Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物科技研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81987
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor劉嚞睿(Je-Ruei Liu)
dc.contributor.authorJie-Hong Songen
dc.contributor.author宋杰紘zh_TW
dc.date.accessioned2022-11-25T05:33:38Z-
dc.date.available2023-09-01
dc.date.copyright2021-11-12
dc.date.issued2021
dc.date.submitted2021-09-07
dc.identifier.citationAfshin, A., Forouzanfar, M.H., Reitsma, M.B., Sur, P., Estep, K., Lee, A., Marczak, L., Mokdad, A.H., Moradi-Lakeh, M., Naghavi, M., Salama, J.S., Vos, T., Abate, K.H., Abbafati, C., Ahmed, M.B., Al-Aly, Z., Alkerwi, A., Al-Raddadi, R., Amare, A.T., Amberbir, A., Amegah, A.K., Amini, E., Amrock, S.M., Anjana, R.M., Ärnlöv, J., Asayesh, H., Banerjee, A., Barac, A., Baye, E., Bennett, D.A., Beyene, A.S., Biadgilign, S., Biryukov, S., Bjertness, E., Boneya, D.J., Campos-Nonato, I., Carrero, J.J., Cecilio, P., Cercy, K., Ciobanu, L.G., Cornaby, L., Damtew, S.A., Dandona, L., Dandona, R., Dharmaratne, S.D., Duncan, B.B., Eshrati, B., Esteghamati, A., Feigin, V.L., Fernandes, J.C., Fürst, T., Gebrehiwot, T.T., Gold, A., Gona, P.N., Goto, A., Habtewold, T.D., Hadush, K.T., Hafezi-Nejad, N., Hay, S.I., Horino, M., Islami, F., Kamal, R., Kasaeian, A., Katikireddi, S.V., Kengne, A.P., Kesavachandran, C.N., Khader, Y.S., Khang, Y.H., Khubchandani, J., Kim, D., Kim, Y.J., Kinfu, Y., Kosen, S., Ku, T., Defo, B.K., Kumar, G.A., Larson, H.J., Leinsalu, M., Liang, X., Lim, S.S., Liu, P., Lopez, A.D., Lozano, R., Majeed, A., Malekzadeh, R., Malta, D.C., Mazidi, M., McAlinden, C., McGarvey, S.T., Mengistu, D.T., Mensah, G.A., Mensink, G.B.M., Mezgebe, H.B., Mirrakhimov, E.M., Mueller, U.O., Noubiap, J.J., Obermeyer, C.M., Ogbo, F.A., Owolabi, M.O., Patton, G.C., Pourmalek, F., Qorbani, M., Rafay, A., Rai, R.K., Ranabhat, C.L., Reinig, N., Safiri, S., Salomon, J.A., Sanabria, J.R., Santos, I.S., Sartorius, B., Sawhney, M., Schmidhuber, J., Schutte, A.E., Schmidt, M.I., Sepanlou, S.G., Shamsizadeh, M., Sheikhbahaei, S., Shin, M.J., Shiri, R., Shiue, I., Roba, H.S., Silva, D.A.S., Silverberg, J.I., Singh, J.A., Stranges, S., Swaminathan, S., Tabarés-Seisdedos, R., Tadese, F., Tedla, B.A., Tegegne, B.S., Terkawi, A.S., Thakur, J.S., Tonelli, M., Topor-Madry, R., Tyrovolas, S., Ukwaja, K.N., Uthman, O.A., Vaezghasemi, M., Vasankari, T., Vlassov, V.V., Vollset, S.E., Weiderpass, E., Werdecker, A., Wesana, J., Westerman, R., Yano, Y., Yonemoto, N., Yonga, G., Zaidi, Z., Zenebe, Z.M., Zipkin, B., Murray, C.J.L. (2017). Health Effects of Overweight and Obesity in 195 Countries over 25 Years. The New England Journal of Medicine, 377(1), 13–27. Ali, A. T., Hochfeld, W. E., Myburgh, R., Pepper, M. S. (2013). Adipocyte and adipogenesis. European Journal of Cell Biology, 92(6-7), 229-236. Allison, D. B., Downey, M., Atkinson, R. L., Billington, C. J., Bray, G. A., Eckel, R. H., Finkelstein, E. A., Jensen, M. D., Tremblay, A. (2008). Obesity as a disease: a white paper on evidence and arguments commissioned by the Council of the Obesity Society. Obesity (Silver Spring, Md.), 16(6), 1161–1177. An, Y., Li, Y., Wang, X., Chen, Z., Xu, H., Wu, L., Li, S., Wang, C., Luan, W., Wang, X., Liu, M., Tang, X., Yu, L. (2018). Cordycepin reduces weight through regulating gut microbiota in high-fat diet-induced obese rats. Lipids in Health and Disease, 17(1), 1-10. Aronson, D., Bartha, P., Zinder, O., Kerner, A., Markiewicz, W., Avizohar, O., Brook, G. J., Levy, Y. (2004). Obesity is the major determinant of elevated C-reactive protein in subjects with the metabolic syndrome. International Journal of Obesity, 28(5), 674-679. Ashok, C., Selvam, M., Ponne, S., Parcha, P. K., Raja, K. M. P., Baluchamy, S. (2020). CREB acts as a common transcription factor for major epigenetic repressors; DNMT3B, EZH2, CUL4B and E2F6. Medical Oncology, 37(8), 1-11. Ashraf, S. A., Elkhalifa, A., Siddiqui, A. J., Patel, M., Awadelkareem, A. M., Snoussi, M., Ashraf, M. S., Adnan, M., Hadi, S. (2020). Cordycepin for health and wellbeing: A potent bioactive metabolite of an entomopathogenic medicinal fungus Cordyceps with its nutraceutical and therapeutic potential. Molecules, 25(12), 2735. Avgerinos, K. I., Spyrou, N., Mantzoros, C. S., Dalamaga, M. (2019). Obesity and cancer risk: Emerging biological mechanisms and perspectives. Metabolism, 92, 121-135. Bessesen, D. H., Van Gaal, L. F. (2018). Progress and challenges in anti-obesity pharmacotherapy. The lancet Diabetes Endocrinology, 6(3), 237-248. Björntorp, P., Sjöström, L. (1971). Number and size of adipose tissue fat cells in relation to metabolism in human obesity. Metabolism, 20(7), 703-713. Boden, G. (2003). Effects of free fatty acids (FFA) on glucose metabolism: significance for insulin resistance and type 2 diabetes. Experimental and Clinical Endocrinology Diabetes, 111(03), 121-124. Buzzetti, E., Pinzani, M., Tsochatzis, E. A. (2016). The multiple-hit pathogenesis of non-alcoholic fatty liver disease (NAFLD). Metabolism, 65(8), 1038-1048. Cerf, M. E. (2013). Beta cell dysfunction and insulin resistance. Frontiers in Endocrinology, 4, 37. Chakraborti, C. K. (2015). New-found link between microbiota and obesity. World Journal of Gastrointestinal Pathophysiology, 6(4), 110. Chalasani, N., Younossi, Z., Lavine, J. E., Charlton, M., Cusi, K., Rinella, M., Harrison, S. A., Brunt, E. M., Sanyal, A. J. (2018). The diagnosis and management of nonalcoholic fatty liver disease: practice guidance from the American Association for the Study of Liver Diseases. Hepatology, 67(1), 328-357. Chamyuang, S., Owatworakit, A., Honda, Y. (2019). New insights into cordycepin production in Cordyceps militaris and applications. Annals of Translational Medicine, 7(Suppl 3). Chen, C., Khismatullin, D. B. (2015). Oxidized low-density lipoprotein contributes to atherogenesis via co-activation of macrophages and mast cells. PloS One, 10(3), e0123088. Chen, H., Yuan, R., Zhang, Y., Zhang, X., Chen, L., Zhou, X., Yuan, Z., Nie, Y., Li, M., Mo, D., Chen, Y. (2016). ATF4 regulates SREBP1c expression to control fatty acids synthesis in 3T3-L1 adipocytes differentiation. Biochimica et Biophysica Acta (BBA)-Gene Regulatory Mechanisms, 1859(11), 1459-1469. Chistiakov, D. A., Melnichenko, A. A., Myasoedova, V. A., Grechko, A. V., Orekhov, A. N. (2017). Mechanisms of foam cell formation in atherosclerosis. Journal of Molecular Medicine, 95(11), 1153-1165. Choi, E., Oh, J., Sung, G. H. (2020). Beneficial Effect of Cordyceps militaris on Exercise Performance via Promoting Cellular Energy Production. Mycobiology, 48(6), 512-517. Cinti, S., Mitchell, G., Barbatelli, G., Murano, I., Ceresi, E., Faloia, E., Wang, S., Fortier, M., Greenberg, A. S., Obin, M. S. (2005). Adipocyte death defines macrophage localization and function in adipose tissue of obese mice and humans. Journal of Lipid Research, 46(11), 2347-2355. Copps, K. D., White, M. F. (2012). Regulation of insulin sensitivity by serine/threonine phosphorylation of insulin receptor substrate proteins IRS1 and IRS2. Diabetologia, 55(10), 2565-2582. Csige, I., Ujvárosy, D., Szabó, Z., Lőrincz, I., Paragh, G., Harangi, M., Somodi, S. (2018). The impact of obesity on the cardiovascular system. Journal of Diabetes Research, 2018, 3407306. Das, S. K., Masuda, M., Sakurai, A., Sakakibara, M. (2010). Medicinal uses of the mushroom Cordyceps militaris: current state and prospects. Fitoterapia, 81(8), 961-968. De Winter, T. J., Nusse, R. (2021). Running Against the Wnt: How Wnt/β-Catenin Suppresses Adipogenesis. Frontiers in Cell and Developmental Biology, 9, 140. Denke, M. A., Sempos, C. T., Grundy, S. M. (1993). Excess body weight: an underrecognized contributor to high blood cholesterol levels in white American men. Archives of Internal Medicine, 153(9), 1093-1103. Dickson, L. M., Gandhi, S., Layden, B. T., Cohen, R. N., Wicksteed, B. (2016). Protein kinase A induces UCP1 expression in specific adipose depots to increase energy expenditure and improve metabolic health. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 311(1), R79-R88. Donnelly, K. L., Smith, C. I., Schwarzenberg, S. J., Jessurun, J., Boldt, M. D., Parks, E. J. (2005). Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease. The Journal of Clinical Investigation, 115(5), 1343-1351. Dresner, A., Laurent, D., Marcucci, M., Griffin, M. E., Dufour, S., Cline, G. W., Slezak, L. A., Andersen, D. K., Hundal, R. S., Rothman, D. L., Petersen, K. F., Shulman, G. I. (1999). Effects of free fatty acids on glucose transport and IRS-1–associated phosphatidylinositol 3-kinase activity. The Journal of Clinical Investigation, 103(2), 253-259. Drews, G., Krippeit-Drews, P., Düfer, M. (2010). Oxidative stress and beta-cell dysfunction. Pflügers Archiv-European Journal of Physiology, 460(4), 703-718. Eguchi, N., Vaziri, N. D., Dafoe, D. C., Ichii, H. (2021). The Role of Oxidative Stress in Pancreatic β Cell Dysfunction in Diabetes. International Journal of Molecular Sciences, 22(4), 1509. El-Assaad, W., Buteau, J., Peyot, M. L., Nolan, C., Roduit, R., Hardy, S., Joly, E., Dbaibo, G., Rosenberg, L., Prentki, M. (2003). Saturated fatty acids synergize with elevated glucose to cause pancreatic β-cell death. Endocrinology, 144(9), 4154-4163. Fabbrini, E., Sullivan, S., Klein, S. (2010). Obesity and nonalcoholic fatty liver disease: biochemical, metabolic, and clinical implications. Hepatology, 51(2), 679-689. Fan, J. G., Kim, S. U., Wong, V. W. S. (2017). New trends on obesity and NAFLD in Asia. Journal of Hepatology, 67(4), 862-873. Fantuzzi, G., Mazzone, T. (2007). Adipose tissue and atherosclerosis: exploring the connection. Arteriosclerosis, Thrombosis, and Vascular Biology, 27(5), 996-1003. Farmer, S. R. (2006). Transcriptional control of adipocyte formation. Cell Metabolism, 4(4), 263-273. Faust, I. M., Johnson, P. R., Stern, J. S., Hirsch, J. (1978). Diet-induced adipocyte number increase in adult rats: a new model of obesity. American Journal of Physiology-Endocrinology And Metabolism, 235(3), E279. Festi, D., Colecchia, A., Sacco, T. A., Bondi, M., Roda, E., Marchesini, G. (2004). Hepatic steatosis in obese patients: clinical aspects and prognostic significance. Obesity Reviews, 5(1), 27-42. Fox, K. E., Colto Fox, K. E., Colton, L. A., Erickson, P. F., Friedman, J. E., Cha, H. C., Keller, P., MacDougald, O. A., Klemm, D. J. (2008). Regulation of cyclin D1 and Wnt10b gene expression by cAMP-responsive element-binding protein during early adipogenesis involves differential promoter methylation. Journal of Biological Chemistry, 283(50), 35096-35105. Fritschy, W. M., Strubbe, J. H., Wolters, G. H. J., Van Schilfgaarde, R. (1991). Glucose tolerance and plasma insulin response to intravenous glucose infusion and test meal in rats with microencapsulated islet allografts. Diabetologia, 34(8), 542-547. Frostegård, J. (2013). Immunity, atherosclerosis and cardiovascular disease. BMC Medicine, 11(1), 1-13. Garcia, D., Shaw, R. J. (2017). AMPK: mechanisms of cellular energy sensing and restoration of metabolic balance. Molecular Cell, 66(6), 789-800. Ge, Q., Brichard, S., Yi, X., Li, Q. (2014). microRNAs as a new mechanism regulating adipose tissue inflammation in obesity and as a novel therapeutic strategy in the metabolic syndrome. Journal of Immunology Research , 2014, 987285. Godoy-Matos, A. F., Júnior, W. S. S., Valerio, C. M. (2020). NAFLD as a continuum: from obesity to metabolic syndrome and diabetes. Diabetology Metabolic Syndrome, 12(1), 1-20. Goran, M. I., Ball, G. D., Cruz, M. L. (2003). Obesity and risk of type 2 diabetes and cardiovascular disease in children and adolescents. The Journal of Clinical Endocrinology Metabolism, 88(4), 1417-1427. Gregor, M. F., Yang, L., Fabbrini, E., Mohammed, B. S., Eagon, J. C., Hotamisligil, G. S., Klein, S. (2009). Endoplasmic reticulum stress is reduced in tissues of obese subjects after weight loss. Diabetes, 58(3), 693-700. Grundy, S. M., Brewer Jr, H. B., Cleeman, J. I., Smith Jr, S. C., Lenfant, C. (2004). Definition of metabolic syndrome: report of the National Heart, Lung, and Blood Institute/American Heart Association conference on scientific issues related to definition. Circulation, 109(3), 433-438. Gual, P., Le Marchand-Brustel, Y., Tanti, J. F. (2005). Positive and negative regulation of insulin signaling through IRS-1 phosphorylation. Biochimie, 87(1), 99-109. Guo, P., Kai, Q., Gao, J., Lian, Z. Q., Wu, C. M., Wu, C. A., Zhu, H. B. (2010). Cordycepin prevents hyperlipidemia in hamsters fed a high-fat diet via activation of AMP-activated protein kinase. Journal of Pharmacological Sciences, 113(4), 395-403. Gurgul-Convey, E., Mehmeti, I., Plötz, T., Jörns, A., Lenzen, S. (2016). Sensitivity profile of the human EndoC-βH1 beta cell line to proinflammatory cytokines. Diabetologia, 59(10), 2125-2133. Ha, J. H., Jang, J., Chung, S. I., Yoon, Y. (2016). AMPK and SREBP-1c mediate the anti-adipogenic effect of β-hydroxyisovalerylshikonin. International Journal of Molecular Medicine, 37(3), 816-824. Hagman, D. K., Hays, L. B., Parazzoli, S. D., Poitout, V. (2005). Palmitate inhibits insulin gene expression by altering PDX-1 nuclear localization and reducing MafA expression in isolated rat islets of Langerhans. Journal of Biological Chemistry, 280(37), 32413-32418. Hall, P., Cash, J. (2012). What is the real function of the liver ‘function’tests?. The Ulster Medical Journal, 81(1), 30. Hammarstedt, A., Gogg, S., Hedjazifar, S., Nerstedt, A., Smith, U. (2018). Impaired adipogenesis and dysfunctional adipose tissue in human hypertrophic obesity. Physiological Reviews, 98(4), 1911-1941. Han, S., Sun, H. M., Hwang, K. C., Kim, S. W. (2015). Adipose-derived stromal vascular fraction cells: update on clinical utility and efficacy. Critical Reviews™ in Eukaryotic Gene Expression, 25(2). Hawley, S. A., Ross, F. A., Russell, F. M., Atrih, A., Lamont, D. J., Hardie, D. G. (2020). Mechanism of Activation of AMPK by Cordycepin. Cell Chemical Biology, 27(2), 214-222. He, W., Rebello, O., Savino, R., Terracciano, R., Schuster-Klein, C., Guardiola, B., Maedler, K. (2019). TLR4 triggered complex inflammation in human pancreatic islets. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 1865(1), 86-97. Hetz, C. (2012). The unfolded protein response: controlling cell fate decisions under ER stress and beyond. Nature reviews Molecular Cell Biology, 13(2), 89-102. Horton, J. D., Bashmakov, Y., Shimomura, I., Shimano, H. (1998). Regulation of sterol regulatory element binding proteins in livers of fasted and refed mice. Proceedings of the National Academy of Sciences, 95(11), 5987-5992. Huang, Z. F., Zhang, M. L., Zhang, S., Wang, Y. H., Jiang, X. W. (2018). Structural characterization of polysaccharides from Cordyceps militaris and their hypolipidemic effects in high fat diet fed mice. RSC Advances, 8(71), 41012-41022. Huh, J. H., Kim, K. J., Kim, S. U., Han, S. H., Han, K. H., Cha, B. S., Chung, C. H., Lee, B. W. (2017). Obesity is more closely related with hepatic steatosis and fibrosis measured by transient elastography than metabolic health status. Metabolism, 66, 23-31. Inaishi, J., Saisho, Y. (2020). Beta-cell mass in obesity and type 2 diabetes, and its relation to pancreas fat: A mini-review. Nutrients, 12(12), 3846. Jacqueminet, S., Briaud, I., Rouault, C., Reach, G., Poitout, V. (2000). Inhibition of insulin gene expression by long-term exposure of pancreatic β cells to palmitate is dependent on the presence of a stimulatory glucose concentration. Metabolism, 49(4), 532-536. Ji, Y., Sun, S., Shrestha, N., Darragh, L. B., Shirakawa, J., Xing, Y., He, Y., Carboneau, B. A., Kim, H., An, D., Ma, M., Oberholzer, J., Soleimanpour, S. A., Gannon, M., Liu, C., Naji, A., Kulkarni, R. N., Wang, Y., Kersten, S., Qi, L. (2019). Toll-like receptors TLR2 and TLR4 block the replication of pancreatic β cells in diet-induced obesity. Nature Immunology, 20(6), 677-686. Jiang, D., Wang, D., Zhuang, X., Wang, Z., Ni, Y., Chen, S., Sun, F. (2016). Berberine increases adipose triglyceride lipase in 3T3-L1 adipocytes through the AMPK pathway. Lipids in Health and Disease, 15(1), 1-8. Jo, J., Gavrilova, O., Pack, S., Jou, W., Mullen, S., Sumner, A. E., Cushman, S. W., Periwal, V. (2009). Hypertrophy and/or hyperplasia: dynamics of adipose tissue growth. PLoS Computational Biology, 5(3), e1000324. Kabon, B., Nagele, A., Reddy, D., Eagon, C., Fleshman, J. W., Sessler, D. I., Kurz, A. (2004). Obesity decreases perioperative tissue oxygenation. The Journal of the American Society of Anesthesiologists, 100(2), 274-280. Kim, J. B., Wright, H. M., Wright, M., Spiegelman, B. M. (1998). ADD1/SREBP1 activates PPARγ through the production of endogenous ligand. Proceedings of the National Academy of Sciences, 95(8), 4333-4337. Kim, M. K., Reaven, G. M., Kim, S. H. (2017). Dissecting the relationship between obesity and hyperinsulinemia: role of insulin secretion and insulin clearance. Obesity, 25(2), 378-383. Kim, S. B., Ahn, B., Kim, M., Ji, H. J., Shin, S. K., Hong, I. P., Kim, C. Y., Hwang, B. Y., Lee, M. K. (2014). Effect of Cordyceps militaris extract and active constituents on metabolic parameters of obesity induced by high-fat diet in C58BL/6J mice. Journal of Ethnopharmacology, 151(1), 478-484. Koh, A., De Vadder, F., Kovatcheva-Datchary, P., Bäckhed, F. (2016). From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites. Cell, 165(6), 1332-1345. Komiya, Y., Habas, R. (2008). Wnt signal transduction pathways. Organogenesis, 4(2), 68-75. Körner, A., Wabitsch, M., Seidel, B., Fischer-Posovszky, P., Berthold, A., Stumvoll, M., Blüher, M., Kratzsch, J., Kiess, W. (2005). Adiponectin expression in humans is dependent on differentiation of adipocytes and down-regulated by humoral serum components of high molecular weight. Biochemical and Biophysical Research Communications, 337(2), 540-550. Kuroda, M., Sakaue, H. (2017). Adipocyte death and chronic inflammation in obesity. The Journal of Medical Investigation, 64(3.4), 193-196. Larsson, S. C., Bäck, M., Rees, J. M., Mason, A. M., Burgess, S. (2020). Body mass index and body composition in relation to 14 cardiovascular conditions in UK Biobank: a Mendelian randomization study. European Heart Journal, 41(2), 221-226. Lauby-Secretan, B., Scoccianti, C., Loomis, D., Grosse, Y., Bianchini, F., Straif, K. (2016). Body fatness and cancer—viewpoint of the IARC Working Group. New England Journal of Medicine, 375(8), 794-798. Lazar, V., Ditu, L. M., Pircalabioru, G. G., Picu, A., Petcu, L., Cucu, N., Chifiriuc, M. C. (2019). Gut microbiota, host organism, and diet trialogue in diabetes and obesity. Frontiers in Nutrition, 6, 21. Lee, H. W., Kim, K. J., Jung, K. S., Chon, Y. E., Huh, J. H., Park, K. H., Chung, J. B., Kim, C. O., Han, K. H., Park, J. Y. (2017). The relationship between visceral obesity and hepatic steatosis measured by controlled attenuation parameter. PloS One, 12(10), e0187066. Lee, H., Kang, R., Bae, S., Yoon, Y. (2011). AICAR, an activator of AMPK, inhibits adipogenesis via the WNT/β-catenin pathway in 3T3-L1 adipocytes. International Journal of Molecular Medicine, 28(1), 65-71. Lee, W. J., Kim, M., Park, H. S., Kim, H. S., Jeon, M. J., Oh, K. S., Koh, E. H., Won, J. C., Kim, M. S., Oh, G. T., Yoon, M., Lee, K. U., Park, J. Y. (2006). AMPK activation increases fatty acid oxidation in skeletal muscle by activating PPARα and PGC-1. Biochemical and Biophysical Research Communications, 340(1), 291-295. Lee, Y. H., Kim, S. H., Lee, Y. J., Kang, E. S., Lee, B. W., Cha, B. S., Kim, J. W., Song, D. H., Lee, H. C. (2013). Transcription factor Snail is a novel regulator of adipocyte differentiation via inhibiting the expression of peroxisome proliferator-activated receptor γ. Cellular and Molecular Life Sciences, 70(20), 3959-3971. Lee, Y., Lingvay, I., Szczepaniak, L. S., Ravazzola, M., Orci, L., Unger, R. H. (2010). Pancreatic steatosis: harbinger of type 2 diabetes in obese rodents. International Journal of Obesity, 34(2), 396-400. Lefterova, M. I., Lazar, M. A. (2009). New developments in adipogenesis. Trends in Endocrinology Metabolism, 20(3), 107-114. Ley, R. E., Bäckhed, F., Turnbaugh, P., Lozupone, C. A., Knight, R. D., Gordon, J. I. (2005). Obesity alters gut microbial ecology. Proceedings of the National Academy of Sciences, 102(31), 11070-11075. Li, J., Chen, L., Zhang, Y., Zhang, W. J., Xu, W., Qin, Y., Xu, J., Zou, D. (2013). TLR4 is required for the obesity-induced pancreatic beta cell dysfunction. Acta Biochim Biophys Sin, 45(12), 1030-1038. Li, Y., Soos, T. J., Li, X., Wu, J., Degennaro, M., Sun, X., Littman, D. R., Birnbaum, M. J., Polakiewicz, R. D. (2004). Protein kinase C θ inhibits insulin signaling by phosphorylating IRS1 at Ser1101. Journal of Biological Chemistry, 279(44), 45304-45307. Liu, Y., Colby, J. K., Zuo, X., Jaoude, J., Wei, D., Shureiqi, I. (2018). The role of PPAR-δ in metabolism, inflammation, and cancer: many characters of a critical transcription factor. International Journal of Molecular Sciences, 19(11), 3339. Lu, Y. C., Yeh, W. C., Ohashi, P. S. (2008). LPS/TLR4 signal transduction pathway. Cytokine, 42(2), 145-151. Luck, H., Khan, S., Kim, J.H., Copeland, J.K., Revelo, X.S., Tsai, S., Chakraborty, M., Cheng, K., Tao Chan, Y., Nøhr, M.K., Clemente-Casares, X., Perry, M.C., Ghazarian, M., Lei, H., Lin, Y.H., Coburn, B., Okrainec, A., Jackson, T., Poutanen, S., Gaisano, H., Allard, J.P., Guttman, D.S., Conner, M.E., Winer, S., Winer, D.A. (2019). Gut-associated IgA+ immune cells regulate obesity-related insulin resistance. Nature Communications, 10(1), 1-17. Macchione, I. G., Lopetuso, L. R., Ianiro, G., Napoli, M., Gibiino, G., Rizzatti, G., Petito, V., Gasbarrini, A., Scaldaferri, F. (2019). Akkermansia muciniphila: key player in metabolic and gastrointestinal disorders. European Review for Medical and Pharmacological Sciences, 23(18), 8075–8083. Martel, J., Ojcius, D. M., Chang, C. J., Lin, C. S., Lu, C. C., Ko, Y. F., Tseng, S. F., Lai, H. C., Young, J. D. (2017). Anti-obesogenic and antidiabetic effects of plants and mushrooms. Nature Reviews Endocrinology, 13(3), 149-160. McGill Jr, H. C., McMahan, C. A., Herderick, E. E., Zieske, A. W., Malcom, G. T., Tracy, R. E., Strong, J. P. (2002). Obesity accelerates the progression of coronary atherosclerosis in young men. Circulation, 105(23), 2712-2718. Mingrone, G., Panunzi, S., De Gaetano, A., Guidone, C., Iaconelli, A., Nanni, G., Castagneto, M., Bornstein, S., Rubino, F. (2015). Bariatric–metabolic surgery versus conventional medical treatment in obese patients with type 2 diabetes: 5 year follow-up of an open-label, single-centre, randomised controlled trial. The Lancet, 386(9997), 964-973. Miranda, C. S., Silva-Veiga, F., Martins, F. F., Rachid, T. L., Mandarim-De-Lacerda, C. A., Souza-Mello, V. (2020). PPAR-α activation counters brown adipose tissue whitening: a comparative study between high-fat–and high-fructose–fed mice. Nutrition, 78, 110791. Mirza, M. S. (2011). Obesity, visceral fat, and NAFLD: querying the role of adipokines in the progression of nonalcoholic fatty liver disease. International Scholarly Research Notices, 2011. Montagna, C., Sharan, S., Ried, T., Sterneck, E., Yajun Ni, E. (2004). Loss of CCAAT/enhancer binding protein d promotes chromosomal instability. Oncogene, 23(8). Mosca, A., Leclerc, M., Hugot, J. P. (2016). Gut microbiota diversity and human diseases: should we reintroduce key predators in our ecosystem?. Frontiers in Microbiology, 7, 455. Moseti, D., Regassa, A., Kim, W. K. (2016). Molecular regulation of adipogenesis and potential anti-adipogenic bioactive molecules. International Journal of Molecular Sciences, 17(1), 124. Motoshima, H., Goldstein, B. J., Igata, M., Araki, E. (2006). AMPK and cell proliferation–AMPK as a therapeutic target for atherosclerosis and cancer. The Journal of Physiology, 574(1), 63-71. Murakami, M. S., Rosen, O. M. (1991). The role of insulin receptor autophosphorylation in signal transduction. Journal of Biological Chemistry, 266(33), 22653-22660. Muscogiuri, G., Cantone, E., Cassarano, S., Tuccinardi, D., Barrea, L., Savastano, S., Colao, A. (2019). Gut microbiota: a new path to treat obesity. International Journal of Obesity Supplements, 9(1), 10-19. Najt, C. P., Khan, S. A., Heden, T. D., Witthuhn, B. A., Perez, M., Heier, J. L., Mead, L. E., Franklin, M. P., Karanja, K. K., Graham, M. J., Mashek, M. T., Bernlohr, D. A., Parker, L., Chow, L. S., Mashek, D. G. (2020). Lipid droplet-derived monounsaturated fatty acids traffic via PLIN5 to allosterically activate SIRT1. Molecular Cell, 77(4), 810-824. Nelson, P. J., Daniel, T. O. (2002). Emerging targets: molecular mechanisms of cell contact-mediated growth control. Kidney International, 61(1), S99-S105. Nguyen, N. T., Varela, J. E. (2017). Bariatric surgery for obesity and metabolic disorders: state of the art. Nature reviews Gastroenterology Hepatology, 14(3), 160-169. Njajou, O. T., Kanaya, A. M., Holvoet, P., Connelly, S., Strotmeyer, E. S., Harris, T. B., Cummings, S. R., Hsueh, W. C., Health ABC Study (2009). Association between oxidized LDL, obesity and type 2 diabetes in a population‐based cohort, the Health, Aging and Body Composition Study. Diabetes/Metabolism Research and Reviews, 25(8), 733-739. Ntambi, J. M., Young-Cheul, K. (2000). Adipocyte differentiation and gene expression. The Journal of Nutrition, 130(12), 3122S-3126S. Park, Y. M., Myers, M., Vieira-Potter, V. J. (2014). Adipose tissue inflammation and metabolic dysfunction: role of exercise. Missouri Medicine, 111(1), 65–72. Paz, K., Liu, Y. F., Shorer, H., Hemi, R., LeRoith, D., Quan, M., Kanety, H., Seger, R., Zick, Y. (1999). Phosphorylation of insulin receptor substrate-1 (IRS-1) by protein kinase B positively regulates IRS-1 function. Journal of Biological Chemistry, 274(40), 28816-28822. Petersen, M. C., Shulman, G. I. (2018). Mechanisms of insulin action and insulin resistance. Physiological Reviews, 98(4), 2133-2223. Petersen, M. C., Madiraju, A. K., Gassaway, B. M., Marcel, M., Nasiri, A. R., Butrico, G., Marcucci, M. J., Zhang, D., Abulizi, A., Zhang, X. M., Philbrick, W., Hubbard, S. R., Jurczak, M. J., Samuel, V. T., Rinehart, J., Shulman, G. I. (2016). Insulin receptor Thr 1160 phosphorylation mediates lipid-induced hepatic insulin resistance. The Journal of Clinical Investigation, 126(11), 4361-4371. Poirier, P., Giles, T. D., Bray, G. A., Hong, Y., Stern, J. S., Pi-Sunyer, F. X., Eckel, R. H. (2006). Obesity and cardiovascular disease: pathophysiology, evaluation, and effect of weight loss: an update of the 1997 American Heart Association Scientific Statement on Obesity and Heart Disease from the Obesity Committee of the Council on Nutrition, Physical Activity, and Metabolism. Circulation, 113(6), 898-918. Poitout, V., Robertson, R. P. (2008). Glucolipotoxicity: fuel excess and β-cell dysfunction. Endocrine Reviews, 29(3), 351-366. Qi, G., Zhou, Y., Zhang, X., Yu, J., Li, X., Cao, X., Wu, C., Guo, P. (2019). Cordycepin promotes browning of white adipose tissue through an AMP-activated protein kinase (AMPK)-dependent pathway. Acta Pharmaceutica Sinica B, 9(1), 135-143. Riaz, T. A., Junjappa, R. P., Handigund, M., Ferdous, J., Kim, H. R., Chae, H. J. (2020). Role of endoplasmic reticulum stress sensor IRE1α in cellular physiology, calcium, ROS signaling, and metaflammation. Cells, 9(5), 1160. Robertson, R. P., Harmon, J., Tran, P. O., Tanaka, Y., Takahashi, H. (2003). Glucose toxicity in β-cells: type 2 diabetes, good radicals gone bad, and the glutathione connection. Diabetes, 52(3), 581-587. Rocha, V. Z., Libby, P. (2009). Obesity, inflammation, and atherosclerosis. Nature Reviews Cardiology, 6(6), 399-409. Rodríguez-Hernández, H., Simental-Mendía, L. E., Rodríguez-Ramírez, G., Reyes-Romero, M. A. (2013). Obesity and inflammation: epidemiology, risk factors, and markers of inflammation. International Journal of Endocrinology, 2013, 678159. Rosen, E. D., Hsu, C. H., Wang, X., Sakai, S., Freeman, M. W., Gonzalez, F. J., Spiegelman, B. M. (2002). C/EBPα induces adipogenesis through PPARγ: a unified pathway. Genes Development, 16(1), 22-26. Ross, S. E., Hemati, N., Longo, K. A., Bennett, C. N., Lucas, P. C., Erickson, R. L., MacDougald, O. A. (2000). Inhibition of adipogenesis by Wnt signaling. Science, 289(5481), 950-953. Saisho, Y. (2019). Changing the concept of type 2 diabetes: Beta cell workload hypothesis revisited. Endocrine, Metabolic Immune Disorders-Drug Targets, 19(2), 121-127. Sarr, M. G., Billington, C. J., Brancatisano, R., Brancatisano, A., Toouli, J., Kow, L., Nguyen, N. T., Blackstone, R., Maher, J. W., Shikora, S., Reeds, D. N., Eagon, J. C., Wolfe, B. M., O'Rourke, R. W., Fujioka, K., Takata, M., Swain, J. M., Morton, J. M., Ikramuddin, S., Schweitzer, M., Chand, B., Rosenthal, R. (2012). The EMPOWER study: randomized, prospective, double-blind, multicenter trial of vagal blockade to induce weight loss in morbid obesity. Obesity Surgery, 22(11), 1771-1782. Saxena, M., Balaji, S. A., Deshpande, N., Ranganathan, S., Pillai, D. M., Hindupur, S. K., Rangarajan, A. (2018). AMP-activated protein kinase promotes epithelial-mesenchymal transition in cancer cells through Twist1 upregulation. Journal of Cell Science, 131(14), jcs208314. Schnurr, T. M., Jakupović, H., Carrasquilla, G. D., Ängquist, L., Grarup, N., Sørensen, T., Tjønneland, A., Overvad, K., Pedersen, O., Hansen, T., Kilpeläinen, T. O. (2020). Obesity, unfavourable lifestyle and genetic risk of type 2 diabetes: A case-cohort study. Diabetologia, 63(7), 1324-1332. Scholzen, T., Gerdes, J. (2000). The Ki‐67 protein: from the known and the unknown. Journal of Cellular Physiology, 182(3), 311-322. Sears, B., Perry, M. (2015). The role of fatty acids in insulin resistance. Lipids in Health and Disease, 14(1), 1-9. Sherr, C. J., Roberts, J. M. (1999). CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Development, 13(12), 1501-1512. Shimabukuro, M., Zhou, Y. T., Levi, M., Unger, R. H. (1998). Fatty acid-induced β cell apoptosis: a link between obesity and diabetes. Proceedings of the National Academy of Sciences, 95(5), 2498-2502. Søndergaard, E., Jensen, M. D. (2016). Quantification of adipose tissue insulin sensitivity. Journal of Investigative Medicine, 64(5), 989-991. Spalding, K. L., Arner, E., Westermark, P. O., Bernard, S., Buchholz, B. A., Bergmann, O., Blomqvist, L., Hoffstedt, J., Näslund, E., Britton, T., Concha, H., Hassan, M., Rydén, M., Frisén, J., Arner, P. (2008). Dynamics of fat cell turnover in humans. Nature, 453(7196), 783-787. Stefanovski, D., Richey, J. M., Woolcott, O., Lottati, M., Zheng, D., Harrison, L. N., Ionut, V., Kim, S. P., Hsu, I., Bergman, R. N. (2011). Consistency of the disposition index in the face of diet induced insulin resistance: potential role of FFA. PLoS One, 6(3), e18134. Steinberg, D., Parthasarathy, S., Carew, T. E., Khoo, J. C., Witztum, J. L. (1989). Beyond cholesterol. New England Journal of Medicine, 320(14), 915-924. Tak, Y. J., Lee, S. Y. (2021). Anti-obesity drugs: long-term efficacy and safety: an updated review. The World Journal of Men's Health, 39(2), 208. Takahashi, H., Sanada, K., Nagai, H., Li, Y., Aoki, Y., Ara, T., Seno, S., Matsuda, H., Yu, R., Kawada, T., Goto, T. (2017). Over-expression of PPARα in obese mice adipose tissue improves insulin sensitivity. Biochemical and Biophysical Research Communications, 493(1), 108-114. Takahashi, S., Tamai, M., Nakajima, S., Kato, H., Johno, H., Nakamura, T., Kitamura, M. (2012). Blockade of adipocyte differentiation by cordycepin. British journal of Pharmacology, 167(3), 561-575. Takei, A., Huang, Y., Lopes-Virella, M. F. (2001). Expression of adhesion molecules by human endothelial cells exposed to oxidized low density lipoprotein: influences of degree of oxidation and location of oxidized LDL. Atherosclerosis, 154(1), 79-86. Tang, Q. Q., Otto, T. C., Lane, M. D. (2003). Mitotic clonal expansion: ………
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81987-
dc.description.abstract"肥胖率在現代社會中逐漸攀升並且容易增加第二型糖尿病、心血管疾病以及非酒精性脂肪肝等疾病的患病機率,使肥胖現象儼然成為已開發社會的健康威脅之一。許多研究即以傳統中草藥為材料,測試其抗肥胖功能,企圖尋找出安全有效的抗肥胖藥物。眾多中草藥皆被發現具有抗肥胖功效,而北蟲草(Cordyceps militaris)便是其一。北蟲草可由人工培養在米培養基上,在北蟲草子實體收割後米培養基即被視為廢棄物並丟棄。然而,考慮到廢棄米培養基中含有北蟲草菌絲體,猜測其或許也具有些許藥用功效與利用價值。本論文之目的即在驗證此一說之可行性,以3T3-L1細胞與SD大鼠為試驗模型,測試北蟲草廢棄米培養基(Cordyceps militaris spent rice media, CMS)在抗肥胖方面的效果。由於蟲草素(Cordycepin)普遍被認為是北蟲草中的功效成分,故首先以高效液相層析(high performance liquid chromatography, HPLC)測定CMS中蟲草素含量,發現CMS的蟲草素含量約占其總重之0.4%,確認其含有功效成分。在細胞試驗結果中顯示北蟲草廢棄米培養基水萃物(Cordyceps militaris spent rice media water extract, CMSWE)可透過增加AMPK與Wnt10b訊號路徑相關蛋白的mRNA表現量而抑制C/EBPα與PPARγ的表現,從而阻礙3T3-L1前脂肪細胞的分化。此外,CMSWE亦可透過抑制脂肪合成與促進脂肪分解、β氧化相關基因表現而降低3T3-L1細胞中的脂肪累積。動物試驗結果進一步顯示餵食CMS的大鼠減輕由高脂飼料誘發的肥胖現象,具有較輕的體重、較少的脂肪量以及較低的血清三酸甘油酯與膽固醇含量,同時CMS亦可減輕由高脂飼料引起之肝脂肪變性程度。此外,由第三代定序技術分析大鼠腸道菌相結果指出,餵食CMS的大鼠腸道中Akkermansia muciniphila與Parabacteroides goldsteinii二個菌種的豐度有所增加,而前人研究曾指出此二菌種對宿主的代謝具有正面影響,可能在CMS減輕肥胖症狀的效果中具有一定的作用。上述試驗結果均顯示北蟲草廢棄米培養基具有抗肥胖的能力與潛在的應用價值。"zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-25T05:33:38Z (GMT). No. of bitstreams: 1
U0001-0309202117334400.pdf: 3904817 bytes, checksum: c7f9854cb56d0f0ceb4514a3a3027795 (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents口試委員會審定書...i 誌謝...ii 中文摘要...iii Abstract...v 目錄...vii 圖目錄...xi 表目錄...xiii 第一章、文獻探討...1 第一節、肥胖...1 一、肥胖之定義與其普及狀況...1 二、肥胖對健康之影響...1 (一)慢性發炎...2 (二)第二型糖尿病...3 1. 肥胖與胰島素阻抗...4 2. 肥胖與胰島β細胞功能失調...5 (三)心血管疾病...7 (四)非酒精性脂肪肝疾病...8 三、肥胖治療...9 (一)減重手術...9 (二)減肥藥物...10 第二節、北蟲草...11 一、北蟲草簡介與其藥用功效...11 二、北蟲草之抗肥胖功效...11 三、北蟲草廢棄米培養基之潛在應用價值...12 第三節、研究動機與目的...13 第二章、材料與方法...14 第一節、試驗架構...14 第二節、北蟲草廢棄米培養基與子實體蟲草素含量測定...15 一、樣品來源與樣品水萃物製備...15 二、高效液相層析...15 第三節、細胞試驗...16 一、細胞株與細胞培養...16 二、3T3-L1細胞誘導分化...16 三、細胞試驗設計...17 (一)毒性試驗...17 (二)細胞分組...17 (三)試驗分組與目的...18 四、油紅染色...18 五、RNA抽取純化與即時定量聚合酶連鎖反應...18 第四節、動物試驗...25 一、實驗動物...25 二、動物試驗設計...25 三、飼料製備...25 四、檢測項目...26 (一)身體數值與器官重量...26 (二)採食量與食物利用率...26 (三)血清生化分析...26 (四)肝臟脂肪萃取與定量...26 (五)肝臟組織切片HE染色...27 五、RNA抽取純化與即時定量聚合酶連鎖反應...27 六、腸道微生物菌相分析...28 第五節、統計分析...31 第三章、試驗結果...32 第一節、HPLC分析結果...32 一、北蟲草廢棄米培養基之蟲草素含量測定結果...32 第二節、細胞試驗結果...34 一、北蟲草廢棄米培養基水萃物細胞毒性測試結果...34 二、抑制3T3-L1前脂肪細胞分化試驗結果...34 (一)油紅染色與細胞活性...34 (二)成熟脂肪細胞指標蛋白之mRNA表現量...34 (三)細胞增生相關蛋白之mRNA表現量與分化後細胞數量變化...35 (四)前脂肪細胞分化路徑相關蛋白之mRNA表現量...35 (五)前脂肪細胞分化期間AMPKα之mRNA表現量...36 三、抑制3T3-L1細胞脂肪生成試驗結果...37 (一)油紅染色與細胞活性...37 (二)脂肪合成相關蛋白之mRNA表現量...37 四、促進3T3-L1細胞脂肪分解試驗結果...37 (一)油紅染色與細胞活性...37 (二)脂肪分解代謝相關蛋白之mRNA表現量...38 第三節、動物試驗結果...49 一、體重記錄...49 二、攝食記錄與食物利用率...49 三、身體數值...49 四、脂肪組織與器官重量...50 五、血清生化分析...50 六、肝臟脂肪含量與HE染色之組織切片...50 七、肝臟中與脂肪代謝相關蛋白之mRNA表現量...51 八、脂肪組織中與脂肪代謝相關蛋白之mRNA表現量...51 九、脂肪組織發炎相關蛋白之mRNA表現量...52 十、腸道菌相分析...52 (一)α多樣性...52 (二)β多樣性...53 (三)物種組成...53 第四章、討論...76 第一節、細胞試驗結果討論...76 一、北蟲草廢棄米培養基水萃物具有抑制3T3-L1前脂肪細胞分化為成熟脂肪細胞之能力...76 二、北蟲草廢棄米培養基水萃物對3T3-L1脂肪細胞的脂肪累積具有負面調控作用...80 三、北蟲草廢棄米培養基水萃物試驗組與蟲草素正對照組之比較...81 第二節、動物試驗結果討論...82 一、餵食北蟲草廢棄米培養基之大鼠減輕高脂飼料誘發之肥胖症狀...82 二、餵食北蟲草廢棄米培養基之大鼠減輕高脂飼料誘發之非酒精性脂肪肝症狀...83 三、餵食北蟲草廢棄米培養基對實驗大鼠腸道菌相之影響...84 第五章、結論...89 參考文獻...90 附錄一...105
dc.language.isozh-TW
dc.subject非酒精性脂肪肝zh_TW
dc.subject肥胖zh_TW
dc.subject腸道菌相zh_TW
dc.subject北蟲草zh_TW
dc.subject3T3-L1zh_TW
dc.subject蟲草素zh_TW
dc.subjecthepatic steatosisen
dc.subjectmicrobiotaen
dc.subject3T3-L1en
dc.subjectobesityen
dc.subjectcordycepinen
dc.subjectCordycepes militarisen
dc.title北蟲草廢棄米培養基之抗肥胖功效探討zh_TW
dc.titleStudy of anti-obesity effects of Cordyceps militaris spent rice mediaen
dc.date.schoolyear109-2
dc.description.degree碩士
dc.contributor.oralexamcommittee謝建元(Hsin-Tsai Liu),張惠雯(Chih-Yang Tseng),劉啟德,鄭永祥
dc.subject.keyword北蟲草,蟲草素,肥胖,非酒精性脂肪肝,3T3-L1,腸道菌相,zh_TW
dc.subject.keywordCordycepes militaris,cordycepin,obesity,hepatic steatosis,3T3-L1,microbiota,en
dc.relation.page106
dc.identifier.doi10.6342/NTU202102984
dc.rights.note同意授權(限校園內公開)
dc.date.accepted2021-09-08
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept生物科技研究所zh_TW
dc.date.embargo-lift2023-09-01-
顯示於系所單位:生物科技研究所

文件中的檔案:
檔案 大小格式 
U0001-0309202117334400.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
3.81 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved