Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 公共衛生學院
  3. 食品安全與健康研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81993
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳玟伶(Wen-Ling Chen)
dc.contributor.authorHsuan-Yu Taien
dc.contributor.author戴亘淯zh_TW
dc.date.accessioned2022-11-25T05:33:44Z-
dc.date.available2027-02-07
dc.date.copyright2022-02-21
dc.date.issued2022
dc.date.submitted2022-02-07
dc.identifier.citationAkoijam, R., Singh, B. (2014). Persistence and metabolism of imidacloprid in rice. Bull Environ Contam Toxicol, 92(5), 609-615. Albero, B., Tadeo, J. L., Perez, R. A. (2020). Determination of emerging contaminants in cereals by gas chromatography-tandem mass spectrometry. Front Chem, 8, 571668. Allen, D. R., McWhinney, B. C. (2019). Quadrupole time-of-flight mass spectrometry: a paradigm shift in toxicology screening applications. Clin Biochem Rev, 40(3), 135-146. Alonso, A., Marsal, S., Julia, A. (2015). Analytical methods in untargeted metabolomics: state of the art in 2015. Front Bioeng Biotechnol, 3, 23. Álvarez, M. A., Ruidíaz-Martínez, M., Cruz-Quesada, G., López-Ramón, M. V., Rivera-Utrilla, J., Sánchez-Polo, M., Mota, A. J. (2020). Removal of parabens from water by UV-driven advanced oxidation processes. Chemical Engineering Journal, 379, 122334. Antonelli, J., Claggett, B. L., Henglin, M., Kim, A., Ovsak, G., Kim, N., Deng, K., Rao, K., Tyagi, O., Watrous, J. D., Lagerborg, K. A., Hushcha, P. V., Demler, O. V., Mora, S., Niiranen, T. J., Pereira, A. C., Jain, M., Cheng, S. (2019). Statistical workflow for feature selection in human metabolomics data. Metabolites, 9(7), 143. Bagchi, T. B., Sharma, S., Chattopadhyay, K. (2016). Development of NIRS models to predict protein and amylose content of brown rice and proximate compositions of rice bran. Food Chem, 191, 21-27. Barnes, S., Benton, H. P., Casazza, K., Cooper, S. J., Cui, X., Du, X., Engler, J., Kabarowski, J. H., Li, S., Pathmasiri, W., Prasain, J. K., Renfrow, M. B., Tiwari, H. K. (2016). Training in metabolomics research. II. Processing and statistical analysis of metabolomics data, metabolite identification, pathway analysis, applications of metabolomics and its future. J Mass Spectrom, 51(8), 535-548. Blazenovic, I., Kind, T., Ji, J., Fiehn, O. (2018). Software tools and approaches for compound identification of LC-MS/MS data in metabolomics. Metabolites, 8(2), 31. Boberg, J., Johansson, H. K. L., Axelstad, M., Olsen, G. P. M., Johansen, M., Holmboe, S. A., Andersson, A. M., Svingen, T. (2020). Using assessment criteria for pesticides to evaluate the endocrine disrupting potential of non-pesticide chemicals: Case butylparaben. Environ Int, 144, 105996. Ch, R., Chevallier, O., McCarron, P., McGrath, T. F., Wu, D., Nguyen Doan Duy, L., Kapil, A. P., McBride, M., Elliott, C. T. (2021). Metabolomic fingerprinting of volatile organic compounds for the geographical discrimination of rice samples from China, Vietnam and India. Food Chem, 334, 127553. Chen, J., Le, X. C., Zhu, L. (2019). Metabolomics and transcriptomics reveal defense mechanism of rice (Oryza sativa) grains under stress of 2,2',4,4'-tetrabromodiphenyl ether. Environ Int, 133, 105154. Chiu, C. Y., Yeh, K. W., Lin, G., Chiang, M. H., Yang, S. C., Chao, W. J., Yao, T. C., Tsai, M. H., Hua, M. C., Liao, S. L., Lai, S. H., Cheng, M. L., Huang, J. L. (2016). Metabolomics reveals dynamic metabolic changes associated with age in early childhood. PLoS One, 11(2), e0149823. Chong, J., Wishart, D. S., Xia, J. (2019). Using MetaboAnalyst 4.0 for comprehensive and integrative metabolomics data analysis. Curr Protoc Bioinformatics, 68(1), e86. Chung, I. M., Park, S. K., Lee, K. J., An, M. J., Lee, J. H., Oh, Y. T., Kim, S. H. (2017). Authenticity testing of environment-friendly Korean rice (Oryza sativa L.) using carbon and nitrogen stable isotope ratio analysis. Food Chem, 234, 425-430. Crutchfield, C. A., Clarke, W. (2017). High resolution accurate mass (HRAM) mass spectrometry. In Mass Spectrometry for the Clinical Laboratory (p.247-259). Dunn, W. B., Bailey, N. J., Johnson, H. E. (2005). Measuring the metabolome: current analytical technologies. Analyst, 130(5), 606-625. Eliasson, M., Rännar, S., Trygg, J. (2011). From data processing to multivariate validation-essential steps in extracting interpretable information from metabolomics data. Curr Pharm Biotechnol, 12(7), 996-1004. European Commission, E.U. (2019). Analytical quality control and method validation procedures for pesticide residues analysis in food and feed. (SANTE/12682/2019). Retrieved from https://reurl.cc/EZD20K. European Union, E.U. (2002). Commission decision 2002/657/EC implementing council directive 96/23/EC concerning the performance of analytical methods and the interpretation of results. Official Journal of the European Communities. Retrieved from https://reurl.cc/NZDXMx. Gilbert, M. (2017). Aliphatic polyamides. In Brydson's Plastics Materials (p.487-511). Gorrochategui, E., Jaumot, J., Lacorte, S., Tauler, R. (2016). Data analysis strategies for targeted and untargeted LC-MS metabolomic studies: Overview and workflow. TrAC Trends in Analytical Chemistry, 82, 425-442. Guijas, C., Montenegro-Burke, J. R., Domingo-Almenara, X., Palermo, A., Warth, B., Hermann, G., Koellensperger, G., Huan, T., Uritboonthai, W., Aisporna, A. E., Wolan, D. W., Spilker, M. E., Benton, H. P., Siuzdak, G. (2018). METLIN: A technology platform for identifying knowns and unknowns. Anal Chem, 90(5), 3156-3164. Gomez-Perez, M. L., Romero-Gonzalez, R., Martinez Vidal, J. L., Frenich, A. G. (2015). Identification of transformation products of pesticides and veterinary drugs in food and related matrices: Use of retrospective analysis. J. Chromatogr. A, 1389, 133-138. He, Y., Nie, E., Li, C., Ye, Q., Wang, H. (2017). Uptake and subcellular distribution of triclosan in typical hydrophytes under hydroponic conditions. Environ Pollut, 220, 400-406. Hemavathy, J., Prabhakar, J. V. (1987). Lipid composition of rice (Oryza sativa L.) bran. Journal of the American Oil Chemists’ Society, 64(7), 1016-1019. Horai, H., Arita, M., Kanaya, S., Nihei, Y., Ikeda, T., Suwa, K., Ojima, Y., Tanaka, K., Tanaka, S., Aoshima, K., Oda, Y., Kakazu, Y., Kusano, M., Tohge, T., Matsuda, F., Sawada, Y., Hirai, M. Y., Nakanishi, H., Ikeda, K., Akimoto, N., Maoka, T., Takahashi, H., Ara, T., Sakurai, N., Suzuki, H., Shibata, D., Neumann, S., Iida, T., Tanaka, K., Funatsu, K., Matsuura, F., Soga, T., Taguchi, R., Saito, K., Nishioka, T. (2010). MassBank: a public repository for sharing mass spectral data for life sciences. J Mass Spectrom, 45(7), 703-714. International Atomic Energy Agency, I.A.E.A. (2015). The Fukushima Daiichi accident: technical volume 5/5 post-accident recovery. Retrieved from http://nora.nerc.ac.uk/id/eprint/511990/ Kaufmann, A. (2012). High mass resolution versus MS/MS. In TOF-MS within Food and Environmental Analysis - Comprehensive Analytical Chemistry (p.169-215). Kind, T., Tsugawa, H., Cajka, T., Ma, Y., Lai, Z., Mehta, S. S., Wohlgemuth, G., Barupal, D. K., Showalter, M. R., Arita, M., Fiehn, O. (2018). Identification of small molecules using accurate mass MS/MS search. Mass Spectrom Rev, 37(4), 513-532. Krasny, L., Huang, P. H. (2021). Data-independent acquisition mass spectrometry (DIA-MS) for proteomic applications in oncology. Mol Omics, 17(1), 29-42. Krauss, M., Singer, H., Hollender, J. (2010). LC-high resolution MS in environmental analysis: from target screening to the identification of unknowns. Anal Bioanal Chem, 397(3), 943-951. Lazar, A. G., Romanciuc, F., Socaciu, M. A., Socaciu, C. (2015). Bioinformatics tools for metabolomic data processing and analysis using untargeted liquid chromatography coupled with mass spectrometry. Bulletin of University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca. Animal Science and Biotechnologies, 72(2), 103-115. Lazzeroni, L. C., Lu, Y., Belitskaya-Levy, I. (2016). Solutions for quantifying P-value uncertainty and replication power. Nat Methods, 13(2), 107-108. Levin, N. (2014). Multivariate statistics and the enactment of metabolic complexity. Soc Stud Sci, 44(4), 555-578. Liland, K. H. (2011). Multivariate methods in metabolomics – from pre-processing to dimension reduction and statistical analysis. TrAC Trends in Analytical Chemistry, 30(6), 827-841. Liu, H., Garrett, T. J., Su, Z., Khoo, C., Zhao, S., Gu, L. (2020). Modifications of the urinary metabolome in young women after cranberry juice consumption were revealed using the UHPLC-Q-orbitrap-HRMS-based metabolomics approach. Food Funct, 11(3), 2466-2476. Liu, L., Waters, D. L., Rose, T. J., Bao, J., King, G. J. (2013). Phospholipids in rice: significance in grain quality and health benefits: a review. Food Chem, 139(1-4), 1133-1145. Liu, L., Wu, Q., Miao, X., Fan, T., Meng, Z., Chen, X., Zhu, W. (2021). Study on toxicity effects of environmental pollutants based on metabolomics: A review. Chemosphere, 286, 131815. Liu, S., Liu, N., Lu, H., Zhu, L. (2021). Disturbed phospholipid metabolism by three polycyclic aromatic hydrocarbons in Oryza sativa. Environ Pollut, 283, 117073. Liu, X., Zhou, L., Shi, X., Xu, G. (2019). New advances in analytical methods for mass spectrometry-based large-scale metabolomics study. TrAC Trends in Analytical Chemistry, 121, 115665. Mezaki, Y., Kato, S., Nishikawa, O., Takashima, I., Tsubokura, M., Minowa, H., Asakura, T., Matsuura, T., Senoo, H. (2019). Measurements of radiocesium in animals, plants and fungi in Svalbard after the Fukushima Daiichi nuclear power plant disaster. Heliyon, 5(12), e03051. Mie, A., Laursen, K. H., Aberg, K. M., Forshed, J., Lindahl, A., Thorup-Kristensen, K., Olsson, M., Knuthsen, P., Larsen, E. H., Husted, S. (2014). Discrimination of conventional and organic white cabbage from a long-term field trial study using untargeted LC-MS-based metabolomics. Anal Bioanal Chem, 406(12), 2885-2897. Minomo, K., Ohtsuka, N., Nojiri, K., Hosono, S., Kawamura, K. (2011). Polychlorinated dibenzo-p-dioxins, dibenzofurans, and dioxin-like polychlorinated biphenyls in rice straw smoke and their origins in Japan. Chemosphere, 84(7),950-956. Moco, S., Vervoort, J., Moco, S., Bino, R. J., De Vos, R. C. H., Bino, R. (2007). Metabolomics technologies and metabolite identification. TrAC Trends in Analytical Chemistry, 26(9), 855-866. Mahdavi, V., Farimani, M. M., Fathi, F., Ghassempour, A. (2015). A targeted metabolomics approach toward understanding metabolic variations in rice under pesticide stress. Anal Biochem, 478, 65-72. Nair, A. R. (2020). Vizag gas leak affects vegetable crops adding distress to farmers. Krishi Jagran. Retrieved from https://krishijagran.com/agriculture-world/vizag-gas-leak-affects-vegetable-crops-adding-distress-to-farmers/ Naito, S., Matsumoto, E., Shindoh, K., Nishimura, T. (2015). Effects of polishing, cooking, and storing on total arsenic and arsenic species concentrations in rice cultivated in Japan. Food Chem, 168, 294-301. Narukawa, T., Matsumoto, E., Nishimura, T., Hioki, A. (2014). Determination of sixteen elements and arsenic species in brown, polished and milled rice. Analytical Sciences, 30(2), 245-250. National Green Tribunal, N.G.T. (2020). Report of the Joint Monitoring Committee constituted by the Hon'ble NGT, Principal Bench, New Delhi as per order dated 08.05.2020 in the Matter of O.A. No.73 of 2020. Retrieved from https://reurl.cc/OkDXdA Oberacher, H. (2013). Applying tandem mass spectral libraries for solving the critical assessment of small molecule identification (CASMI) LC/MS challenge 2012. Metabolites, 3(2), 312-324. Ortmayr, K., Charwat, V., Kasper, C., Hann, S., Koellensperger, G. (2016). Uncertainty budgeting in fold change determination and implications for non-targeted metabolomics studies in model systems. Analyst, 142(1), 80-90. Pérez, S., Bertoft, E. (2010). The molecular structures of starch components and their contribution to the architecture of starch granules: A comprehensive review. Starch - Stärke, 62(8), 389-420. Pan, M., Wong, C. K., Chu, L. M. (2014). Distribution of antibiotics in wastewater-irrigated soils and their accumulation in vegetable crops in the Pearl River Delta, southern China. J Agric Food Chem, 62(46), 11062-11069. Petrovic, M., Barcelo, D. (2006). Application of liquid chromatography/quadrupole time-of-flight mass spectrometry (LC-QqTOF-MS) in the environmental analysis. J Mass Spectrom, 41(10), 1259-1267. Pradhan, A. K., Shandilya, Z. M., Lahkar, L., Hasnu, S., Kalita, J., Borgohain, D., Tanti, B. (2019). Comparative metabolomics approach towards understanding chemical variation in rice under abiotic stress. In Advances in Rice Research for Abiotic Stress Tolerance (p.537-550). Pretorius, C. J., Tugizimana, F., Steenkamp, P. A., Piater, L. A., Dubery, I. A. (2021). Metabolomics for biomarker discovery: Key signatory metabolic profiles for the identification and discrimination of oat cultivars. Metabolites, 11(3), 165. Qi, B., Fraser, T., Mugford, S., Dobson, G., Sayanova, O., Butler, J., Napier, J. A., Stobart, A. K., Lazarus, C. M. (2004). Production of very long chain polyunsaturated omega-3 and omega-6 fatty acids in plants. Nat Biotechnol, 22(6), 739-745. Qi, J., Li, J., Han, X., Li, R., Wu, J., Yu, H., Hu, L., Xiao, Y., Lu, J., Lou, Y. (2016). Jasmonic acid carboxyl methyltransferase regulates development and herbivory-induced defense response in rice. J Integr Plant Biol, 58(6), 564-576. Rajalahti, T., Arneberg, R., Berven, F. S., Myhr, K.-M., Ulvik, R. J., Kvalheim, O. M. (2009). Biomarker discovery in mass spectral profiles by means of selectivity ratio plot. Chemometrics and Intelligent Laboratory Systems, 95(1), 35-48. Ramaiah, M. J., Tangutur, A. D., Manyam, R. R. (2021). Epigenetic modulation and understanding of HDAC inhibitors in cancer therapy. Life Sci, 277, 119504. Ranjitha, H. P., Gowda, R., Nethra, N., Amruta, N., Kandikattu, H. K. (2019). Biochemical and metabolomics on rice cultivars. Rice Science, 26(3), 189-194. Reisdorph, N. A., Walmsley, S., Reisdorph, R. (2019). A perspective and framework for developing sample type specific databases for LC/MS-based clinical metabolomics. Metabolites, 10(1), 8. Seike, N., Otani, T., Ueji, M., Takasuga, T. (2003). Temporal change of polychlorinated dibenzo-p-dioxins, dibenzofurans and dioxin like polychlorinated biphenyls source in paddy soils. Journal of Environmental Chemistry, 13(1), 117-131. Schymanski, E. L., Jeon, J., Gulde, R., Fenner, K., Ruff, M., Singer, H. P., Hollender, J. (2014). Identifying small molecules via high resolution mass spectrometry: communicating confidence. Environ Sci Technol, 48(4), 2097-2098. Thaler, J. S., Farag, M. A., Paré, P. W., Dicke, M. (2002). Jasmonate-deficient plants have reduced direct and indirect defences against herbivores. Ecology Letters, 5(6), 764-774. Triba, M. N., Le Moyec, L., Amathieu, R., Goossens, C., Bouchemal, N., Nahon, P., Rutledge, D. N., Savarin, P. (2015). PLS/OPLS models in metabolomics: the impact of permutation of dataset rows on the K-fold cross-validation quality parameters. Mol Biosyst, 11(1), 13-19. Uawisetwathana, U., Karoonuthaisiri, N. (2019). Metabolomics for rice quality and traceability: feasibility and future aspects. Current Opinion in Food Science, 28, 58-66. Uegaki, R., Seike, N., Otani, T. (2006). Polychlorinated dibenzo-p-dioxins, dibenzofurans, and dioxin-like polychlorinated biphenyls in rice plants: possible contaminated pathways. Chemosphere, 65(9), 1537-1543. United Nations Office for Disaster Risk Reduction, U.N.D.R.R. (2021). Terminology of disaster. Retrieved from https://www.undrr.org/terminology/disaster Venable, J. D., Dong, M. Q., Wohlschlegel, J., Dillin, A., Yates, J. R. (2004). Automated approach for quantitative analysis of complex peptide mixtures from tandem mass spectra. Nat Methods, 1(1), 39-45. Viant, M. R., Kurland, I. J., Jones, M. R., Dunn, W. B. (2017). How close are we to complete annotation of metabolomes? Curr Opin Chem Biol, 36, 64-69. Vinzi, V. E., Chin, W. W., Henseler, J., Wang, H. (2010). Handbook of Partial Least Squares. Springer. Williams, P. N., Villada, A., Deacon, C., Raab, A., Figuerola, J., Green, A. J., Feldmann, J., Meharg, A. A. (2007). Greatly enhanced arsenic shoot assimilation in rice leads to elevated grain levels compared to wheat and barley. Environ Sci Technol, 41(19), 6854-6859. Wang, R., Yin, Y., Zhu, Z. J. (2019). Advancing untargeted metabolomics using data-independent acquisition mass spectrometry technology. Anal Bioanal Chem, 411(19), 4349-4357. Wasternack, C., Hause, B. (2013). Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in Annals of Botany. Ann Bot, 111(6), 1021-1058. Westerhuis, J. A., Hoefsloot, H. C. J., Smit, S., Vis, D. J., Smilde, A. K., van Velzen, E. J. J., van Duijnhoven, J. P. M., van Dorsten, F. A. (2008). Assessment of PLSDA cross validation. Metabolomics, 4(1), 81-89. Wiklund, S. (2008). Multivariate data analysis for omics. UMETRICS. Retrieved from https://scilifelab.github.io/courses/rnaseq/1711/slides/MVA.pdf Wiklund, S., Johansson, E., Sjöström, L., Mellerowicz, E. J., Edlund, U., Shockcor, J. P., Gottfries, J., Moritz, T., Trygg, J. (2008). Visualization of GC/TOF-MS-based metabolomics data for identification of biochemically interesting compounds using OPLS class models. Anal Chem, 80(1), 115-122. Wishart, D. S., Feunang, Y. D., Marcu, A., Guo, A. C., Liang, K., Vazquez-Fresno, R., Sajed, T., Johnson, D., Li, C., Karu, N., Sayeeda, Z., Lo, E., Assempour, N., Berjanskii, M., Singhal, S., Arndt, D., Liang, Y., Badran, H., Grant, J., Serra-Cayuela, A., Liu, Y., Mandal, R., Neveu, V., Pon, A., Knox, C., Wilson, M., Manach, C., Scalbert, A. (2018). HMDB 4.0: the human metabolome database for 2018. Nucleic Acids Res, 46(D1), D608-D617. Worley, B., Powers, R. (2013). Multivariate analysis in metabolomics Current Metabolomics, 1(1), 92-107. Wu, X., Liu, Y., Yin, S., Xiao, K., Xiong, Q., Bian, S., Liang, S., Hou, H., Hu, J., Yang, J. (2020). Metabolomics revealing the response of rice (Oryza sativa L.) exposed to polystyrene microplastics. Environ Pollut, 266, 115159. Xiao, R., Ma, Y., Zhang, D., Qian, L. (2018). Discrimination of conventional and organic rice using untargeted LC-MS-based metabolomics. Journal of Cereal Science, 82, 73-81. Xu, L., Xu, Z., Strashnov, I., Liao, X. (2020). Use of information dependent acquisition mass spectra and sequential window acquisition of all theoretical fragment-ion mass spectra for fruit juices metabolomics and authentication. Metabolomics, 16(7), 81. Yu, H., Xing, S., Nierves, L., Lange, P. F., Huan, T. (2020). Fold-change compression: An unexplored but correctable quantitative bias caused by nonlinear electrospray ionization responses in untargeted metabolomics. Anal Chem, 92(10), 7011-7019. Yu, T., Park, Y., Li, S., Jones, D. P. (2013). Hybrid feature detection and information accumulation using high-resolution LC-MS metabolomics data. J Proteome Res, 12(3), 1419-1427. Zeng, T., Fang, B., Huang, F., Dai, L., Tang, Z., Tian, J., Cao, G., Meng, X., Liu, Y., Lei, B., Lu, M., Cai, Z. (2021). Mass spectrometry-based metabolomics investigation on two different indica rice grains (Oryza sativa L.) under cadmium stress. Food Chem, 343, 128472. Zhang, D., Duan, X., Shang, B., Hong, Y., Sun, H. (2021). Analysis of lipidomics profile of rice and changes during storage by UPLC-Q-extractive orbitrap mass spectrometry. Food Res Int, 142, 110214. Zhou, J., Li, Y., Chen, X., Zhong, L., Yin, Y. (2017). Development of data-independent acquisition workflows for metabolomic analysis on a quadrupole-orbitrap platform. Talanta, 164, 128-136. 王幼玲、蔡崇義(2019年4月)。台塑雲林麥寮六輕台化芳香烴三廠氣爆案調查報告(調查案號:109財調0018)。監察院。 張朝欣(2019年5月2日)。六輕氣爆民宅毀損,土木技師會勘協助求償。中時新聞網。檢自https://www.chinatimes.com/realtimenews/20190502003869-260405?chdtv 劉怡馨(2019年4月11日)。六輕爆炸》周遭文蛤虱目魚紛傳暴斃災情,天災或六輕惹禍?待調查。上下游 News Market。檢自https://www.newsmarket.com.tw/blog/118834/ 台塑企業(2020年9月)。六輕計畫與經濟發展—奠基臺灣、放眼全球的產業升級計畫。檢自http://www.fpcc.com.tw/tw/about/no6 廖哲強、陳永森、張長義(2019)。自然的社會建構—麥寮六輕環境議題研究。環境與世界,33,87-111。 台塑企業(2021年3月22日)。六輕相關計畫環境影響評估審查結論執行監督委員會第八十二次委員會報告資料。檢自https://www.epa.gov.tw/Page/1D9EC74E0AEC0B1D 長春關係企業(2021年3月)。六輕相關開發計畫環境影響評估審查結論監督委員會第八十二次委員會議報告資料。檢自https://www.epa.gov.tw/Page/1D9EC74E0AEC0B1D 陳永祥、李復甸、馬秀如(2013年1月)。臺塑六輕工安事故糾正案文(調查案號:102財正0003)。監察院。 杜文苓、施佳良、蔡宛儒(2014)。傳統農業縣的石化課題:檢視六輕環境爭議與治理困境。台灣土地研究,17(1),59-90。 雲林縣政府(2017)。六輕大事紀。檢自https://planning.yunlin.gov.tw/cp.aspx?n=1141 施佳良、杜文苓(2017)。環境管制行政的科學技術框架與決策僵局:六輕工安事件環評過程析論。公共行政學報,52,81-111。 行政院環境保護署(2012)。「台塑石化股份有限公司麥寮一廠煉製二廠工安事件環境影響調查報告書」專案小組第3次審查會議紀錄。檢自https://eiadoc.epa.gov.tw/eiaweb/10.aspx?hcode=1000077A srctype=0 朱淑娟(2012年5月10日)。六輕大火對環境無害?環委:不是有沒有,是影響多少。環境資訊中心。檢自https://e-info.org.tw/node/76707 行政院農業委員會農糧署(2019)。臺灣地區稻作種植、收穫面積及產量。檢自https://agrstat.coa.gov.tw/sdweb/public/book/Book.aspx 孫岩章(2013)。環境污染與公害鑑定(第三版)。科技圖書股份有限公司。 徐世榮、蕭新煌(2006)。污染場址再利用政策之研究:美國與臺灣之比較。都市與計劃,33(2),143-167。 臺灣彰化地方法院(1981)。彰化地方法院70年度訴字第1105號民事判決,文件編號A_0004_0003_0001。收錄於臺灣法實證研究資料庫,法律文件資料庫。檢自http://itdels.digital.ntu.edu.tw/Item.php?ID=A_0004_0003_0001 行政院農業委員會農糧署(2020)。農耕土地面積年報。檢自https://agrstat.coa.gov.tw/sdweb/public/official/OfficialInformation.aspx 賴光隆(2009)。從舊種子研究室開啟我的水稻研究生涯。磯小屋米報,15,1-13。 陳麒仁(2015)。水稻葉綠素突變株之葉片代謝體分析。碩士論文,國立中興大學分子生物學研究所。 郭益全、蔡金川、蔣永正、王鐘和、張義璋與余志儒(2020)。稻生長與環境之精準管理。水稻精準農業(耕)體系之研究。25-52。 行政院農業委員會農業試驗所(2021)。水稻品種資訊系統。檢自台灣稻作資訊系統https://reurl.cc/73kMbQ 行政院農業委員會農糧署(2020)。109年第2期作優良水稻推廣品種種植面積推估表。檢自https://kmweb.coa.gov.tw/subject/subject.php?id=43047 行政院農業委員會農糧署(2019)。108年稻米農藥殘留檢驗結果。檢自https://www.afa.gov.tw/cht/index.php?code=list flag=detail ids=752 article_id=46818 衛生福利部食品藥物管理署(2019)。檢驗機構實驗室品質系統基本規範。檢自https://www.fda.gov.tw/TC/newsContent.aspx?cid=3 id=26937 衛生福利部食品藥物管理署(2020)。化粧品防腐劑成分名稱及使用限制表。檢自https://www.fda.gov.tw/TC/siteListContent.aspx?sid=10992 id=30804 衛生福利部食品藥物管理署(2021)。農藥殘留容許量標準。檢自https://consumer.fda.gov.tw/Law/PesticideList.aspx?nodeID=520 林宏謙(2021)。特殊性工業區空氣品質監測站對工安意外事件發生時空氣污染監控之效果評估:以六輕工業區為例。碩士論文,國立臺灣大學環境與職業健康科學研究所。
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81993-
dc.description.abstract"2019年4月位於雲林縣的六輕石油化學工業區因丁烷外洩,發生火災氣爆事件,濃煙擴散至雲林縣與彰化縣鄰近的農業生產區。本研究應用非目標分析法調查災後六輕周圍農地所生產的稻米中小分子化學輪廓(small-molecule profiles)隨時間與空間變化的趨勢,以探討化學災害對農業生產環境的影響。 本研究自火災發生後,於雲林縣與彰化縣共15處農地連續收集四個採收期的糙米樣本(n=28)。所有樣本經溶劑萃取與管柱淨化後,利用液相層析-四極桿/飛行時間質譜系統獲取小分子化合物(m/z 70−1,100)之分子離子與碎片離子資訊,並透過分子波峰提取步驟保留絕對高度≥1,000 counts的波峰。小分子波峰經過總面積標準化後,以偏最小平方判別法(partial least squares-discriminant analysis, PLS-DA)分析整體化合物時空分布趨勢,再篩選出相對濃度在組間具有顯著差異(p<0.05、|log2 (fold change)|>1.5且|p[corr]|>0.6、|p[1]|>5)的特徵化合物,最後透過比對化學資料庫之準確質量與碎片離子完成特徵化合物鑑定。 PLS-DA模式成功鑑別了不同採收期的水稻。在生長過程中直接遭遇化學災害(災後3個月採收)的稻米小分子化學輪廓與後續種植的稻米顯然不同(正離子模式R2=1.000、Q2=0.981;負離子模式R2=1.000、Q2=0.943)。將這批直接遭遇災害的樣本進一步進行空間分析,亦發現小分子化學輪廓在爆炸點15公里內外有所差異(正離子模式R2=0.983、Q2=0.402;負離子模式R2=0.951、Q2=0.286)。候選特徵化合物篩選結果,有83個化合物之相對量隨距離而改變。我們鑑定出其中18種特徵化合物,發現大多數為水稻的內生性物質,如脂肪酸、磷脂質、胺基酸等。化學災害可能啟動水稻防禦機制,影響次級代謝產物在稻米中的分布、以及稻米細胞與組織組成,繼而干擾水稻生長與環境適應能力。 本研究證實非目標分析方法適用於調查化學災害對農業環境的影響。歷時2年的研究成果顯示化學災害可能衝擊周圍農業環境、改變農作物小分子代謝與分布。應持續監測農業環境並建立背景資料,以利災害準備與應變。"zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-25T05:33:44Z (GMT). No. of bitstreams: 1
U0001-0702202200381500.pdf: 6762770 bytes, checksum: 7c5b442e381585a16def26506581067e (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents誌謝 I 中文摘要 II Abstract III 目 錄 V 圖目錄 VII 表目錄 XI 第一章 前言 1 1.1 研究背景與動機 1 1.2 六輕工業區歷年的化學災害事件 3 1.3 化學災害對農業環境之影響案例 5 1.4 臺灣水稻栽種現況 6 1.5 稻米的食品安全議題 6 1.6 代謝體學於稻米鑑別之應用 8 1.7 應用高解析質譜法執行非目標分析 9 1.8 非目標分析技術與流程 9 1.8.1 資料擷取 10 1.8.2 多變量分析 10 1.8.3 化合物鑑定 12 第二章 研究目的與研究流程 14 第三章 材料與方法 16 3.1 化學品、實驗器材與儀器設備 16 3.1.1 化學品 16 3.1.2 實驗器材 16 3.1.3 儀器設備 17 3.2 樣本採集與前處理 17 3.3 高解析質譜資料擷取 20 3.4 資料處理與分析 22 3.4.1 波峰提取 22 3.4.2 資料分析與變項篩選 25 3.5 小分子化合物鑑定 25 3.6 品質保證與品質管制 28 第四章 結果與討論 29 4.1 樣本採集結果 29 4.2 高解析質譜資料擷取結果 33 4.3 分析方法再現性 36 4.4 分子波峰提取結果 36 4.5 多變量分析 43 4.5.1 糙米中小分子化學輪廓的時間分布 43 4.5.2 糙米中小分子化學輪廓的空間分布 46 4.6 候選特徵化合物之篩選結果 50 4.7 特徵化合物鑑定結果 54 4.7.1 脂肪酸及其衍生物 59 4.7.2 其它有機酸及其衍生物 60 4.7.3 稻米中的污染物與殘留物 60 第五章 結論 73 參考文獻 74 附錄 88 附錄一、採樣農地與周圍環境示意圖 88 附錄二、實驗器材與儀器設備 90 附錄三、利用單變量與多變量分析方法篩選出的候選特徵化合物 92
dc.language.isozh-TW
dc.subject小分子化學輪廓zh_TW
dc.subject化學災害zh_TW
dc.subject高解析質譜法zh_TW
dc.subject非目標分析zh_TW
dc.subject農業環境zh_TW
dc.subjectagricultural environmenten
dc.subjecthigh-resolution mass spectrometryen
dc.subjectuntargeted analysisen
dc.subjectchemical disasteren
dc.subjectsmall-molecule profilesen
dc.title受化學災害事件衝擊的稻米中小分子有機物化學輪廓之時空變化趨勢研究zh_TW
dc.titleSpatial and temporal trends of the small-molecule profiles of rice impacted by a chemical disasteren
dc.date.schoolyear110-1
dc.description.degree碩士
dc.contributor.oralexamcommittee洪挺軒(Joe-Air Jiang),蔡孟勳(Yan-Fu Kuo),魏嘉徵,詹長權
dc.subject.keyword化學災害,農業環境,小分子化學輪廓,非目標分析,高解析質譜法,zh_TW
dc.subject.keywordchemical disaster,agricultural environment,small-molecule profiles,untargeted analysis,high-resolution mass spectrometry,en
dc.relation.page94
dc.identifier.doi10.6342/NTU202200314
dc.rights.note同意授權(限校園內公開)
dc.date.accepted2022-02-09
dc.contributor.author-college公共衛生學院zh_TW
dc.contributor.author-dept食品安全與健康研究所zh_TW
dc.date.embargo-lift2027-02-07-
顯示於系所單位:食品安全與健康研究所

文件中的檔案:
檔案 大小格式 
U0001-0702202200381500.pdf
  未授權公開取用
6.6 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved