Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 動物科學技術學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82003
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor丁詩同(Shih-Torng Ding),林原佑(Yuan-Yu Lin)
dc.contributor.authorPei-Xin Liaoen
dc.contributor.author廖珮馨zh_TW
dc.date.accessioned2022-11-25T05:33:55Z-
dc.date.available2026-08-19
dc.date.copyright2021-11-09
dc.date.issued2021
dc.date.submitted2021-08-19
dc.identifier.citation黃亭維。2021。建立篩選改善非酒精性脂肪肝之機能性成分的雞隻模式。碩士。國立臺灣大學, 台北。 熊禹涵。2019。飼糧中添加靈芝及北蟲草對日本鵪鶉肝臟脂質堆積的影響。碩士。國立臺灣大學, 台北。 Abplanalp, H., and Napolitano, D. (1987). Genetic predisposition for fatty liver ruptures in White Leghorn hens of a highly inbred line. Poult Sci 66, 52. Ahmad, M.F. (2018). Ganoderma lucidum: Persuasive biologically active constituents and their health endorsement. Biomed Pharmacother 107, 507-519. Akiba, Y., Takahashi, K., Kimura, M., Hirama, S.I., and Matsumoto, T. (1983). The influence of environmental temperature, thyroid status and a synthetic oestrogen on the induction of fatty livers in chicks. Br Poult Sci 24, 71-80. Alvaro, A., Rosales, R., Masana, L., and Vallve, J.C. (2010). Polyunsaturated fatty acids down-regulate in vitro expression of the key intestinal cholesterol absorption protein NPC1L1: no effect of monounsaturated nor saturated fatty acids. J Nutr Biochem 21, 518-525. Ardelmalek, M.F. (2010). Is Oil Red-O Staining and Digital Image Analysis the Gold Standard for Quantifying Steatosis in the Liver? Reply. Hepatology 51, 1859-1860. Ashraf, S.A., Elkhalifa, A.E.O., Siddiqui, A.J., Patel, M., Awadelkareem, A.M., Snoussi, M., Ashraf, M.S., Adnan, M., and Hadi, S. (2020). Cordycepin for Health and Wellbeing: A Potent Bioactive Metabolite of an Entomopathogenic Cordyceps Medicinal Fungus and Its Nutraceutical and Therapeutic Potential. Molecules 25. Ayala, I., Castillo, A.M., Adanez, G., Fernandez-Rufete, A., Perez, B.G., and Castells, M.T. (2009). Hyperlipidemic chicken as a model of non-alcoholic steatohepatitis. Exp Biol Med (Maywood) 234, 10-16. Ayo, J.O., Obidi, J.A., and Rekwot, P.I. (2011). Effects of heat stress on the well-being, fertility, and hatchability of chickens in the northern Guinea savannah zone of Nigeria: a review. ISRN Vet Sci 2011, 838606. Balakrishnan, M., Patel, P., Dunn-Valadez, S., Dao, C., Khan, V., Ali, H., El-Serag, L., Hernaez, R., Sisson, A., Thrift, A.P., et al. (2021). Women Have a Lower Risk of Nonalcoholic Fatty Liver Disease but a Higher Risk of Progression vs Men: A Systematic Review and Meta-analysis. Clin Gastroenterol Hepatol 19, 61-71 e15. Baumeier, C., Schluter, L., Saussenthaler, S., Laeger, T., Rodiger, M., Alaze, S.A., Fritsche, L., Haring, H.U., Stefan, N., Fritsche, A., et al. (2017). Elevated hepatic DPP4 activity promotes insulin resistance and non-alcoholic fatty liver disease. Mol Metab 6, 1254-1263. Bedossa, P. (2017). Pathology of non-alcoholic fatty liver disease. Liver Int 37 Suppl 1, 85-89. Berard, A.M., Dumon, M.F., and Darmon, M. (2004). Dietary fish oil up-regulates cholesterol 7alpha-hydroxylase mRNA in mouse liver leading to an increase in bile acid and cholesterol excretion. FEBS Lett 559, 125-128. Brunt, E.M., Kleiner, D.E., Wilson, L.A., Belt, P., Neuschwander-Tetri, B.A., and Network, N.C.R. (2011). Nonalcoholic fatty liver disease (NAFLD) activity score and the histopathologic diagnosis in NAFLD: distinct clinicopathologic meanings. Hepatology 53, 810-820. Butler, E.J. (1976). Fatty liver diseases in the domestic fowl--a review. Avian Pathol 5, 1-14. Buzzetti, E., Pinzani, M., and Tsochatzis, E.A. (2016). The multiple-hit pathogenesis of non-alcoholic fatty liver disease (NAFLD). Metabolism 65, 1038-1048. Cao, C., Yang, S., and Zhou, Z. (2020). The potential application of Cordyceps in metabolic-related disorders. Phytother Res 34, 295-305. Chan, W.K., Law, H.K., Lin, Z.B., Lau, Y.L., and Chan, G.C. (2007). Response of human dendritic cells to different immunomodulatory polysaccharides derived from mushroom and barley. Int Immunol 19, 891-899. Chang, C.J., Lin, C.S., Lu, C.C., Martel, J., Ko, Y.F., Ojcius, D.M., Tseng, S.F., Wu, T.R., Chen, Y.Y., Young, J.D., et al. (2015). Ganoderma lucidum reduces obesity in mice by modulating the composition of the gut microbiota. Nat Commun 6, 7489. Chen, C.Y., Chen, Y.J., Ding, S.T., and Lin, Y.Y. (2018). Expression profile of adiponectin and adiponectin receptors in high-fat diet feeding chickens. J Anim Physiol Anim Nutr (Berl) 102, 1585-1592. Chilliard, Y. (1993). Dietary fat and adipose tissue metabolism in ruminants, pigs, and rodents: a review. J Dairy Sci 76, 3897-3931. Chiu, C.-P., Hwang, T.-L., Chan, Y., El-Shazly, M., Wu, T.-Y., Lo, I.W., Hsu, Y.-M., Lai, K.-H., Hou, M.-F., Yuan, S.-S., et al. (2016). Research and development of Cordyceps in Taiwan. Food Science and Human Wellness 5, 177-185. Choi, S.B., Park, C.H., Choi, M.K., Jun, D.W., and Park, S. (2004). Improvement of insulin resistance and insulin secretion by water extracts of Cordyceps militaris, Phellinus linteus, and Paecilomyces tenuipes in 90% pancreatectomized rats. Biosci Biotechnol Biochem 68, 2257-2264. Choi, Y.I., Ahn, H.J., Lee, B.K., Oh, S.T., An, B.K., and Kang, C.W. (2012). Nutritional and Hormonal Induction of Fatty Liver Syndrome and Effects of Dietary Lipotropic Factors in Egg-type Male Chicks. Asian-Australas J Anim Sci 25, 1145-1152. Conarello, S.L., Li, Z., Ronan, J., Roy, R.S., Zhu, L., Jiang, G., Liu, F., Woods, J., Zycband, E., Moller, D.E., et al. (2003). Mice lacking dipeptidyl peptidase IV are protected against obesity and insulin resistance. Proc Natl Acad Sci U S A 100, 6825-6830. Cornelius, C.E. (1980). 6 - Liver Function. In Clinical Biochemistry of Domestic Animals (Third Edition), J.J. Kaneko, ed. (Academic Press), pp. 201-257. Couch, J. (1956). Fatty livers in laying hens-a condition which may occur as a result of increased strain. Feedstuffs 28, 46. Council, N.R. (1994). Nutrient Requirements of Poultry: Ninth Revised Edition, 1994 (Washington, DC: The National Academies Press). Cui, A., Hu, Z., Han, Y., Yang, Y., and Li, Y. (2017). Optimized Analysis of In Vivo and In Vitro Hepatic Steatosis. J Vis Exp. Davis, R.A. (1991). Chapter 14 Lipoprotein structure and secretion. In New Comprehensive Biochemistry, D.E. Vance, and J.E. Vance, eds. (Elsevier), pp. 403-426. de Bari, O., Neuschwander-Tetri, B.A., Liu, M., Portincasa, P., and Wang, D.Q. (2012). Ezetimibe: its novel effects on the prevention and the treatment of cholesterol gallstones and nonalcoholic Fatty liver disease. J Lipids 2012, 302847. Deepalakshmi, K., and Mirunalini, S. (2013). Modulatory effect of Ganoderma lucidum on expression of xenobiotic enzymes, oxidant-antioxidant and hormonal status in 7,12-dimethylbenz(a)anthracene-induced mammary carcinoma in rats. Pharmacogn Mag 9, 167-175. Duavy, S.M.P., Salazar, G.J.T., Leite, G.O., Ecker, A., and Barbosa, N.V. (2017). Effect of dietary supplementation with olive and sunflower oils on lipid profile and liver histology in rats fed high cholesterol diet. Asian Pac J Trop Med 10, 539-543. Dudhgaonkar, S., Thyagarajan, A., and Sliva, D. (2009). Suppression of the inflammatory response by triterpenes isolated from the mushroom Ganoderma lucidum. Int Immunopharmacol 9, 1272-1280. Enz, N., Vliegen, G., De Meester, I., and Jungraithmayr, W. (2019). CD26/DPP4 - a potential biomarker and target for cancer therapy. Pharmacol Ther 198, 135-159. Folch, J., Lees, M., and Sloane Stanley, G.H. (1957). A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 226, 497-509. Fraser, R., Heslop, V.R., Murray, F.E., and Day, W.A. (1986). Ultrastructural studies of the portal transport of fat in chickens. Br J Exp Pathol 67, 783-791. Gao, J., Lian, Z.Q., Zhu, P., and Zhu, H.B. (2011). Lipid-lowering effect of cordycepin (3'-deoxyadenosine) from Cordyceps militaris on hyperlipidemic hamsters and rats. Yao Xue Xue Bao 46, 669-676. Gao, Y., Zhou, S., Jiang, W., Huang, M., and Dai, X. (2003). Effects of ganopoly (a Ganoderma lucidum polysaccharide extract) on the immune functions in advanced-stage cancer patients. Immunol Invest 32, 201-215. Ghorpade, D.S., Ozcan, L., Zheng, Z., Nicoloro, S.M., Shen, Y., Chen, E., Bluher, M., Czech, M.P., and Tabas, I. (2018). Hepatocyte-secreted DPP4 in obesity promotes adipose inflammation and insulin resistance. Nature 555, 673-677. Griffin, H., Grant, G., and Perry, M. (1982). Hydrolysis of plasma triacylglycerol-rich lipoproteins from immature and laying hens (Gallus domesticus) by lipoprotein lipase in vitro. Biochem J 206, 647-654. Griffin, H., and Hermier, D. (1988). Chapter 16 - Plasma lipoprotein metabolism and fattening in poultry. In Leanness in Domestic Birds, B. Leclercq, and C.C. Whitehead, eds. (Butterworth-Heinemann), pp. 175-201. Guo, M., Guo, S., Huaijun, Y., Bu, N., and Dong, C.H. (2016). Comparison of Major Bioactive Compounds of the Caterpillar Medicinal Mushroom, Cordyceps militaris (Ascomycetes), Fruiting Bodies Cultured on Wheat Substrate and Pupae. Int J Med Mushrooms 18, 327-336. Guo, P., Kai, Q., Gao, J., Lian, Z.Q., Wu, C.M., Wu, C.A., and Zhu, H.B. (2010). Cordycepin prevents hyperlipidemia in hamsters fed a high-fat diet via activation of AMP-activated protein kinase. J Pharmacol Sci 113, 395-403. Guo, W.L., Pan, Y.Y., Li, L., Li, T.T., Liu, B., and Lv, X.C. (2018). Ethanol extract of Ganoderma lucidum ameliorates lipid metabolic disorders and modulates the gut microbiota composition in high-fat diet fed rats. Food Funct 9, 3419-3431. Hebbard, L., and George, J. (2011). Animal models of nonalcoholic fatty liver disease. Nat Rev Gastroenterol Hepatol 8, 35-44. Hermier, D., Forgez, P., Williams, J., and Chapman, M.J. (1989). Alterations in plasma lipoproteins and apolipoproteins associated with estrogen-induced hyperlipidemia in the laying hen. Eur J Biochem 184, 109-118. Huang, C.W., Chien, Y.S., Chen, Y.J., Ajuwon, K.M., Mersmann, H.M., and Ding, S.T. (2016). Role of n-3 Polyunsaturated Fatty Acids in Ameliorating the Obesity-Induced Metabolic Syndrome in Animal Models and Humans. Int J Mol Sci 17. Ichimura, M., Kawase, M., Masuzumi, M., Sakaki, M., Nagata, Y., Tanaka, K., Suruga, K., Tamaru, S., Kato, S., Tsuneyama, K., et al. (2015). High-fat and high-cholesterol diet rapidly induces non-alcoholic steatohepatitis with advanced fibrosis in Sprague-Dawley rats. Hepatol Res 45, 458-469. Ioannou, G.N., Morrow, O.B., Connole, M.L., and Lee, S.P. (2009). Association between dietary nutrient composition and the incidence of cirrhosis or liver cancer in the United States population. Hepatology 50, 175-184. Julian, R.J. (2005). Production and growth related disorders and other metabolic diseases of poultry--a review. Vet J 169, 350-369. Jump, D.B., Depner, C.M., Tripathy, S., and Lytle, K.A. (2015). Potential for dietary omega-3 fatty acids to prevent nonalcoholic fatty liver disease and reduce the risk of primary liver cancer. Adv Nutr 6, 694-702. Jun, B.G., and Cheon, G.J. (2019). The utility of ezetimibe therapy in nonalcoholic fatty liver disease. Korean J Intern Med 34, 284-285. Jung, S., Son, H., Hwang, C.E., Cho, K.M., Park, S.W., and Kim, H.J. (2018). Ganoderma lucidum Ameliorates Non-Alcoholic Steatosis by Upregulating Energy Metabolizing Enzymes in the Liver. J Clin Med 7. Kawaguchi, T., Nakano, D., Koga, H., and Torimura, T. (2019). Effects of a DPP4 Inhibitor on Progression of NASH-related HCC and the p62/ Keap1/Nrf2-Pentose Phosphate Pathway in a Mouse Model. Liver Cancer 8, 359-372. Kwon, I., Jun, D.W., and Moon, J.H. (2019). Effects of Moderate Alcohol Drinking in Patients with Nonalcoholic Fatty Liver Disease. Gut Liver 13, 308-314. Lee, H.Y., Jun, D.W., Kim, H.J., Oh, H., Saeed, W.K., Ahn, H., Cheung, R.C., and Nguyen, M.H. (2019). Ezetimibe decreased nonalcoholic fatty liver disease activity score but not hepatic steatosis. Korean J Intern Med 34, 296-304. Li, G., Nakagome, I., Hirono, S., Itoh, T., and Fujiwara, R. (2015). Inhibition of adenosine deaminase (ADA)-mediated metabolism of cordycepin by natural substances. Pharmacol Res Perspect 3, e00121. Li, J., Zhang, X.L., Liu, Y.Y., Chen, L., Tian, J.Y., Han, J.Y., Zhang, P.C., and Ye, F. (2013). [Investigation of a compound, compatibility of Rhodiola crenulata, Cordyceps militaris, and Rhum palmatum, on metabolic syndrome treatment. IV--Improving liver lipid accumulation]. Zhongguo Zhong Yao Za Zhi 38, 1789-1794. Liang, C., Tian, D., Liu, Y., Li, H., Zhu, J., Li, M., Xin, M., and Xia, J. (2019). Review of the molecular mechanisms of Ganoderma lucidum triterpenoids: Ganoderic acids A, C2, D, F, DM, X and Y. Eur J Med Chem 174, 130-141. Lin, C.W., Huang, T.W., Peng, Y.J., Lin, Y.Y., Mersmann, H.J., and Ding, S.T. (2020). A novel chicken model of fatty liver disease induced by high cholesterol and low choline diets. Poult Sci, 100869. Lin, W.C., and Lin, W.L. (2006). Ameliorative effect of Ganoderma lucidum on carbon tetrachloride-induced liver fibrosis in rats. World J Gastroenterol 12, 265-270. Lonardo, A., Nascimbeni, F., Ballestri, S., Fairweather, D., Win, S., Than, T.A., Abdelmalek, M.F., and Suzuki, A. (2019). Sex Differences in Nonalcoholic Fatty Liver Disease: State of the Art and Identification of Research Gaps. Hepatology 70, 1457-1469. Lu, J., He, R., Sun, P., Zhang, F., Linhardt, R.J., and Zhang, A. (2020). Molecular mechanisms of bioactive polysaccharides from Ganoderma lucidum (Lingzhi), a review. Int J Biol Macromol 150, 765-774. Lu, Y., and Cederbaum, A.I. (2008). CYP2E1 and oxidative liver injury by alcohol. Free Radic Biol Med 44, 723-738. Lucas, A.M., and Denington, E.M. (1956). Morphology of the Chicken Liver. Poult Sci 35, 793-806. Lumeij, J.T., and Westerhof, I. (1987). Blood chemistry for the diagnosis of hepatobiliary disease in birds. A review. Vet Q 9, 255-261. Mehlem, A., Hagberg, C.E., Muhl, L., Eriksson, U., and Falkevall, A. (2013). Imaging of neutral lipids by oil red O for analyzing the metabolic status in health and disease. Nat Protoc 8, 1149-1154. Mehta, A., Guleria, S., Sharma, R., and Gupta, R. (2021). 6 - The lipases and their applications with emphasis on food industry. In Microbial Biotechnology in Food and Health, R.C. Ray, ed. (Academic Press), pp. 143-164. Mitchell, H.H. (1930). The Surface Area of Single Comb White Leghorn Chickens. The Journal of Nutrition 2, 443-449. Musso, G., Gambino, R., De Michieli, F., Cassader, M., Rizzetto, M., Durazzo, M., Faga, E., Silli, B., and Pagano, G. (2003). Dietary habits and their relations to insulin resistance and postprandial lipemia in nonalcoholic steatohepatitis. Hepatology 37, 909-916. Nafikov, R.A., and Beitz, D.C. (2007). Carbohydrate and lipid metabolism in farm animals. J Nutr 137, 702-705. Nair, A.B., and Jacob, S. (2016). A simple practice guide for dose conversion between animals and human. J Basic Clin Pharm 7, 27-31. Nakade, Y., Murotani, K., Inoue, T., Kobayashi, Y., Yamamoto, T., Ishii, N., Ohashi, T., Ito, K., Fukuzawa, Y., and Yoneda, M. (2017). Ezetimibe for the treatment of non-alcoholic fatty liver disease: A meta-analysis. Hepatol Res 47, 1417-1428. Nargis, T., and Chakrabarti, P. (2018). Significance of circulatory DPP4 activity in metabolic diseases. IUBMB Life 70, 112-119. Nishimoto, T., Pellizzon, M.A., Aihara, M., Stylianou, I.M., Billheimer, J.T., Rothblat, G., and Rader, D.J. (2009). Fish oil promotes macrophage reverse cholesterol transport in mice. Arterioscler Thromb Vasc Biol 29, 1502-1508. Nishina, S., Yamauchi, A., Kawaguchi, T., Kaku, K., Goto, M., Sasaki, K., Hara, Y., Tomiyama, Y., Kuribayashi, F., Torimura, T., et al. (2019). Dipeptidyl Peptidase 4 Inhibitors Reduce Hepatocellular Carcinoma by Activating Lymphocyte Chemotaxis in Mice. Cell Mol Gastroenterol Hepatol 7, 115-134. Niu, L., Geyer, P.E., Wewer Albrechtsen, N.J., Gluud, L.L., Santos, A., Doll, S., Treit, P.V., Holst, J.J., Knop, F.K., Vilsboll, T., et al. (2019). Plasma proteome profiling discovers novel proteins associated with non-alcoholic fatty liver disease. Mol Syst Biol 15, e8793. Niu, Y.J., Tao, R.Y., Liu, Q., Tian, J.Y., Ye, F., Zhu, P., and Zhu, H.B. (2010). Improvement on lipid metabolic disorder by 3'-deoxyadenosine in high-fat-diet-induced fatty mice. Am J Chin Med 38, 1065-1075. Noyan, A., Lossow, W.J., Brot, N., and Chaikoff, I.L. (1964). Pathway and Form of Absorption of Palmitic Acid in the Chicken. J Lipid Res 5, 538-541. Parker, H.M., Johnson, N.A., Burdon, C.A., Cohn, J.S., O'Connor, H.T., and George, J. (2012). Omega-3 supplementation and non-alcoholic fatty liver disease: a systematic review and meta-analysis. J Hepatol 56, 944-951. Pawella, L.M., Hashani, M., Eiteneuer, E., Renner, M., Bartenschlager, R., Schirmacher, P., and Straub, B.K. (2014). Perilipin discerns chronic from acute hepatocellular steatosis. J Hepatol 60, 633-642. Pearson, A.W., and Butler, E.J. (1978a). The oestrogenised chick as an experimental model for fatty liver-haemorrhagic syndrome in the fowl. Res Vet Sci 24, 82-86. Pearson, A.W., and Butler, E.J. (1978b). Pathological and biochemical observations on subclinical cases of fatty liver-haemorrhagic syndrome in the fowl. Res Vet Sci 24, 65-71. Peckham, M. (1972). Diseases of Poultry, 6th edn. Ames (Iowa State University Press). Polin, D., and Wolford, J.H. (1977). Role of estrogen as a cause of fatty liver hemorrhagic syndrome. J Nutr 107, 873-886. Proenca, C., Freitas, M., Ribeiro, D., Tome, S.M., Araujo, A.N., Silva, A.M.S., Fernandes, P.A., and Fernandes, E. (2019). The dipeptidyl peptidase-4 inhibitory effect of flavonoids is hindered in protein rich environments. Food Funct 10, 5718-5731. Rada, P., Gonzalez-Rodriguez, A., Garcia-Monzon, C., and Valverde, A.M. (2020). Understanding lipotoxicity in NAFLD pathogenesis: is CD36 a key driver? Cell Death Dis 11, 802. Rao, M.S., and Reddy, J.K. (2001). Peroxisomal beta-oxidation and steatohepatitis. Semin Liver Dis 21, 43-55. Reddy, J.K., and Rao, M.S. (2006). Lipid metabolism and liver inflammation. II. Fatty liver disease and fatty acid oxidation. Am J Physiol Gastrointest Liver Physiol 290, G852-858. Rinella, M.E. (2015). Nonalcoholic fatty liver disease: a systematic review. JAMA 313, 2263-2273. Ringer, R., and Sheppard, C. (1963). Report of fatty-liver syndrome in a Michigan caged layer operation. Quarterly Bulletin Michigan State University Agricultural Experiment Station 45, 426-427. Rozenboim, I., Mahato, J., Cohen, N.A., and Tirosh, O. (2016). Low protein and high-energy diet: a possible natural cause of fatty liver hemorrhagic syndrome in caged White Leghorn laying hens. Poult Sci 95, 612-621. Sanchez-Polo, M.T., Castells, M.T., Garcia-Perez, B., Martin, A., Adanez, G., and Ayala, I. (2015). Effect of diet/atorvastatin on atherosclerotic lesions associated to nonalcoholic fatty liver disease in chickens. Histol Histopathol 30, 1439-1446. Sanodiya, B.S., Thakur, G.S., Baghel, R.K., Prasad, G.B., and Bisen, P.S. (2009). Ganoderma lucidum: a potent pharmacological macrofungus. Curr Pharm Biotechnol 10, 717-742. Savard, C., Tartaglione, E.V., Kuver, R., Haigh, W.G., Farrell, G.C., Subramanian, S., Chait, A., Yeh, M.M., Quinn, L.S., and Ioannou, G.N. (2013). Synergistic interaction of dietary cholesterol and dietary fat in inducing experimental steatohepatitis. Hepatology 57, 81-92. Scanes, C.G., and Sturkie, P.D. (2015). Sturkie's avian physiology, 6th ed. / edited by Colin G. Scanes, Department of Biological Sciences, University of Wisconsin, Milwaukee, WI, USA. edn (London ;: Academic Press/Elsevier). Scheele, C.W. (1997). Pathological changes in metabolism of poultry related to increasing production levels. Vet Q 19, 127-130. Schneider, C.A., Rasband, W.S., and Eliceiri, K.W. (2012). NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9, 671-675. Shimizu, K., Miyamoto, I., Liu, J., Konishi, F., Kumamoto, S., and Kondo, R. (2009). Estrogen-like activity of ethanol extract of Ganoderma lucidum. J Wood Sci 55, 53-59. Shini, A., Shini, S., and Bryden, W.L. (2019). Fatty liver haemorrhagic syndrome occurrence in laying hens: impact of production system. Avian Pathol 48, 25-34. Shini, S., Shini, A., and Bryden, W.L. (2020). Unravelling fatty liver haemorrhagic syndrome: 1. Oestrogen and inflammation. Avian Pathol 49, 87-98. Sinanoglou, V.J., Strati, I.F., and Miniadis-Meimaroglou, S. (2011). Lipid, fatty acid and carotenoid content of edible egg yolks from avian species: A comparative study. Food Chemistry 124, 971-977. Song, Z., Xiaoli, A.M., and Yang, F. (2018). Regulation and Metabolic Significance of De Novo Lipogenesis in Adipose Tissues. Nutrients 10. Spooner, M.H., and Jump, D.B. (2019). Omega-3 fatty acids and nonalcoholic fatty liver disease in adults and children: where do we stand? Curr Opin Clin Nutr Metab Care 22, 103-110. Squires, E.J., and Leeson, S. (1988). Aetiology of fatty liver syndrome in laying hens. Br Vet J 144, 602-609. Tabas, I. (2002). Consequences of cellular cholesterol accumulation: basic concepts and physiological implications. J Clin Invest 110, 905-911. Takeshita, Y., Takamura, T., Honda, M., Kita, Y., Zen, Y., Kato, K., Misu, H., Ota, T., Nakamura, M., Yamada, K., et al. (2014). The effects of ezetimibe on non-alcoholic fatty liver disease and glucose metabolism: a randomised controlled trial. Diabetologia 57, 878-890. Thomson, A.E., Gentry, P.A., and Squires, E.J. (2003). Comparison of the coagulation profile of fatty liver haemorrhagic syndrome-susceptible laying hens and normal laying hens. Br Poult Sci 44, 626-633. Trott, K.A., Giannitti, F., Rimoldi, G., Hill, A., Woods, L., Barr, B., Anderson, M., and Mete, A. (2014). Fatty liver hemorrhagic syndrome in the backyard chicken: a retrospective histopathologic case series. Vet Pathol 51, 787-795. Tsai, M.T., Chen, Y.J., Chen, C.Y., Tsai, M.H., Han, C.L., Chen, Y.J., Mersmann, H.J., and Ding, S.T. (2017). Identification of Potential Plasma Biomarkers for Nonalcoholic Fatty Liver Disease by Integrating Transcriptomics and Proteomics in Laying Hens. J Nutr 147, 293-303. Turk, D.E. (1982). The anatomy of the avian digestive tract as related to feed utilization. Poult Sci 61, 1225-1244. Van Rooyen, D.M., Larter, C.Z., Haigh, W.G., Yeh, M.M., Ioannou, G., Kuver, R., Lee, S.P., Teoh, N.C., and Farrell, G.C. (2011). Hepatic free cholesterol accumulates in obese, diabetic mice and causes nonalcoholic steatohepatitis. Gastroenterology 141, 1393-1403, 1403 e1391-1395. Varin, E.M., Mulvihill, E.E., Beaudry, J.L., Pujadas, G., Fuchs, S., Tanti, J.F., Fazio, S., Kaur, K., Cao, X., Baggio, L.L., et al. (2019). Circulating Levels of Soluble Dipeptidyl Peptidase-4 Are Dissociated from Inflammation and Induced by Enzymatic DPP4 Inhibition. Cell Metab 29, 320-334 e325. Walzem, R.L., Hansen, R.J., Williams, D.L., and Hamilton, R.L. (1999). Estrogen induction of VLDLy assembly in egg-laying hens. J Nutr 129, 467S-472S. Walzem, R.L., Simon, C., Morishita, T., Lowenstine, L., and Hansen, R.J. (1993). Fatty liver hemorrhagic syndrome in hens overfed a purified diet. Selected enzyme activities and liver histology in relation to liver hemorrhage and reproductive performance. Poult Sci 72, 1479-1491. Wang, G., Zhao, J., Liu, J., Huang, Y., Zhong, J.J., and Tang, W. (2007). Enhancement of IL-2 and IFN-gamma expression and NK cells activity involved in the anti-tumor effect of ganoderic acid Me in vivo. Int Immunopharmacol 7, 864-870. Wang, W., Chen, Y., Bai, L., Zhao, S., Wang, R., Liu, B., Zhang, Y., Fan, J., and Liu, E. (2018). Transcriptomic analysis of the liver of cholesterol-fed rabbits reveals altered hepatic lipid metabolism and inflammatory response. Sci Rep 8, 6437. Wang, Y.M., Zhang, B., Xue, Y., Li, Z.J., Wang, J.F., Xue, C.H., and Yanagita, T. (2010). The mechanism of dietary cholesterol effects on lipids metabolism in rats. Lipids Health Dis 9, 4. Wolford, J.H., and Polin, D. (1972). Lipid accumulation and hemorrhage in livers of laying chickens. A study on fatty liver-hemorrhagic syndrome (FLHS). Poult Sci 51, 1707-1713. Wong, Y.Y., Moon, A., Duffin, R., Barthet-Barateig, A., Meijer, H.A., Clemens, M.J., and de Moor, C.H. (2010). Cordycepin inhibits protein synthesis and cell adhesion through effects on signal transduction. J Biol Chem 285, 2610-2621. Wu, C., Guo, Y., Su, Y., Zhang, X., Luan, H., Zhang, X., Zhu, H., He, H., Wang, X., Sun, G., et al. (2014a). Cordycepin activates AMP-activated protein kinase (AMPK) via interaction with the gamma1 subunit. J Cell Mol Med 18, 293-304. Wu, W.D., Hu, Z.M., Shang, M.J., Zhao, D.J., Zhang, C.W., Hong, D.F., and Huang, D.S. (2014b). Cordycepin down-regulates multiple drug resistant (MDR)/HIF-1alpha through regulating AMPK/mTORC1 signaling in GBC-SD gallbladder cancer cells. Int J Mol Sci 15, 12778-12790. Wu, Y.S., Ho, S.Y., Nan, F.H., and Chen, S.N. (2016). Ganoderma lucidum beta 1,3/1,6 glucan as an immunomodulator in inflammation induced by a high-cholesterol diet. BMC Complement Altern Med 16, 500. Xia, Q., Zhang, H., Sun, X., Zhao, H., Wu, L., Zhu, D., Yang, G., Shao, Y., Zhang, X., Mao, X., et al. (2014). A comprehensive review of the structure elucidation and biological activity of triterpenoids from Ganoderma spp. Molecules 19, 17478-17535. Xiao, C., Wu, Q., Zhang, J., Xie, Y., Cai, W., and Tan, J. (2017). Antidiabetic activity of Ganoderma lucidum polysaccharides F31 down-regulated hepatic glucose regulatory enzymes in diabetic mice. J Ethnopharmacol 196, 47-57. Xu, J.W., Ji, S.L., Li, H.J., Zhou, J.S., Duan, Y.Q., Dang, L.Z., and Mo, M.H. (2015). Increased polysaccharide production and biosynthetic gene expressions in a submerged culture of Ganoderma lucidum by the overexpression of the homologous alpha-phosphoglucomutase gene. Bioprocess Biosyst Eng 38, 399-405. Yang, F., Chen, G., Ma, M., Qiu, N., Zhu, L., and Li, J. (2018). Fatty acids modulate the expression levels of key proteins for cholesterol absorption in Caco-2 monolayer. Lipids Health Dis 17, 32. Yasutake, K., Nakamuta, M., Shima, Y., Ohyama, A., Masuda, K., Haruta, N., Fujino, T., Aoyagi, Y., Fukuizumi, K., Yoshimoto, T., et al. (2009). Nutritional investigation of non-obese patients with non-alcoholic fatty liver disease: the significance of dietary cholesterol. Scand J Gastroenterol 44, 471-477. Yu, S.H., Chen, S.Y., Li, W.S., Dubey, N.K., Chen, W.H., Chuu, J.J., Leu, S.J., and Deng, W.P. (2015). Hypoglycemic Activity through a Novel Combination of Fruiting Body and Mycelia of Cordyceps militaris in High-Fat Diet-Induced Type 2 Diabetes Mellitus Mice. J Diabetes Res 2015, 723190. Zaefarian, F., Abdollahi, M.R., Cowieson, A., and Ravindran, V. (2019). Avian Liver: The Forgotten Organ. Animals (Basel) 9. Zhang, J.W., Chen, D.W., Yu, B., and Wang, Y.M. (2011). Effect of dietary energy source on deposition and fatty acid synthesis in the liver of the laying hen. Br Poult Sci 52, 704-710. Zhang, X., Coker, O.O., Chu, E.S., Fu, K., Lau, H.C.H., Wang, Y.-X., Chan, A.W.H., Wei, H., Yang, X., Sung, J.J.Y., et al. (2021). Dietary cholesterol drives fatty liver-associated liver cancer by modulating gut microbiota and metabolites. Gut 70, 761-774. Zhang, Y., Liu, Z., Liu, R., Wang, J., Zheng, M., Li, Q., Cui, H., Zhao, G., and Wen, J. (2018). Alteration of Hepatic Gene Expression along with the Inherited Phenotype of Acquired Fatty Liver in Chicken. Genes (Basel) 9. Zhang, Y., Ma, K.L., Ruan, X.Z., and Liu, B.C. (2016). Dysregulation of the Low-Density Lipoprotein Receptor Pathway Is Involved in Lipid Disorder-Mediated Organ Injury. Int J Biol Sci 12, 569-579. Zhao, H., Lai, Q., Zhang, J., Huang, C., and Jia, L. (2018). Antioxidant and Hypoglycemic Effects of Acidic-Extractable Polysaccharides from Cordyceps militaris on Type 2 Diabetes Mice. Oxid Med Cell Longev 2018, 9150807. Zhong, D., Xie, Z., Huang, B., Zhu, S., Wang, G., Zhou, H., Lin, S., Lin, Z., and Yang, B. (2018). Ganoderma Lucidum Polysaccharide Peptide Alleviates Hepatoteatosis via Modulating Bile Acid Metabolism Dependent on FXR-SHP/FGF. Cell Physiol Biochem 49, 1163-1179. Zhou, Q., Zhang, Z., Wang, P., Zhang, B., Chen, C., Zhang, C., and Su, Y. (2019). EPA+DHA, but not ALA, Improved Lipids and Inflammation Status in Hypercholesterolemic Adults: A Randomized, Double-Blind, Placebo-Controlled Trial. Mol Nutr Food Res 63, e1801157. Zhou, X., Gong, Z., Su, Y., Lin, J., and Tang, K. (2009). Cordyceps fungi: natural products, pharmacological functions and developmental products. J Pharm Pharmacol 61, 279-291. Zhuang, Y., Xing, C., Cao, H., Zhang, C., Luo, J., Guo, X., and Hu, G. (2019). Insulin resistance and metabonomics analysis of fatty liver haemorrhagic syndrome in laying hens induced by a high-energy low-protein diet. Sci Rep 9, 10141.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82003-
dc.description.abstract"脂肪肝 (fatty liver) 為蛋雞進入產蛋高峰時,肝臟因脂質代謝異常,脂肪堆積增加,造成肝臟發炎甚至肝臟出血及破裂的現象,嚴重則使產蛋驟降,甚至死亡,進而造成農民經濟損失。家禽與人類之內源性脂質生成 (de novo lipogenesis) 皆主要位於肝臟,在人類中非酒精性脂肪肝疾病 (non-alcoholic fatty liver disease, NAFLD) 近年已成為人類最常見的肝臟疾病,病因為過多脂肪蓄積於肝臟且與代謝性疾病有高度相關性,如肥胖、糖尿病、高血脂等。因 NAFLD 與雞隻脂肪肝皆被認為因能量不平衡導致過多脂肪堆積於肝臟之中所引發之疾病,因此產蛋家禽被認為是良好的脂肪肝研究模式。靈芝及北蟲草為著名的藥用真菌,各具有多種有效成分,亦有許多研究團隊證實在齧齒類動物模式中其具調控葡萄糖代謝、降血脂、改善脂肪肝與免疫調節活性之功能。禽類與人類皆有 90% 以上脂質代謝於肝臟中,因此本試驗之目的為飼糧中添加靈芝及北蟲草,探討其對雞隻脂肪肝之影響,並更加了解雞隻脂肪肝之生理機制,同時以雞隻作為未來改善 NAFLD 之動物模式。 本試驗分為三部分,第一部分探討在飼糧中添加不同濃度之靈芝子實體是否能減緩肝臟中之脂質堆積,動物試驗一使用伊莎褐殼蛋母雞餵飼快速誘導脂肪肝飼糧 (高膽固醇低膽鹼組, CLC) 及 CLC 飼糧添加 0.25、0.5、0.75、1% 之靈芝子實體,共五組,餵飼期間為 6 週 (7-13 週齡)。結果顯示,飼糧中添加不同濃度之靈芝子實體並無抑制血中脂肪之效果,但添加 0.25%、0.75% 及 1% 靈芝子實體能有效抑制肝臟膽固醇含量。然而,因靈芝之細胞壁較為堅韌,雞隻採食無法有效吸收靈芝子實體内之有效物質,動物試驗二進一步探討飼糧中除添加靈芝子實體外,亦測試以酒精且熱水萃取後的靈芝 (EGL) 以及北蟲草評估其對於脂肪肝之影響。試驗使用伊莎褐殼蛋母雞試驗分組為:對照組、CLC及 CLC 飼糧添加 0.1、0.5、1% 之萃取靈芝 (EGL)、1% 之靈芝子實體及 1% 北蟲草,共七組,餵飼 6 週。實驗結果發現添加不同濃度靈芝子實體、靈芝萃取物及北蟲草對血脂無影響,但添加活性成分如 0.5% 靈芝萃取物及 1% 北蟲草具降低肝臟膽固醇含量趨勢。由於過去研究發現飼糧中添加 DHA 和 Betaine 四個月後能有效減緩 30 週齡蛋雞產蛋後自然發生之脂肪肝症狀,在最後一部份的試驗使用此兩組正對照組確認雞隻快速誘導脂肪肝模式是否能同樣達到減緩肝臟脂質累積之效果,並再次評估萃取後的靈芝對肝臟中脂質含量之影響。動物試驗三使用伊莎褐殼蛋母雞,組別分組為:對照組、CLC 及 CLC 飼糧添加 DHA、Betaine、0.5、1% 之萃取靈芝 (EGL) 及 1% 北蟲草,共七組,餵飼 6 週。試驗結果顯示,在飼糧中添加 Betaine、DHA、0.5% EGL 及北蟲草具降低血中之三酸甘油酯之效果,但肝臟脂質含量則不受靈芝和北蟲草的影響。 綜上所述,在以年輕雞隻快速誘導脂肪肝模式進行添加物之評估後,發現靈芝及北蟲草具降低血脂之潛力,但對肝臟內脂質堆積之影響則仍不明確,未來將進一步探討其可能之有效成分,以了解其功效。"zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-25T05:33:55Z (GMT). No. of bitstreams: 1
U0001-1708202102182400.pdf: 3978549 bytes, checksum: 3c19e57645d0da41dc5341f5b0564089 (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents"致謝 I 中文摘要 III Abstract V 圖目錄 IX 表目錄 X 壹、 文獻探討 1 一、 經產家禽的脂肪肝病 1 1. 肝臟的重要性 1 2. 脂肪肝發現及症狀 1 3. 雞隻脂肪肝病發生原因 3 4. 雞隻肝臟脂質代謝與堆積途徑 4 5. 判斷禽體脂肪肝程度之方法診斷方式 8 二、 脂肪肝病 12 1. 非酒精性脂肪肝 12 2. 非酒精性脂肪肝病因與研究模式 13 三、 護肝物質 14 1. 靈芝 14 2. 北蟲草 17 貳、 研究方法及材料 19 一、 試驗設計 19 二、 雞隻飼養與管理 20 1. 動物試驗一、靈芝子實體添加於飼糧中對雞隻脂肪肝之影響 22 2. 動物試驗二、靈芝子實體、萃取靈芝及北蟲草添加於飼糧中對雞隻脂肪肝之影響 24 3. 動物試驗三、萃取靈芝子實體、北蟲草及DHA添加於飼糧中對雞隻脂肪肝之影響 26 三、 採樣處理 28 四、 生長性狀 28 五、 血液分析 28 六、 口服葡萄糖耐受性測驗 Oral glucose tolerance test, OGTT 29 七、 肝臟分析 29 1. 脂肪肝程度評分 29 2. 肝臟中總膽固醇與三酸甘油酯含量 29 八、 組織切片分析 30 1. 石蠟包埋、切片及蘇木素 - 伊紅染色 30 2. 冷凍切片及 Oil Red O 染色 30 九、 即時定量 PCR (real-time PCR) 分析 31 十、 統計分析 34 參、 試驗結果 35 一、 動物試驗一:飼糧中添加不同濃度靈芝子實體對雞隻脂肪肝之影響 35 1. 添加不同濃度靈芝子實體對雞隻生長表現之影響 35 2. 血漿中三酸甘油酯及膽固醇濃度 37 3. 額外添加不同濃度之靈芝子實體對雞隻肝臟脂肪堆積影響 38 4. 肝臟中脂肪肝生物標記、促發炎因子、脂質生合成及脂質氧化作用相關基因表現 43 二、 動物試驗二:飼糧中添加不同濃度靈芝子實體萃取物及北蟲草對雞隻脂肪肝之影響 45 1. 添加不同濃度靈芝及蟲草對於雞隻生長表現之影響 45 2. 血漿中三酸甘油酯及膽固醇濃度 47 3. 額外添加不同濃度之靈芝子實體、萃取物及蟲草對於雞隻肝臟脂肪堆積之影響 49 4. 肝臟中脂肪肝生物標記、促發炎因子、脂質生合成及脂質氧化作用相關基因表現 55 三、 動物試驗三:飼糧中添加萃取靈芝、北蟲草、Betaine 及 DHA 對雞隻脂肪肝之影響 57 1. 添加不同濃度靈芝及蟲草對於雞隻生長表現之影響 57 2. 血漿中三酸甘油酯及膽固醇濃度 59 3. 額外添加不同濃度之萃取靈芝及北蟲草對於雞隻血糖控制之效果 61 4. 額外添加不同濃度之萃取靈芝及北蟲草對於雞隻肝臟脂肪改善效果評估 63 5. 肝臟中脂肪肝生物標記、促發炎因子、脂質生合成及脂質氧化作用相關基因檢測結果 68 肆、 討論 72 伍、 結論 79 陸、 參考資料 80"
dc.language.isozh-TW
dc.subject蛋雞zh_TW
dc.subject血脂zh_TW
dc.subject靈芝zh_TW
dc.subject北蟲草zh_TW
dc.subject脂肪肝zh_TW
dc.subjectCordyceps militarisen
dc.subjectlipid profileen
dc.subjectchickenen
dc.subjectGanoderma lucidumen
dc.subjectfatty liveren
dc.title飼糧中添加靈芝子實體及北蟲草對雞隻脂肪肝之影響zh_TW
dc.titleEffect of dietary supplementation with Ganoderma lucidum fruiting body and Cordyceps militaris on fatty liver in chickensen
dc.date.schoolyear109-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳洵一(Hsin-Tsai Liu),林傳順(Chih-Yang Tseng),黃晁瑋
dc.subject.keyword脂肪肝,靈芝,北蟲草,蛋雞,血脂,zh_TW
dc.subject.keywordfatty liver,Ganoderma lucidum,Cordyceps militaris,chicken,lipid profile,en
dc.relation.page90
dc.identifier.doi10.6342/NTU202102418
dc.rights.note同意授權(限校園內公開)
dc.date.accepted2021-08-20
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept動物科學技術學研究所zh_TW
dc.date.embargo-lift2026-08-19-
顯示於系所單位:動物科學技術學系

文件中的檔案:
檔案 大小格式 
U0001-1708202102182400.pdf
  未授權公開取用
3.89 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved