請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81994完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林長平(Chan-Pin Lin) | |
| dc.contributor.author | Ying-Chi Huang | en |
| dc.contributor.author | 黃盈綺 | zh_TW |
| dc.date.accessioned | 2022-11-25T05:33:45Z | - |
| dc.date.available | 2026-08-18 | |
| dc.date.copyright | 2021-11-11 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-08-26 | |
| dc.identifier.citation | Axtell, M. J. (2013). Classification and comparison of small RNAs from plants. Annu Rev Plant Biol, 64, 137-159. doi:10.1146/annurev-arplant-050312-120043 Bai, X., Correa, V. R., Toruño, T. Y., Ammar, E.-D., Kamoun, S., Hogenhout, S. A. (2009). AY-WB Phytoplasma Secretes a Protein That Targets Plant Cell Nuclei.Molecular Plant-Microbe Interactions®, 22(1), 18-30. doi:10.1094/mpmi-22-1-0018 Bazzini, A. A., Lee, M. T., Giraldez, A. J. (2012). Ribosome profiling shows that miR-430 reduces translation before causing mRNA decay in zebrafish. Science, 336(6078), 233-237. doi:10.1126/science.1215704 Bertaccini, A., Duduk, B. (2010). Phytoplasma and phytoplasma diseases: a review of recent research. Phytopathologia Mediterranea, 48(3). doi:10.14601/Phytopathol_Mediterr-3300 Bi, H., Fei, Q., Li, R., Liu, B., Xia, R., Char, S. N., . . . Yang, B. (2020). Disruption of miRNA sequences by TALENs and CRISPR/Cas9 induces varied lengths of miRNA production. Plant Biotechnology Journal, 18(7), 1526-1536. doi:10.1111/pbi.13315 Cheng, H. P. (2018). Studies of phytoplasma PHYL1 induced anthocyanin accumulation in miRNA regulation and its interacting proteins. National Taiwan University. Clough, S. J., Bent, A. F. (1998). Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J, 16(6), 735-743. doi:10.1046/j.1365-313x.1998.00343.x Debernardi, J. M., Rodriguez, R. E., Mecchia, M. A., Palatnik, J. F. (2012). Functional Specialization of the Plant miR396 Regulatory Network through Distinct MicroRNA–Target Interactions. PLOS Genetics, 8(1), e1002419. doi:10.1371/journal.pgen.1002419 Djuranovic, S., Nahvi, A., Green, R. (2012). miRNA-mediated gene silencing by translational repression followed by mRNA deadenylation and decay. Science, 336(6078), 237-240. doi:10.1126/science.1215691 Grant-Downton, R., Kourmpetli, S., Hafidh, S., Khatab, H., Le Trionnaire, G., Dickinson, H., Twell, D. (2013). Artificial microRNAs reveal cell-specific differences in small RNA activity in pollen. Curr Biol, 23(14), R599-601. doi:10.1016/j.cub.2013.05.055 Gregis, V., Sessa, A., Colombo, L., Kater, M. M. (2008). AGAMOUS-LIKE24 and SHORT VEGETATIVE PHASE determine floral meristem identity in Arabidopsis. Plant J, 56(6), 891-902. doi:10.1111/j.1365-313X.2008.03648.x Hartmann, U., Höhmann, S., Nettesheim, K., Wisman, E., Saedler, H., Huijser, P. (2000). Molecular cloning of SVP: a negative regulator of the floral transition in Arabidopsis. Plant J, 21(4), 351-360. doi:10.1046/j.1365-313x.2000.00682.x Hogenhout, S. A., Oshima, K., Ammar el, D., Kakizawa, S., Kingdom, H. N., Namba, S. (2008). Phytoplasmas: bacteria that manipulate plants and insects. Mol Plant Pathol, 9(4), 403-423. doi:10.1111/j.1364-3703.2008.00472.x Hou, N., Cao, Y., Li, F., Yuan, W., Bian, H., Wang, J., . . . Han, N. (2019). Epigenetic regulation of miR396 expression by SWR1-C and the effect of miR396 on leaf growth and developmental phase transition in Arabidopsis. J Exp Bot, 70(19), 5217-5229. doi:10.1093/jxb/erz285 Jacobs, T. B., LaFayette, P. R., Schmitz, R. J., Parrott, W. A. (2015). Targeted genome modifications in soybean with CRISPR/Cas9. BMC Biotechnology, 15(1), 16. doi:10.1186/s12896-015-0131-2 Jang, S., Torti, S., Coupland, G. (2009). Genetic and spatial interactions between FT, TSF and SVP during the early stages of floral induction in Arabidopsis. Plant J, 60(4), 614-625. doi:10.1111/j.1365-313X.2009.03986.x Kidner, C. A., Martienssen, R. A. (2005). The developmental role of microRNA in plants. Curr Opin Plant Biol, 8(1), 38-44. doi:10.1016/j.pbi.2004.11.008 Kim, J. H., Choi, D., Kende, H. (2003). The AtGRF family of putative transcription factors is involved in leaf and cotyledon growth in Arabidopsis. Plant J, 36(1), 94-104. doi:10.1046/j.1365-313x.2003.01862.x Kirdat, K., Tiwarekar, B., Thorat, V., Sathe, S., Shouche, Y., Yadav, A. (2021). 'Candidatus Phytoplasma sacchari, a novel taxon - associated with Sugarcane Grassy Shoot (SCGS) disease. International Journal of Systematic and Evolutionary Microbiology, 71(1). doi:10.1099/ijsem.0.004591 Krol, J., Loedige, I., Filipowicz, W. (2010). The widespread regulation of microRNA biogenesis, function and decay. Nature Reviews Genetics, 11(9), 597-610. doi:10.1038/nrg2843 LEE, I.-M., GUNDERSEN-RINDAL, D. E., DAVIS, R. E., BARTOSZYK, I. M. (1998). Revised Classification Scheme of Phytoplasmas based on RFLP Analyses of 16S rRNA and Ribosomal Protein Gene Sequences. International Journal of Systematic and Evolutionary Microbiology, 48(4), 1153-1169. doi:10.1099/00207713-48-4-1153 Lee, I. M., Davis, R. E., Gundersen-Rindal, D. E. (2000). Phytoplasma: phytopathogenic mollicutes. Annu Rev Microbiol, 54, 221-255. doi:10.1146/annurev.micro.54.1.221 Lee, J. H., Yoo, S. J., Park, S. H., Hwang, I., Lee, J. S., Ahn, J. H. (2007). Role of SVP in the control of flowering time by ambient temperature in Arabidopsis. Genes Dev, 21(4), 397-402. doi:10.1101/gad.1518407 Li, D., Liu, C., Shen, L., Wu, Y., Chen, H., Robertson, M., . . . Yu, H. (2008). A repressor complex governs the integration of flowering signals in Arabidopsis. Dev Cell, 15(1), 110-120. doi:10.1016/j.devcel.2008.05.002 Li, S., Liu, L., Zhuang, X., Yu, Y., Liu, X., Cui, X., . . . Chen, X. (2013). MicroRNAs Inhibit the Translation of Target mRNAs on the Endoplasmic Reticulum in <em>Arabidopsis</em>. Cell, 153(3), 562-574. doi:10.1016/j.cell.2013.04.005 Li, Y., Li, X., Yang, J., He, Y. (2020). Natural antisense transcripts of MIR398 genes suppress microR398 processing and attenuate plant thermotolerance. Nature Communications, 11(1), 5351. doi:10.1038/s41467-020-19186-x Lin, S.-S., Wu, H.-W., Elena, S. F., Chen, K.-C., Niu, Q.-W., Yeh, S.-D., . . . Chua, N.-H. (2009). Molecular Evolution of a Viral Non-Coding Sequence under the Selective Pressure of amiRNA-Mediated Silencing. PLOS Pathogens, 5(2), e1000312. doi:10.1371/journal.ppat.1000312 Liu, D., Song, Y., Chen, Z., Yu, D. (2009). Ectopic expression of miR396 suppresses GRF target gene expression and alters leaf growth in Arabidopsis. Physiol Plant, 136(2), 223-236. doi:10.1111/j.1399-3054.2009.01229.x Liu, L. Y., Tseng, H. I., Lin, C. P., Lin, Y. Y., Huang, Y. H., Huang, C. K., . . . Lin, S. S. (2014). High-throughput transcriptome analysis of the leafy flower transition of Catharanthus roseus induced by peanut witches'-broom phytoplasma infection. Plant Cell Physiol, 55(5), 942-957. doi:10.1093/pcp/pcu029 MacLean, A. M., Orlovskis, Z., Kowitwanich, K., Zdziarska, A. M., Angenent, G. C., Immink, R. G. H., Hogenhout, S. A. (2014). Phytoplasma Effector SAP54 Hijacks Plant Reproduction by Degrading MADS-box Proteins and Promotes Insect Colonization in a RAD23-Dependent Manner. PLOS Biology, 12(4), e1001835. doi:10.1371/journal.pbio.1001835 MacLean, A. M., Sugio, A., Makarova, O. V., Findlay, K. C., Grieve, V. M., Toth, R., . . . Hogenhout, S. A. (2011). Phytoplasma effector SAP54 induces indeterminate leaf-like flower development in Arabidopsis plants. Plant Physiol, 157(2), 831-841. doi:10.1104/pp.111.181586 Maejima, K., Iwai, R., Himeno, M., Komatsu, K., Kitazawa, Y., Fujita, N., . . . Namba, S. (2014). Recognition of floral homeotic MADS domain transcription factors by a phytoplasmal effector, phyllogen, induces phyllody. The Plant Journal, 78(4), 541-554. doi:10.1111/tpj.12495 Naderali, N., Nejat, N., Vadamalai, G., Davis, R. E., Wei, W., Harrison, N. A., . . . Zhao, Y. (2017). ‘Candidatus Phytoplasma wodyetiae’, a new taxon associated with yellow decline disease of foxtail palm (Wodyetia bifurcata) in Malaysia. International Journal of Systematic and Evolutionary Microbiology, 67(10), 3765-3772. doi:10.1099/ijsem.0.002187 Papp, I., Mette, M. F., Aufsatz, W., Daxinger, L., Schauer, S. E., Ray, A., . . . Matzke, A. J. (2003). Evidence for nuclear processing of plant micro RNA and short interfering RNA precursors. Plant Physiol, 132(3), 1382-1390. doi:10.1104/pp.103.021980 Reinhart, B. J., Weinstein, E. G., Rhoades, M. W., Bartel, B., Bartel, D. P. (2002). MicroRNAs in plants. Genes Dev, 16(13), 1616-1626. doi:10.1101/gad.1004402 Rodrigues Jardim, B., Kinoti, W. M., Tran-Nguyen, L. T. T., Gambley, C., Rodoni, B., Constable, F. E. (2021). ‘Candidatus Phytoplasma stylosanthis’, a novel taxon with a diverse host range in Australia, characterised using multilocus sequence analysis of 16S rRNA, secA, tuf, and rp genes. International Journal of Systematic and Evolutionary Microbiology, 71(1). doi:10.1099/ijsem.0.004589 Šafárˇová, D., Zemánek, T., Válová, P., Navrátil, M. (2016). ‘Candidatus Phytoplasma cirsii’, a novel taxon from creeping thistle [Cirsium arvense (L.) Scop.]. International Journal of Systematic and Evolutionary Microbiology, 66(4), 1745-1753. doi:10.1099/ijsem.0.000937 Seemüller, E., Marcone, C., Lauer, U., Ragozzino, A., Göschl, M. (1998). Current status of molecular classification of the phytoplasmas. Journal of Plant Pathology, 3-26. Sugio, A., MacLean, A. M., Kingdom, H. N., Grieve, V. M., Manimekalai, R., Hogenhout, S. A. (2011). Diverse targets of phytoplasma effectors: from plant development to defense against insects. Annu Rev Phytopathol, 49, 175-195. doi:10.1146/annurev-phyto-072910-095323 The IRPCM Phytoplasma/Spiroplasma Working Team Phytoplasma taxonomy group., T. I. (2004). ‘Candidatus Phytoplasma’, a taxon for the wall-less, non-helical prokaryotes that colonize plant phloem and insects. International Journal of Systematic and Evolutionary Microbiology, 54(4), 1243-1255. doi:10.1099/ijs.0.02854-0 Trevaskis, B., Tadege, M., Hemming, M. N., Peacock, W. J., Dennis, E. S., Sheldon, C. (2007). Short vegetative phase-like MADS-box genes inhibit floral meristem identity in barley. Plant Physiol, 143(1), 225-235. doi:10.1104/pp.106.090860 Voinnet, O. (2009). Origin, biogenesis, and activity of plant microRNAs. Cell, 136(4), 669-687. doi:10.1016/j.cell.2009.01.046 Wang, Z. P., Xing, H. L., Dong, L., Zhang, H. Y., Han, C. Y., Wang, X. C., Chen, Q. J. (2015). Egg cell-specific promoter-controlled CRISPR/Cas9 efficiently generates homozygous mutants for multiple target genes in Arabidopsis in a single generation. Genome Biol, 16(1), 144. doi:10.1186/s13059-015-0715-0 Wei, W., Cai, H., Jiang, Y., Lee, I. M., Davis, R. E., Ding, Y., . . . Zhao, Y. (2011). A new phytoplasma associated with little leaf disease in azalea: multilocus sequence characterization reveals a distinct lineage within the aster yellows phytoplasma group. Annals of Applied Biology, 158(3), 318-330. Wei, W., Davis, R. E., Lee, M., Zhao, Y. (2007). Computer-simulated RFLP analysis of 16S rRNA genes: identification of ten new phytoplasma groups. International Journal of Systematic and Evolutionary Microbiology, 57(8), 1855-1867. Wei, W., Trivellone, V., Dietrich, C. H., Zhao, Y., Bottner-Parker, K. D., Ivanauskas, A. (2021). Identification of Phytoplasmas Representing Multiple New Genetic Lineages from Phloem-Feeding Leafhoppers Highlights the Diversity of Phytoplasmas and Their Potential Vectors. Pathogens, 10(3). doi:10.3390/pathogens10030352 Wierzbicki, A. T., Cocklin, R., Mayampurath, A., Lister, R., Rowley, M. J., Gregory, B. D., . . . Pikaard, C. S. (2012). Spatial and functional relationships among Pol V-associated loci, Pol IV-dependent siRNAs, and cytosine methylation in the Arabidopsis epigenome. Genes Dev, 26(16), 1825-1836. doi:10.1101/gad.197772.112 Wu, R. M., Walton, E. F., Richardson, A. C., Wood, M., Hellens, R. P., Varkonyi-Gasic, E. (2012). Conservation and divergence of four kiwifruit SVP-like MADS-box genes suggest distinct roles in kiwifruit bud dormancy and flowering. J Exp Bot, 63(2), 797-807. doi:10.1093/jxb/err304 Yang, C. Y., Huang, Y. H., Lin, C. P., Lin, Y. Y., Hsu, H. C., Wang, C. N., . . . Lin, S. S. (2015). MicroRNA396-Targeted SHORT VEGETATIVE PHASE Is Required to Repress Flowering and Is Related to the Development of Abnormal Flower Symptoms by the Phyllody Symptoms1 Effector. Plant Physiol, 168(4), 1702-1716. doi:10.1104/pp.15.00307 Zhao, Y., Wei, W., Davis, R. E., Lee, I.-M., Bottner-Parker, K. D. (2021). The agent associated with blue dwarf disease in wheat represents a new phytoplasma taxon, ‘Candidatus Phytoplasma tritici’. International Journal of Systematic and Evolutionary Microbiology, 71(1). doi:10.1099/ijsem.0.004604 Zhao, Y., Wei, W., Lee, M., Shao, J., Suo, X., Davis, R. E. (2009). Construction of an interactive online phytoplasma classification tool, iPhyClassifier, and its application in analysis of the peach X-disease phytoplasma group (16SrIII). International Journal of Systematic and Evolutionary Microbiology, 59(Pt 10), 2582. Zhao, Y., Zhang, C., Liu, W., Gao, W., Liu, C., Song, G., . . . Xie, C. (2016). An alternative strategy for targeted gene replacement in plants using a dual-sgRNA/Cas9 design. Scientific Reports, 6(1), 23890. doi:10.1038/srep23890 Zhou, J., Deng, K., Cheng, Y., Zhong, Z., Tian, L., Tang, X., . . . Zhang, Y. (2017). CRISPR-Cas9 Based Genome Editing Reveals New Insights into MicroRNA Function and Regulation in Rice. Frontiers in Plant Science, 8(1598). doi:10.3389/fpls.2017.01598 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81994 | - |
| dc.description.abstract | Phyllody symptoms1 (PHYL1) 是花生簇葉菌質體中主要造成花器葉化的效應子。在先前研究顯示,PHYL1 效應子能夠抑制 microRNA396 (miR396) 的表現,因 miR396 的表現量減少,進而使其目標基因 SHORT VEGETATIVE PHASE (SVP) 調控不當。SVP 為負調控開花之重要調節基因,因為 SVP 受到miR396 表現量下降的影響,無法受到妥善的調控,造成 SVP 表現過量,導致葉狀花之形成。但 PHYL1 是如何調控 MIR396 基因表現?PHYL1 效應子如何與寄主因子之相互作用導致之病徵發展?這些機制尚不明確。其中,SVP 受 miR396 調控的機制在降解組的定序資料中顯示,miR396 並非經由 mRNA 剪切方式來調控 SVP。是否是經由轉譯抑制或其他方式來調控 SVP的表現,並無文獻報導。在阿拉伯芥中,miR396 具有兩種同功型 (miR396a及miR396b),目前兩種同功型調控 SVP 的貢獻度尚不明確,也沒有證據直接證明 miR396 會影響 SVP 之蛋白表現。PHYL1、SVP 和 miR396 之間的關係仍然有很多尚未解惑的問題,因此,我們利用 CRISPR/Cas9 系統在阿拉伯芥中建構了 miR396a 及 miR396b 之單突變株及雙突變株。本研究也生產出 SVP Keratin-like domain (SVP_K) 之特異性抗體,以確認在不同突變株中之 SVP 蛋白表現量。目前我們已經獲得 miR396 純合子之單突變株及雙突變株,且 α-SVP 特異性抗體可以測得 SVP 蛋白。後續研究中,我們也在菸草中暫時性表現野生型及突變之 SVP,並以 real-time RT-PCR 及西方墨點法比較有無外加 miR396 處理之 SVP 表現量。結果顯示,突變型的 SVP mRNA 加入 miR396 後,有較低的 SVP 蛋白表現,但其 RNA 表現量卻無明顯下降。顯示,miR396 對於調控 SVP 之蛋白是具有影響力並與先前推測藉由轉譯抑制調控有相符之處。期望本研究可以幫助未來對於 miR396、SVP 及 PHYL1 之關係能有更深入之了解。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-25T05:33:45Z (GMT). No. of bitstreams: 1 U0001-2508202109534400.pdf: 2517290 bytes, checksum: 8bd2e033f129cfbb9683cdb8117f5155 (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | 口試委員審定書 I 謝辭 II 中文摘要 IV Abstract VI Contents VIII List of Tables X List of Figures XI Introduction 1 Materials and Methods 8 Plant materials and growth conditions 8 MIR396a and MIR396b genes editing with CRISPR/Cas9 8 Genotyping 9 Prediction of pre-miR396 structure 9 Small RNA Detection 10 SVP antibody production 10 Western blotting 12 Protein degradation inhibiting assay 12 Real-time RT-PCR 13 Transient expression 13 Results 14 MIR396 genes knock out by CRISPR/Cas9 14 The miR396 precursor structures of mutants 15 Mutate MIR396a and MIR396b causing reduction of miR396 expression level 16 The mir396 mutants showed bigger leaf and long petiole phenotypes 17 Detection of endogenous SVP protein 17 Evaluation SVP and GRF1 gene expression in miR396 mutants 18 Demonstration of miR396-mediated SVP translation-inhibition 19 Discussion 22 CRISPR/Cas9 system can successfully generate miR396 mutants 22 SVP is an essential element in PHYL1-mediated leafy flower development 22 More mismatches on the target site can trigger miRNA-mediated translation inhibition 24 Working Hypothesis 26 Conclusions 27 References 28 | |
| dc.language.iso | en | |
| dc.subject | SHORT VEGETATIVE PHASE | zh_TW |
| dc.subject | CRISPR/Cas9 系統 | zh_TW |
| dc.subject | microRNA396 | zh_TW |
| dc.subject | 葉狀花 | zh_TW |
| dc.subject | 轉譯抑制 | zh_TW |
| dc.subject | translation inhibition | en |
| dc.subject | microRNA396 | en |
| dc.subject | SHORT VEGETATIVE PHASE | en |
| dc.subject | CRISPR/Cas9 | en |
| dc.subject | leafy flower | en |
| dc.title | 探討轉譯抑制對miRNA396a/b介導 SHORT VEGETATIVE PHASE (SVP)調控機制之影響 | zh_TW |
| dc.title | Investigation of the translation inhibition effects in miRNA396a/b-mediated SHORT VEGETATIVE PHASE (SVP) regulation | en |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 林詩舜(Shih-Shun Lin) | |
| dc.contributor.oralexamcommittee | 詹富智(Hsin-Tsai Liu),楊俊逸(Chih-Yang Tseng),郭志鴻 | |
| dc.subject.keyword | microRNA396,SHORT VEGETATIVE PHASE,CRISPR/Cas9 系統,葉狀花,轉譯抑制, | zh_TW |
| dc.subject.keyword | microRNA396,SHORT VEGETATIVE PHASE,CRISPR/Cas9,leafy flower,translation inhibition, | en |
| dc.relation.page | 46 | |
| dc.identifier.doi | 10.6342/NTU202102710 | |
| dc.rights.note | 同意授權(限校園內公開) | |
| dc.date.accepted | 2021-08-27 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 植物病理與微生物學研究所 | zh_TW |
| dc.date.embargo-lift | 2026-08-18 | - |
| 顯示於系所單位: | 植物病理與微生物學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2508202109534400.pdf 未授權公開取用 | 2.46 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
