掃描失真問題。接著,設計合作式系統之校正流程以求出平台旋轉中心,藉此完成壓電平台與旋轉平台系統之探針定位,最後透過所提出之圖像重建方法,重建全方向性高精度側壁3D樣本輪廓。zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-25T05:33:57Z (GMT). No. of bitstreams: 1
U0001-1608202121545700.pdf: 6342737 bytes, checksum: a10c0722a71f3476b605229281bae940 (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents口試委員會審定書 # 誌謝 I 摘要 II TABLE OF CONTENTS V LIST OF FIGURES VIII LIST OF TABLES XI Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Literature Review 3 1.2.1 Hardware component 4 1.2.2 System modification 6 1.2.3 Controller design 8 1.3 Contribution 9 1.4 Thesis Organization 10 Chapter 2 Preliminaries 12 2.1 Basic Principles of Piezoelectric Stage 12 2.1.1 Piezoelectric effect 12 2.1.2 Hysteresis phenomenon 14 2.2 Working Principle of AFM 15 2.2.1 Tip-sample interaction modes 16 2.2.2 AFM scanning schemes 19 Chapter 3 Hardware Design 21 3.1 System overview 21 3.2 AFM Subsystem 23 3.2.1 Piezoelectric scanner 24 3.2.2 Measurement probe 25 3.3 Long-traveling Range Positioning Stage Subsystem 27 3.4 Hardware Devices for Control 29 3.5 Rotating stage 30 Chapter 4 Omnidirectional precision scanning 33 4.1 Calibration Method 33 4.1.1 Coarse calibration 34 4.1.2 Fine calibration 40 4.2 Precision reconstruction of samples with multiple sidewalls 47 4.2.1 Gradient filter 48 4.2.2 Multiple scans with rotating stage 50 4.2.3 Reconstruction with multiple sidewalls scan 52 Chapter 5 Experiment and result 54 5.1 Experiment setup 54 5.1.1 AFM subsystem 54 5.1.2 LTRPS 55 5.1.3 OM subsystem 55 5.1.4 Rotating stage subsystem 55 5.2 Calibration 56 5.2.1 Coarse calibration 56 5.2.2 Fine calibration 59 5.3 Precision reconstruction of samples with multiple sidewalls 60 Chapter 6 Conclusion and future work 67 REFERENCES 69
dc.language.isozh-TW
dc.subject圖像重建zh_TW
dc.subject壓電平台與旋轉馬達之合作式系統zh_TW
dc.subject圓心校正zh_TW
dc.subjectA cooperative system with piezo stage and rotating stageen
dc.subjectrotating center calibration processen
dc.subjectthe precision reconstruction methoden
dc.title旋轉平台之原子力顯微鏡於多側壁樣本以達成全方位高精度掃描zh_TW
dc.titleOmnidirectional precision scanning of AFM on a sample with multiple sidewalls using rotating stageen
dc.date.schoolyear109-2
dc.description.degree碩士
dc.contributor.coadvisor蔡坤諭(Kuen-Yu Tsai)
dc.contributor.oralexamcommittee顏家鈺(Hsin-Tsai Liu),張以全(Chih-Yang Tseng),練光祐
dc.subject.keyword壓電平台與旋轉馬達之合作式系統,圓心校正,圖像重建,zh_TW
dc.subject.keywordA cooperative system with piezo stage and rotating stage,rotating center calibration process,the precision reconstruction method,en
dc.relation.page71
dc.identifier.doi10.6342/NTU202102412
dc.rights.note同意授權(限校園內公開)
dc.date.accepted2021-08-18
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電機工程學研究所zh_TW
dc.date.embargo-lift2024-08-17-
顯示於系所單位:電機工程學系

文件中的檔案:
檔案 大小格式 
U0001-1608202121545700.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
6.19 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved