Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 牙醫專業學院
  4. 口腔生物科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81976
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳漪紋(Yi-Wen Chen)
dc.contributor.authorChing-Chu Yuen
dc.contributor.author虞景筑zh_TW
dc.date.accessioned2022-11-25T05:33:28Z-
dc.date.available2026-09-09
dc.date.copyright2021-11-09
dc.date.issued2021
dc.date.submitted2021-09-14
dc.identifier.citation1 Chen, C.-K., Wu, Y.-T. Chang, Y.-C. Association between chronic periodontitis and the risk of Alzheimer’s disease: a retrospective, population-based, matched-cohort study. Alzheimer's Research Therapy 9, 56, doi:10.1186/s13195-017-0282-6 (2017). 2 Goedert, M. Spillantini, M. G. A century of Alzheimer's disease. Science 314, 777-781, doi:10.1126/science.1132814 (2006). 3 Gustavsson, A. et al. Cost of disorders of the brain in Europe 2010. Eur Neuropsychopharmacol 21, 718-779, doi:10.1016/j.euroneuro.2011.08.008 (2011). 4 Ferri, C. P. et al. Global prevalence of dementia: a Delphi consensus study. The Lancet 366, 2112-2117, doi:10.1016/s0140-6736(05)67889-0 (2005). 5 Mao, K. Zhang, G. The role of PARP1 in neurodegenerative diseases and aging. The FEBS Journal n/a, doi:https://doi.org/10.1111/febs.15716 (2021). 6 Braak, H. Braak, E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 82, 239-259, doi:10.1007/bf00308809 (1991). 7 Masters, C. L. et al. Amyloid plaque core protein in Alzheimer disease and Down syndrome. Proc Natl Acad Sci U S A 82, 4245-4249, doi:10.1073/pnas.82.12.4245 (1985). 8 Kang, J. et al. The precursor of Alzheimer's disease amyloid A4 protein resembles a cell-surface receptor. Nature 325, 733-736, doi:10.1038/325733a0 (1987). 9 Menting, K. W. Claassen, J. A. beta-secretase inhibitor; a promising novel therapeutic drug in Alzheimer's disease. Front Aging Neurosci 6, 165, doi:10.3389/fnagi.2014.00165 (2014). 10 Iwatsubo, T. et al. Visualization of A beta 42(43) and A beta 40 in senile plaques with end-specific A beta monoclonals: evidence that an initially deposited species is A beta 42(43). Neuron 13, 45-53, doi:10.1016/0896-6273(94)90458-8 (1994). 11 Haass, C. et al. Amyloid β-peptide is produced by cultured cells during normal metabolism. Nature 359, 322-325, doi:10.1038/359322a0 (1992). 12 Kumar, D. K. et al. Amyloid-beta peptide protects against microbial infection in mouse and worm models of Alzheimer's disease. Sci Transl Med 8, 340ra372, doi:10.1126/scitranslmed.aaf1059 (2016). 13 Wiatrak, B. Balon, K. Protective Activity of Abeta on Cell Cultures (PC12 and THP-1 after Differentiation) Preincubated with Lipopolysaccharide (LPS). Mol Neurobiol 58, 1453-1464, doi:10.1007/s12035-020-02204-w (2021). 14 Efthimiopoulos, S., Vassilacopoulou, D., Ripellino, J. A., Tezapsidis, N. Robakis, N. K. Cholinergic agonists stimulate secretion of soluble full-length amyloid precursor protein in neuroendocrine cells. Proc Natl Acad Sci U S A 93, 8046-8050, doi:10.1073/pnas.93.15.8046 (1996). 15 Finder, V. H. Glockshuber, R. Amyloid-beta aggregation. Neurodegener Dis 4, 13-27, doi:10.1159/000100355 (2007). 16 Mucke, L. Selkoe, D. J. Neurotoxicity of amyloid beta-protein: synaptic and network dysfunction. Cold Spring Harb Perspect Med 2, a006338, doi:10.1101/cshperspect.a006338 (2012). 17 Ferreira, S. T., Lourenco, M. V., Oliveira, M. M. De Felice, F. G. Soluble amyloid-beta oligomers as synaptotoxins leading to cognitive impairment in Alzheimer's disease. Front Cell Neurosci 9, 191, doi:10.3389/fncel.2015.00191 (2015). 18 Hardy, J. A. Higgins, G. A. Alzheimer's disease: the amyloid cascade hypothesis. Science 256, 184-185, doi:10.1126/science.1566067 (1992). 19 Karran, E., Mercken, M. De Strooper, B. The amyloid cascade hypothesis for Alzheimer's disease: an appraisal for the development of therapeutics. Nat Rev Drug Discov 10, 698-712, doi:10.1038/nrd3505 (2011). 20 Block, M. L. NADPH oxidase as a therapeutic target in Alzheimer's disease. BMC Neurosci 9 Suppl 2, S8, doi:10.1186/1471-2202-9-S2-S8 (2008). 21 Akiyama, H. et al. Inflammation and Alzheimer's disease. Neurobiol Aging 21, 383-421, doi:10.1016/s0197-4580(00)00124-x (2000). 22 Ridolfi, E., Barone, C., Scarpini, E. Galimberti, D. The role of the innate immune system in Alzheimer's disease and frontotemporal lobar degeneration: an eye on microglia. Clin Dev Immunol 2013, 939786, doi:10.1155/2013/939786 (2013). 23 Heneka, M. T. et al. Neuroinflammation in Alzheimer's disease. The Lancet Neurology 14, 388-405, doi:10.1016/s1474-4422(15)70016-5 (2015). 24 Brown, G. C. Mechanisms of inflammatory neurodegeneration: iNOS and NADPH oxidase. Biochem Soc Trans 35, 1119-1121, doi:10.1042/bst0351119 (2007). 25 Mander, P. Brown, G. C. Activation of microglial NADPH oxidase is synergistic with glial iNOS expression in inducing neuronal death: a dual-key mechanism of inflammatory neurodegeneration. J Neuroinflammation 2, 20, doi:10.1186/1742-2094-2-20 (2005). 26 Chao, C. C. et al. Cytokine-stimulated astrocytes damage human neurons via a nitric oxide mechanism. Glia 16, 276-284, doi:10.1002/(sici)1098-1136(199603)16:3<276::Aid-glia10>3.0.Co;2-x (1996). 27 Honda, K. Porphyromonas gingivalis sinks teeth into the oral microbiota and periodontal disease. Cell Host Microbe 10, 423-425, doi:10.1016/j.chom.2011.10.008 (2011). 28 Guo, Y., Nguyen, K. A. Potempa, J. Dichotomy of gingipains action as virulence factors: from cleaving substrates with the precision of a surgeon's knife to a meat chopper-like brutal degradation of proteins. Periodontol 2000 54, 15-44, doi:10.1111/j.1600-0757.2010.00377.x (2010). 29 Gui, M. J., Dashper, S. G., Slakeski, N., Chen, Y. Y. Reynolds, E. C. Spheres of influence: Porphyromonas gingivalis outer membrane vesicles. Mol Oral Microbiol 31, 365-378, doi:10.1111/omi.12134 (2016). 30 Grenier, D. et al. Effect of inactivation of the Arg- and/or Lys-gingipain gene on selected virulence and physiological properties of Porphyromonas gingivalis. Infect Immun 71, 4742-4748, doi:10.1128/IAI.71.8.4742-4748.2003 (2003). 31 Herrera, B. S. et al. Peripheral blood mononuclear phagocytes from patients with chronic periodontitis are primed for osteoclast formation. J Periodontol 85, e72-81, doi:10.1902/jop.2013.130280 (2014). 32 Zhou, L., Srisatjaluk, R., Justus, D. E. Doyle, R. J. On the origin of membrane vesicles in Gram-negative bacteria. FEMS Microbiology Letters 163, 223-228, doi:10.1111/j.1574-6968.1998.tb13049.x (1998). 33 Henderson, I. R., Navarro-Garcia, F., Desvaux, M., Fernandez, R. C. Ala'Aldeen, D. Type V protein secretion pathway: the autotransporter story. Microbiol Mol Biol Rev 68, 692-744, doi:10.1128/MMBR.68.4.692-744.2004 (2004). 34 Simeone, R., Bottai, D. Brosch, R. ESX/type VII secretion systems and their role in host-pathogen interaction. Curr Opin Microbiol 12, 4-10, doi:10.1016/j.mib.2008.11.003 (2009). 35 Kuehn, M. J. Kesty, N. C. Bacterial outer membrane vesicles and the host-pathogen interaction. Genes Dev 19, 2645-2655, doi:10.1101/gad.1299905 (2005). 36 Grenier, D. Mayrand, D. Functional characterization of extracellular vesicles produced by Bacteroides gingivalis. Infect Immun 55, 111-117, doi:10.1128/iai.55.1.111-117.1987 (1987). 37 Wei, S. et al. Outer membrane vesicles enhance tau phosphorylation and contribute to cognitive impairment. J Cell Physiol 235, 4843-4855, doi:10.1002/jcp.29362 (2020). 38 Dominy, S. S. et al. Porphyromonas gingivalis in Alzheimer’s disease brains: Evidence for disease causation and treatment with small-molecule inhibitors. Science Advances 5, eaau3333, doi:10.1126/sciadv.aau3333 (2019). 39 Ishida, N. et al. Periodontitis induced by bacterial infection exacerbates features of Alzheimer’s disease in transgenic mice. npj Aging and Mechanisms of Disease 3, 15, doi:10.1038/s41514-017-0015-x (2017). 40 Ryder, M. I. Porphyromonas gingivalis and Alzheimer disease: Recent findings and potential therapies. Journal of Periodontology 91, S45-S49, doi:https://doi.org/10.1002/JPER.20-0104 (2020). 41 Haditsch, U. et al. Alzheimer's Disease-Like Neurodegeneration in Porphyromonas gingivalis Infected Neurons with Persistent Expression of Active Gingipains. J Alzheimers Dis 75, 1361-1376, doi:10.3233/jad-200393 (2020). 42 Mantri, C. K. et al. Fimbriae-mediated outer membrane vesicle production and invasion of Porphyromonas gingivalis. Microbiologyopen 4, 53-65, doi:10.1002/mbo3.221 (2015). 43 Seyama, M. et al. Outer membrane vesicles of Porphyromonas gingivalis attenuate insulin sensitivity by delivering gingipains to the liver. Biochim Biophys Acta Mol Basis Dis 1866, 165731, doi:10.1016/j.bbadis.2020.165731 (2020). 44 Ho, M. H., Chen, C. H., Goodwin, J. S., Wang, B. Y. Xie, H. Functional Advantages of Porphyromonas gingivalis Vesicles. PLoS One 10, e0123448, doi:10.1371/journal.pone.0123448 (2015). 45 Veith, P. D. et al. Porphyromonas gingivalis Outer Membrane Vesicles Exclusively Contain Outer Membrane and Periplasmic Proteins and Carry a Cargo Enriched with Virulence Factors. Journal of Proteome Research 13, 2420-2432, doi:10.1021/pr401227e (2014). 46 Lopes, F. M. et al. Comparison between proliferative and neuron-like SH-SY5Y cells as an in vitro model for Parkinson disease studies. Brain Res 1337, 85-94, doi:10.1016/j.brainres.2010.03.102 (2010). 47 Sheets, S. M., Potempa, J., Travis, J., Fletcher, H. M. Casiano, C. A. Gingipains from Porphyromonas gingivalis W83 synergistically disrupt endothelial cell adhesion and can induce caspase-independent apoptosis. Infection and immunity 74, 5667-5678, doi:10.1128/IAI.01140-05 (2006). 48 Ackerman, K., Fiddler, J., Soh, T. Clarke, S. BV-2 Microglial Cells Used in a Model of Neuroinflammation. The FASEB Journal 29, 608.602, doi:https://doi.org/10.1096/fasebj.29.1_supplement.608.2 (2015). 49 Fleetwood, A. J. et al. Metabolic Remodeling, Inflammasome Activation, and Pyroptosis in Macrophages Stimulated by Porphyromonas gingivalis and Its Outer Membrane Vesicles. Front Cell Infect Microbiol 7, 351, doi:10.3389/fcimb.2017.00351 (2017). 50 Kumar, D. K. V. et al. Amyloid-β peptide protects against microbial infection in mouse and worm models of Alzheimer’s disease. Science Translational Medicine 8, 340ra372, doi:10.1126/scitranslmed.aaf1059 (2016). 51 Brothers, H. M., Gosztyla, M. L. Robinson, S. R. The Physiological Roles of Amyloid-β Peptide Hint at New Ways to Treat Alzheimer's Disease. Frontiers in Aging Neuroscience 10, 118 (2018). 52 Jia, L. et al. Pathogenesis of Important Virulence Factors of Porphyromonas gingivalis via Toll-Like Receptors. Frontiers in Cellular and Infection Microbiology 9, 262 (2019). 53 Andrukhov, O., Ertlschweiger, S., Moritz, A., Bantleon, H. P. Rausch-Fan, X. Different effects of P. gingivalis LPS and E. coli LPS on the expression of interleukin-6 in human gingival fibroblasts. Acta Odontol Scand 72, 337-345, doi:10.3109/00016357.2013.834535 (2014). 54 Furuta, N. et al. Porphyromonas gingivalis Outer Membrane Vesicles Enter Human Epithelial Cells via an Endocytic Pathway and Are Sorted to Lysosomal Compartments. Infection and Immunity 77, 4187-4196, doi:10.1128/IAI.00009-09 (2009). 55 Man, S. M. Kanneganti, T.-D. Regulation of inflammasome activation. Immunological reviews 265, 6-21, doi:10.1111/imr.12296 (2015). 56 Elizagaray, M. L. et al. Canonical and Non-canonical Inflammasome Activation by Outer Membrane Vesicles Derived From Bordetella pertussis. Frontiers in Immunology 11, 1879 (2020).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81976-
dc.description.abstract"阿茲海默症(Alzheimer’s Disease, AD),是一種神經退化性疾病,約佔失智人口當中的70%。在阿茲海默症患者腦中發現會有大量神經元的死亡。在其病理特徵中,發現有乙型類澱粉蛋白的大量累積,也有微膠細胞(microglial cell)的活化,兩者會直接和間接地對神經元造成傷害。雖然已經對阿茲海默症的病因有些微了解,但確切成因仍有待進一步釐清。先前研究指出,在阿茲海默症病患腦中有發現一種牙周病的主要致病菌-牙齦卟啉單胞菌(Porphyromonas gingivalis)與其毒素(gingipain)。另一研究發現,從AD病患糞便純化出的細菌的外膜囊泡(outer membrane vesicles, OMV),能夠穿越血腦屏障(blood-brain barrier),並促使濤蛋白(tau)的磷酸化及損害小鼠的認知能力。因此我們假設P. gingivalis的OMV (Pg-OMVs)也能穿過血腦屏障,促進阿茲海默症的病理現象。 本實驗使用P. gingivalis (ATCC #33277)之菌株用以分離其OMV,並使用穿透式電子顯微鏡確認細菌外膜囊泡的結構。並以神經細胞株SH-SY5Y及N2A和微膠細胞株BV-2作為模型來進行體外試驗(in vitro)。使用不同濃度的OMV,進行細胞形態及細胞活性變化的觀察,並以西方墨點法(Western Blot)檢視神經元之細胞凋亡蛋白與微膠細胞之發炎蛋白的表現情形。 實驗結果顯示,分離出的Pg-OMVs為直徑50-150nm大小的球形結構。隨著Pg-OMVs的濃度上升,神經元皺縮及漂浮的情形越顯著、細胞活性也隨之下降,並導致細胞凋亡蛋白(PARP)的截切;另外,Pg-OMVs也使得微膠細胞的細胞活性下降及誘導其發炎蛋白(iNOS、TNF-alpha)的表現。有趣的是,我們的實驗更發現,原以為會與Pg-OMVs一同對細胞造成傷害加成效果的乙型類澱粉蛋白寡聚體,會專一性地抑制Pg-OMVs對神經元與微膠細胞造成的毒性。 雖然在細胞實驗中有證實Pg-OMVs會導致微膠細胞的發炎以及神經元的死亡,與阿茲海默症病癥相符,但在動物體內Pg-OMVs是否真能成功從牙周組織入侵到腦部,再對腦內神經元造成損傷,以及乙型類澱粉蛋白寡聚體抑制Pg-OMVs毒性的機制為何,仍需進一步進行後續實驗做釐清。"zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-25T05:33:28Z (GMT). No. of bitstreams: 1
U0001-0909202113404200.pdf: 5391233 bytes, checksum: 87e68ac7c5f4b0feb8f2d97044cd7250 (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents誌謝………………………………………………………………………I 中文摘要………………………………………………………………II ABSTRACT……………………………………………………….… III 目錄…………………………………………………………………VI 圖目錄………………………………………………………………X 表目錄………………………………………………………………XII CHAPTER 1 緒論…………………………………………………..1 CHAPTER 2 文獻回顧……………………………………………..3 2.1 阿茲海默症………………………………………………………………3 2.1.1 乙型類澱粉蛋白…………………………………………………………3 2.1.2 類澱粉梯瀑理論………………………………………………………4 2.1.3 微膠細胞介導的神經元損傷…………………………………………6 2.2 牙齦卟啉單胞菌………………………………………………………7 2.2.1 牙周病…………………………………………………………………7 2.2.2 外膜囊泡………………………………………………………………8 2.3 相互作用………………………………………………………………9 2.3.1 牙齦卟啉單胞菌與阿茲海默症………………………………………9 CHAPTER 3 研究動機與目的……………………………………..10 3.1 研究動機…………………………………………………………………10 3.2 研究目的…………………………………………………………………10 CHAPTER 4 實驗材料、儀器與方法……………………………….11 4.1 實驗材料………………………………………………………………11 4.1.1 細菌培養…………………………………………………………11 4.1.2 細胞培養……………………………………………………………15 4.1.3 外膜囊泡分離………………………………………………………16 4.1.4 西方墨點法…………………………………………………………17 4.1.5 細胞存活率分析…………………………………………………18 4.1.6 牙齦蛋白酶活性測試………………………………………………18 4.1.7 牙齦蛋白酶活性抑制劑 (gingipain inhibitor)………………19 4.1.8 beta-amyloid oligomer與beta-amyloid fibril製備………………………………20 4.1.9 Enzyme-linked immunosorbent assay (ELISA)…………20 4.1.10 其他實驗耗材……………………………………………………21 4.2 實驗儀器……………………………………………………………22 4.3 實驗方法……………………………………………………………24 4.3.1 beta-amyloid oligomer與beta-amyloid fibril製備方法………………………24 4.3.2 細菌培養、保存與外膜囊泡純化方法……………………………25 4.3.3 細菌實驗方法………………………………………………………27 4.3.4 細胞培養與保存方法………………………………………………28 4.3.5 細胞活性測試(MTT reduction assay)…………………………32 4.3.6 西方墨點法(Western blotting)…………………………………33 4.3.7 蛋白質定量-BCA Assay…………………………………………43 4.3.8 酵素結合免疫吸附分析法(ELISA)………………………………44 4.3.9 細胞實驗……………………………………………………………45 4.3.10 統計分析……………………………………………………………46 CHAPTER 5實驗結果………………………………………………..47 5.1 牙齦卟啉單胞菌釋放帶有牙齦蛋白酶之外膜囊泡……………………47 5.2 Pg-OMVs會使神經細胞與微膠細胞之活性下降…………………49 5.3 Pg-OMVs會造成神經細胞與微膠細胞之型態變化………………51 5.4 Pg-OMVs誘導神經細胞走向細胞凋亡……………………………53 5.5 Pg-OMVs帶有的Arg-gingipain(Rgp)是造成SH-SY5Y細胞活性下降的主要原因. ……………………………55 5.6 Pg-OMVs可以活化BV-2產生發炎因子……………………………56 5.7 beta-amyloid oligomer與beta-amyloid fibril製備………………………………………59 5.8 beta-amyloid oligomer可以保護細胞株因Pg-OMVs所造成的毒性…………60 5.8.1 beta-amyloid oligomer可以逆轉Pg-OMVs造成的細胞形態改變……………60 5.8.2 beta-amyloid oligomer可以抑制Pg-OMVs對SH-SY5Y造成的細胞活性下降.62 5.8.3 beta-amyloid oligomer可以抑制Pg-OMVs誘導的微膠細胞活化……………63 5.9 beta-amyloid fibril對於BV-2細胞的影響與beta-amyloid oligomer有不同的結果………66 5.10 beta-amyloid oligomer對於不同細菌與毒素種類造成的發炎反應有不同的影響…69 CHAPTER 6 討論…………………………………………………..75 CHAPTER 7 結論…………………………………………………..82 CHAPTER 8 參考資料……………………………………………..83
dc.language.isozh-TW
dc.subject牙周病zh_TW
dc.subject乙型類澱粉蛋白zh_TW
dc.subject外膜囊泡zh_TW
dc.subject牙齦卟啉單胞菌zh_TW
dc.subject阿茲海默症zh_TW
dc.subjectAlzheimer’s Diseaseen
dc.subjectOuter membrane vesicleen
dc.subjectPorphyromonas gingivalisen
dc.subjectBeta-amyloiden
dc.subjectPeriodontal Diseaseen
dc.title牙齦卟啉單胞菌之外膜囊泡對神經細胞與微膠細胞的影響及阿茲海默症之致病機轉zh_TW
dc.titleThe Effects of Outer Membrane Vesicles Derived from Porphyromonas gingivalis on Neuron and Microglia in the Pathogenesis of Alzheimer’s Diseaseen
dc.date.schoolyear109-2
dc.description.degree碩士
dc.contributor.coadvisor李伯訓(Bor-Shiunn Lee)
dc.contributor.oralexamcommittee洪千岱(Hsin-Tsai Liu),蕭永基(Chih-Yang Tseng)
dc.subject.keyword牙周病,阿茲海默症,牙齦卟啉單胞菌,外膜囊泡,乙型類澱粉蛋白,zh_TW
dc.subject.keywordPeriodontal Disease,Alzheimer’s Disease,Porphyromonas gingivalis,Outer membrane vesicle,Beta-amyloid,en
dc.relation.page92
dc.identifier.doi10.6342/NTU202103082
dc.rights.note同意授權(限校園內公開)
dc.date.accepted2021-09-14
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept口腔生物科學研究所zh_TW
dc.date.embargo-lift2026-09-09-
顯示於系所單位:口腔生物科學研究所

文件中的檔案:
檔案 大小格式 
U0001-0909202113404200.pdf
  未授權公開取用
5.26 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved