請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81970完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 阮雪芬(Hsueh-Fen Fen) | |
| dc.contributor.author | Wei-Hsuan Wang | en |
| dc.contributor.author | 王薇瑄 | zh_TW |
| dc.date.accessioned | 2022-11-25T05:33:21Z | - |
| dc.date.available | 2026-09-20 | |
| dc.date.copyright | 2021-10-23 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-09-28 | |
| dc.identifier.citation | 1. Hsieh, C.H., et al., Quantitative Proteomics of Th-MYCN Transgenic Mice Reveals Aurora Kinase Inhibitor Altered Metabolic Pathways and Enhanced ACADM To Suppress Neuroblastoma Progression. J Proteome Res, 2019. 18(11): p. 3850-3866. 2. Frejno, M., et al., Proteome activity landscapes of tumor cell lines determine drug responses. Nat Commun, 2020. 11(1): p. 3639. 3. Palumbo, A.M., et al., Tandem mass spectrometry strategies for phosphoproteome analysis. Mass Spectrom Rev, 2011. 30(4): p. 600-25. 4. Stewart, P.A., et al., Relative protein quantification and accessible biology in lung tumor proteomes from four LC-MS/MS discovery platforms. Proteomics, 2017. 17(6): p. 10.1002/pmic.201600300. 5. Michalik, S., et al., A global Staphylococcus aureus proteome resource applied to the in vivo characterization of host-pathogen interactions. Sci Rep, 2017. 7(1): p. 9718. 6. Suresh, V., et al., Quantitative proteomics of hamster lung tissues infected with SARS-CoV-2 reveal host factors having implication in the disease pathogenesis and severity. Faseb j, 2021. 35(7): p. e21713. 7. Chen, Y.J., et al., Proteogenomics of Non-smoking Lung Cancer in East Asia Delineates Molecular Signatures of Pathogenesis and Progression. Cell, 2020. 182(1): p. 226-244.e17. 8. Ubersax, J.A. and J.E. Ferrell, Jr., Mechanisms of specificity in protein phosphorylation. Nat Rev Mol Cell Biol, 2007. 8(7): p. 530-41. 9. Wang, Y.-C., S.E. Peterson, and J.F. Loring, Protein post-translational modifications and regulation of pluripotency in human stem cells. Cell research, 2014. 24(2): p. 143-160. 10. Cheung, C.H.Y., et al., ZNF322A-mediated protein phosphorylation induces autophagosome formation through modulation of IRS1-AKT glucose uptake and HSP-elicited UPR in lung cancer. J Biomed Sci, 2020. 27(1): p. 75. 11. Wang, W.H., et al., Quantitative Phosphoproteomics Reveals Cell Alignment and Mitochondrial Length Change under Cyclic Stretching in Lung Cells. Int J Mol Sci, 2020. 21(11). 12. Hornbeck, P.V., et al., PhosphoSitePlus, 2014: mutations, PTMs and recalibrations. Nucleic Acids Res, 2015. 43(Database issue): p. D512-20. 13. Harsha, H.C. and A. Pandey, Phosphoproteomics in cancer. Mol Oncol, 2010. 4(6): p. 482-95. 14. Drake, J.M., et al., Phosphoproteome Integration Reveals Patient-Specific Networks in Prostate Cancer. Cell, 2016. 166(4): p. 1041-1054. 15. Locard-Paulet, M., et al., Phosphoproteomic analysis of interacting tumor and endothelial cells identifies regulatory mechanisms of transendothelial migration. Sci Signal, 2016. 9(414): p. ra15. 16. Cheung, C.H.Y., et al., MCM2-regulated functional networks in lung cancer by multi-dimensional proteomic approach. Sci Rep, 2017. 7(1): p. 13302. 17. Chang, Y.W., et al., Multiomics Reveals Ectopic ATP Synthase Blockade Induces Cancer Cell Death via a lncRNA-mediated Phospho-signaling Network. Mol Cell Proteomics, 2020. 19(11): p. 1805-1825. 18. Yin, C.F., et al., Phosphoproteome Analysis Reveals Dynamic Heat Shock Protein 27 Phosphorylation in Tanshinone IIA-Induced Cell Death. J Proteome Res, 2020. 19(4): p. 1620-1634. 19. Mayers, J.R., Metabolic markers as cancer clues. Science, 2017. 358(6368): p. 1265-1265. 20. Shao, C.H., et al., Metabolite marker discovery for the detection of bladder cancer by comparative metabolomics. Oncotarget, 2017. 8(24): p. 38802-38810. 21. Wu, J., M. Wu, and Q. Wu, Identification of potential metabolite markers for colon cancer and rectal cancer using serum metabolomics. J Clin Lab Anal, 2020. 34(8): p. e23333. 22. Liu, N., et al., Comparison of Untargeted Metabolomic Profiling vs Traditional Metabolic Screening to Identify Inborn Errors of Metabolism. JAMA Network Open, 2021. 4(7): p. e2114155-e2114155. 23. Wishart, D.S., et al., HMDB 4.0: the human metabolome database for 2018. Nucleic Acids Res, 2018. 46(D1): p. D608-d617. 24. Chen, H.H., et al., The metabolome profiling and pathway analysis in metabolic healthy and abnormal obesity. Int J Obes (Lond), 2015. 39(8): p. 1241-8. 25. Cheung, C.H.Y., et al., Combinatorial targeting of MTHFD2 and PAICS in purine synthesis as a novel therapeutic strategy. Cell Death Dis, 2019. 10(11): p. 786. 26. Rai, A.J., et al., Proteomic approaches to tumor marker discovery. Arch Pathol Lab Med, 2002. 126(12): p. 1518-26. 27. Torres, S., et al., Proteome Profiling of Cancer-Associated Fibroblasts Identifies Novel Proinflammatory Signatures and Prognostic Markers for Colorectal Cancer. Clinical Cancer Research, 2013. 19(21): p. 6006-6019. 28. Subramanian, A., et al., Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proceedings of the National Academy of Sciences, 2005. 102(43): p. 15545-15550. 29. Jolliffe, I.T. and J. Cadima, Principal component analysis: a review and recent developments. Philos Trans A Math Phys Eng Sci, 2016. 374(2065): p. 20150202. 30. Bro, R. and A.K. Smilde, Principal component analysis. Analytical Methods, 2014. 6(9): p. 2812-2831. 31. Gesicho, M.B., A. Babic, and M.C. Were, K-Means Clustering in Monitoring Facility Reporting of HIV Indicator Data: Case of Kenya. Stud Health Technol Inform, 2020. 272: p. 143-146. 32. Kobak, D. and P. Berens, The art of using t-SNE for single-cell transcriptomics. Nat Commun, 2019. 10(1): p. 5416. 33. Unwin, R.D., J.R. Griffiths, and A.D. Whetton, Simultaneous analysis of relative protein expression levels across multiple samples using iTRAQ isobaric tags with 2D nano LC-MS/MS. Nat Protoc, 2010. 5(9): p. 1574-82. 34. Thompson, A., et al., Tandem Mass Tags: A Novel Quantification Strategy for Comparative Analysis of Complex Protein Mixtures by MS/MS. Analytical Chemistry, 2003. 75(8): p. 1895-1904. 35. Kang, C., Y. Lee, and J.E. Lee, Recent advances in mass spectrometry-based proteomics of gastric cancer. World J Gastroenterol, 2016. 22(37): p. 8283-8293. 36. Chen, X., et al., Quantitative proteomics using SILAC: Principles, applications, and developments. Proteomics, 2015. 15(18): p. 3175-92. 37. Wang, L., Q. Nie, and G. Enciso, Nonessential sites improve phosphorylation switch. Biophys J, 2010. 99(6): p. L41-3. 38. Choi, H., et al., Development of an off-line capillary column IMAC phosphopeptide enrichment method for label-free phosphorylation relative quantification. J Chromatogr B Analyt Technol Biomed Life Sci, 2011. 879(28): p. 2991-7. 39. Wakabayashi, M., et al., Extended Coverage of Singly and Multiply Phosphorylated Peptides from a Single Titanium Dioxide Microcolumn. Anal Chem, 2015. 87(20): p. 10213-21. 40. Sugiyama, N., et al., Phosphopeptide enrichment by aliphatic hydroxy acid-modified metal oxide chromatography for nano-LC-MS/MS in proteomics applications. Mol Cell Proteomics, 2007. 6(6): p. 1103-9. 41. Yue, X., A. Schunter, and A.B. Hummon, Comparing multistep immobilized metal affinity chromatography and multistep TiO2 methods for phosphopeptide enrichment. Anal Chem, 2015. 87(17): p. 8837-44. 42. Wirtz, H.R. and L.G. Dobbs, The effects of mechanical forces on lung functions. Respiration Physiology, 2000. 119(1): p. 1-17. 43. Matsugaki, A., N. Fujiwara, and T. Nakano, Continuous cyclic stretch induces osteoblast alignment and formation of anisotropic collagen fiber matrix. Acta Biomater, 2013. 9(7): p. 7227-35. 44. Cui, Y., et al., Cyclic stretching of soft substrates induces spreading and growth. Nat Commun, 2015. 6: p. 6333. 45. Sasai, Y., Cytosystems dynamics in self-organization of tissue architecture. Nature, 2013. 493(7432): p. 318-26. 46. Butler, J.P., et al., Evidence for adult lung growth in humans. N Engl J Med, 2012. 367(3): p. 244-7. 47. Le, H.Q., et al., Mechanical regulation of transcription controls Polycomb-mediated gene silencing during lineage commitment. Nat Cell Biol, 2016. 18(8): p. 864-75. 48. Gudipaty, S.A., et al., Mechanical stretch triggers rapid epithelial cell division through Piezo1. Nature, 2017. 543(7643): p. 118-121. 49. Richard, M.N., et al., Mechanical stretching stimulates smooth muscle cell growth, nuclear protein import, and nuclear pore expression through mitogen-activated protein kinase activation. J Biol Chem, 2007. 282(32): p. 23081-8. 50. Morioka, M., et al., Microtubule dynamics regulate cyclic stretch-induced cell alignment in human airway smooth muscle cells. PLoS One, 2011. 6(10): p. e26384. 51. Nakai, N., F. Kawano, and K. Nakata, Mechanical stretch activates mammalian target of rapamycin and AMP-activated protein kinase pathways in skeletal muscle cells. Mol Cell Biochem, 2015. 406(1-2): p. 285-92. 52. Wedgwood, S., et al., Cyclic stretch stimulates mitochondrial reactive oxygen species and Nox4 signaling in pulmonary artery smooth muscle cells. Am J Physiol Lung Cell Mol Physiol, 2015. 309(2): p. L196-203. 53. Geiger, R.C., et al., Cyclic stretch-induced reorganization of the cytoskeleton and its role in enhanced gene transfer. Gene Ther, 2006. 13(8): p. 725-31. 54. Taylor, W., et al., The effects of cyclic stretch on gene transfer in alveolar epithelial cells. Molecular Therapy, 2003. 7(4): p. 542-549. 55. Ali, M.H., P.T. Mungai, and P.T. Schumacker, Stretch-induced phosphorylation of focal adhesion kinase in endothelial cells: role of mitochondrial oxidants. Am J Physiol Lung Cell Mol Physiol, 2006. 291(1): p. L38-45. 56. Mustafa, S.B., et al., Mechanical stretch induces lung alpha-epithelial Na(+) channel expression. Exp Lung Res, 2014. 40(8): p. 380-91. 57. Cohen, T.S., et al., MAPK activation modulates permeability of isolated rat alveolar epithelial cell monolayers following cyclic stretch. PLoS One, 2010. 5(4): p. e10385. 58. Wang, J.G., et al., Stretch-induced cell proliferation is mediated by FAK-MAPK pathway. Life Sci, 2005. 76(24): p. 2817-25. 59. Pan, J., et al., Mechanical Stretch Activates the JAK/STAT Pathway in Rat Cardiomyocytes. Circulation Research, 1999. 84(10): p. 1127-1136. 60. Reimand, J., O. Wagih, and G.D. Bader, The mutational landscape of phosphorylation signaling in cancer. Sci Rep, 2013. 3: p. 2651. 61. Macek, B., M. Mann, and J.V. Olsen, Global and site-specific quantitative phosphoproteomics: principles and applications. Annu Rev Pharmacol Toxicol, 2009. 49: p. 199-221. 62. Chen, Z., et al., Global phosphoproteomic analysis reveals ARMC10 as an AMPK substrate that regulates mitochondrial dynamics. Nat Commun, 2019. 10(1): p. 104. 63. Yuan, L., Role of FAK-ERK1/2 Signaling Pathway in roliferation of Rat Bone-marrow Mesenchymal Stem Cells Stimulated by Cyclic Stretching. Journal of Medical and Biological Engineering, 2013. 33(2): p. 229. 64. Rysa, J., H. Tokola, and H. Ruskoaho, Mechanical stretch induced transcriptomic profiles in cardiac myocytes. Sci Rep, 2018. 8(1): p. 4733. 65. Hu, C.W., et al., Phosphoproteomic analysis of Rhodopseudomonas palustris reveals the role of pyruvate phosphate dikinase phosphorylation in lipid production. J Proteome Res, 2012. 11(11): p. 5362-75. 66. Kyono, Y., et al., Successive and selective release of phosphorylated peptides captured by hydroxy acid-modified metal oxide chromatography. J Proteome Res, 2008. 7(10): p. 4585-93. 67. Rappsilber, J., M. Mann, and Y. Ishihama, Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nat Protoc, 2007. 2(8): p. 1896-906. 68. Tyanova, S., T. Temu, and J. Cox, The MaxQuant computational platform for mass spectrometry-based shotgun proteomics. Nat Protoc, 2016. 11(12): p. 2301-2319. 69. Bindea, G., et al., ClueGO: a Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics, 2009. 25(8): p. 1091-3. 70. Kumar, L. and E.F. M, Mfuzz: a software package for soft clustering of microarray data. Bioinformation, 2007. 2(1): p. 5-7. 71. Ritchie, M.E., et al., limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res, 2015. 43(7): p. e47. 72. Subramanian, A., et al., Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A, 2005. 102(43): p. 15545-50. 73. Supek, F., et al., REVIGO summarizes and visualizes long lists of gene ontology terms. PLoS One, 2011. 6(7): p. e21800. 74. de Chaumont, F., et al., Icy: an open bioimage informatics platform for extended reproducible research. Nature Methods, 2012. 9(7): p. 690-696. 75. Pagliuso, A., et al., A role for septin 2 in Drp1-mediated mitochondrial fission. EMBO Rep, 2016. 17(6): p. 858-73. 76. Mitra, K. and J. Lippincott-Schwartz, Analysis of Mitochondrial Dynamics and Functions Using Imaging Approaches, in Current Protocols in Cell Biology. 2010. 77. Chapman, K.E., et al., Cyclic mechanical strain increases reactive oxygen species production in pulmonary epithelial cells. Am J Physiol Lung Cell Mol Physiol, 2005. 289(5): p. L834-41. 78. Tschumperlin, D.J. and S.S. Margulies, Alveolar epithelial surface area-volume relationship in isolated rat lungs. Journal of applied physiology, 1999. 86(6). 79. Chen, J., et al., Cyclic stretch enhances apoptosis in human lumbar ligamentum fl avum cells via the induction of reactive oxygen species generation. J Spinal Cord Med, 2016. 39(4): p. 450-4. 80. Liao, X.D., et al., Mechanical stretch induces mitochondria-dependent apoptosis in neonatal rat cardiomyocytes and G2 /M accumulation in cardiac fibroblasts. Cell Research, 2004. 81. Murata, N., et al., Ca2+ influx and ATP release mediated by mechanical stretch in human lung fibroblasts. Biochem Biophys Res Commun, 2014. 453(1): p. 101-5. 82. Kaunas, R., et al., Cooperative effects of Rho and mechanical stretch on stress fiber organization. Proc Natl Acad Sci U S A, 2005. 102(44): p. 15895-900. 83. Waters, C.M., et al., Mechanical stretching of alveolar epithelial cells increases Na(+)-K(+)-ATPase activity. J Appl Physiol (1985), 1999. 87(2): p. 715-21. 84. Abiko, H., et al., Rho guanine nucleotide exchange factors involved in cyclic-stretch-induced reorientation of vascular endothelial cells. J Cell Sci, 2015. 128(9): p. 1683-95. 85. Livne, A., E. Bouchbinder, and B. Geiger, Cell reorientation under cyclic stretching. Nat Commun, 2014. 5: p. 3938. 86. Hoffman, B.D., C. Grashoff, and M.A. Schwartz, Dynamic molecular processes mediate cellular mechanotransduction. Nature, 2011. 475(7356): p. 316-23. 87. Basson, M.A., Signaling in cell differentiation and morphogenesis. Cold Spring Harb Perspect Biol, 2012. 4(6). 88. Heisenberg, C.P. and Y. Bellaiche, Forces in tissue morphogenesis and patterning. Cell, 2013. 153(5): p. 948-62. 89. van Helvert, S., C. Storm, and P. Friedl, Mechanoreciprocity in cell migration. Nat Cell Biol, 2018. 20(1): p. 8-20. 90. Huang da, W., B.T. Sherman, and R.A. Lempicki, Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc, 2009. 4(1): p. 44-57. 91. Ravandi, F., M. Talpaz, and Z. Estrov, Modulation of cellular signaling pathways: prospects for targeted therapy in hematological malignancies. Clin Cancer Res, 2003. 9(2): p. 535-50. 92. Yordy, J.S. and R.C. Muise-Helmericks, Signal transduction and the Ets family of transcription factors. Oncogene, 2000. 19(55): p. 6503-13. 93. Nardone, G., et al., YAP regulates cell mechanics by controlling focal adhesion assembly. Nat Commun, 2017. 8: p. 15321. 94. Smoot, R.L., et al., Platelet-derived growth factor regulates YAP transcriptional activity via Src family kinase dependent tyrosine phosphorylation. J Cell Biochem, 2018. 119(1): p. 824-836. 95. dos Santos, C.C., et al., DNA microarray analysis of gene expression in alveolar epithelial cells in response to TNFalpha, LPS, and cyclic stretch. Physiol Genomics, 2004. 19(3): p. 331-42. 96. Benard, G. and M. Karbowski, Mitochondrial fusion and division: Regulation and role in cell viability. Seminars in Cell Developmental Biology, 2009. 20(3): p. 365-374. 97. Wai, T. and T. Langer, Mitochondrial Dynamics and Metabolic Regulation. Trends Endocrinol Metab, 2016. 27(2): p. 105-117. 98. Wang, Y., et al., Drp1-mediated mitochondrial fission promotes renal fibroblast activation and fibrogenesis. Cell Death Dis, 2020. 11(1): p. 29. 99. Westrate, L.M., et al., Mitochondrial morphological features are associated with fission and fusion events. PLoS One, 2014. 9(4): p. e95265. 100. Dong, H., et al., Characterization of the glutamate receptor-interacting proteins GRIP1 and GRIP2. J Neurosci, 1999. 19(16): p. 6930-41. 101. Palenzuela, R., et al., MAP1B Light Chain Modulates Synaptic Transmission via AMPA Receptor Intracellular Trapping. J Neurosci, 2017. 37(41): p. 9945-9963. 102. Moore, A.S., et al., Dynamic actin cycling through mitochondrial subpopulations locally regulates the fission-fusion balance within mitochondrial networks. Nat Commun, 2016. 7: p. 12886. 103. Picca, A., et al., Mitochondrial quality control mechanisms as molecular targets in cardiac ageing. Nat Rev Cardiol, 2018. 15(9): p. 543-554. 104. Reyes, A., et al., Actin and myosin contribute to mammalian mitochondrial DNA maintenance. Nucleic Acids Res, 2011. 39(12): p. 5098-108. 105. Korobova, F., T.J. Gauvin, and H.N. Higgs, A role for myosin II in mammalian mitochondrial fission. Curr Biol, 2014. 24(4): p. 409-14. 106. Yao, M., et al., The mechanical response of talin. Nat Commun, 2016. 7: p. 11966. 107. Stutchbury, B., et al., Distinct focal adhesion protein modules control different aspects of mechanotransduction. Journal of Cell Science, 2017. 130(9): p. 1612-1624. 108. Rubsam, M., et al., E-cadherin integrates mechanotransduction and EGFR signaling to control junctional tissue polarization and tight junction positioning. Nat Commun, 2017. 8(1): p. 1250. 109. Kippenberger, S., et al., Mechanical stretch stimulates protein kinase B/Akt phosphorylation in epidermal cells via angiotensin II type 1 receptor and epidermal growth factor receptor. J Biol Chem, 2005. 280(4): p. 3060-7. 110. Wozniak, M.A., et al., Focal adhesion regulation of cell behavior. Biochim Biophys Acta, 2004. 1692(2-3): p. 103-19. 111. Michael, K.E., et al., Focal adhesion kinase modulates cell adhesion strengthening via integrin activation. Mol Biol Cell, 2009. 20(9): p. 2508-19. 112. Kuo, J.C., Mechanotransduction at focal adhesions: integrating cytoskeletal mechanics in migrating cells. J Cell Mol Med, 2013. 17(6): p. 704-12. 113. Aoki, M.S., et al., mTOR pathway inhibition attenuates skeletal muscle growth induced by stretching. Cell Tissue Res, 2006. 324(1): p. 149-56. 114. Ma, J., et al., Cyclic stretch induced gene expression of extracellular matrix and adhesion molecules in human periodontal ligament cells. Arch Oral Biol, 2015. 60(3): p. 447-55. 115. Scholz, R., et al., Novel Host Proteins and Signaling Pathways in Enteropathogenic E. coli Pathogenesis Identified by Global Phosphoproteome Analysis. Mol Cell Proteomics, 2015. 14(7): p. 1927-45. 116. Cavanaugh, K.J., J. Oswari, and S.S. Margulies, Role of stretch on tight junction structure in alveolar epithelial cells. American Journal of Respiratory Cell and Molecular Biology, 2001. 25(5): p. 584-591. 117. Zhou, J., et al., Zyxin promotes colon cancer tumorigenesis in a mitotic phosphorylation-dependent manner and through CDK8-mediated YAP activation. Proc Natl Acad Sci U S A, 2018. 115(29): p. E6760-E6769. 118. Ben-Porath, I. and R.A. Weinberg, When cells get stressed: an integrative view of cellular senescence. Journal of Clinical Investigation, 2004. 113(1): p. 8-13. 119. He, C.L., et al., Pyruvate Kinase M2 Activates mTORC1 by Phosphorylating AKT1S1. Sci Rep, 2016. 6: p. 21524. 120. Mishra, P. and D.C. Chan, Metabolic regulation of mitochondrial dynamics. J Cell Biol, 2016. 212(4): p. 379-87. 121. Yu, S.B. and G. Pekkurnaz, Mechanisms Orchestrating Mitochondrial Dynamics for Energy Homeostasis. J Mol Biol, 2018. 430(21): p. 3922-3941. 122. Rog-Zielinska, E.A., et al., Mitochondrial Deformation During the Cardiac Mechanical Cycle. Anat Rec (Hoboken), 2019. 302(1): p. 146-152. 123. Bartolak-Suki, E. and B. Suki, Tuning mitochondrial structure and function to criticality by fluctuation-driven mechanotransduction. Sci Rep, 2020. 10(1): p. 407. 124. Maris, J.M., Recent advances in neuroblastoma. N Engl J Med, 2010. 362(23): p. 2202-11. 125. Friedman, G.K. and R.P. Castleberry, Changing trends of research and treatment in infant neuroblastoma. Pediatr Blood Cancer, 2007. 49(7 Suppl): p. 1060-5. 126. Son, G. and J. Han, Roles of mitochondria in neuronal development. BMB Rep, 2018. 51(11): p. 549-556. 127. Chan, D.C., Mitochondrial fusion and fission in mammals. Annu Rev Cell Dev Biol, 2006. 22: p. 79-99. 128. Ciccarese, F. and V. Ciminale, Escaping Death: Mitochondrial Redox Homeostasis in Cancer Cells. Front Oncol, 2017. 7: p. 117. 129. Wang, Y., et al., ROS-induced mitochondrial depolarization initiates PARK2/PARKIN-dependent mitochondrial degradation by autophagy. Autophagy, 2012. 8(10): p. 1462-76. 130. Bordi, M., F. Nazio, and S. Campello, The Close Interconnection between Mitochondrial Dynamics and Mitophagy in Cancer. Front Oncol, 2017. 7: p. 81. 131. Westermann, B., Mitochondrial fusion and fission in cell life and death. Nat Rev Mol Cell Biol, 2010. 11(12): p. 872-84. 132. Cassidy-Stone, A., et al., Chemical inhibition of the mitochondrial division dynamin reveals its role in Bax/Bak-dependent mitochondrial outer membrane permeabilization. Dev Cell, 2008. 14(2): p. 193-204. 133. Manczak, M., et al., Mitochondrial division inhibitor 1 reduces dynamin-related protein 1 and mitochondrial fission activity. Hum Mol Genet, 2019. 28(2): p. 177-199. 134. Dai, W., et al., Mitochondrial division inhibitor (mdivi-1) decreases oxidative metabolism in cancer. Br J Cancer, 2020. 122(9): p. 1288-1297. 135. Moreira, P.I., et al., Mitochondrial dysfunction is a trigger of Alzheimer's disease pathophysiology. Biochim Biophys Acta, 2010. 1802(1): p. 2-10. 136. Cline, E.N., et al., The Amyloid-beta Oligomer Hypothesis: Beginning of the Third Decade. J Alzheimers Dis, 2018. 64(s1): p. S567-S610. 137. Baek, S.H., et al., Inhibition of Drp1 Ameliorates Synaptic Depression, Abeta Deposition, and Cognitive Impairment in an Alzheimer's Disease Model. J Neurosci, 2017. 37(20): p. 5099-5110. 138. Pandey, A. and M. Mann, Proteomics to study genes and genomes. Nature, 2000. 405(6788): p. 837-46. 139. Cifani, P. and A. Kentsis, Towards comprehensive and quantitative proteomics for diagnosis and therapy of human disease. Proteomics, 2017. 17(1-2). 140. Wei, Y., et al., EGFR-mediated Beclin 1 phosphorylation in autophagy suppression, tumor progression, and tumor chemoresistance. Cell, 2013. 154(6): p. 1269-84. 141. Liao, S.Y., et al., AKT-mediated phosphorylation enhances protein stability and transcription activity of ZNF322A to promote lung cancer progression. Oncogene, 2019. 38(41): p. 6723-6736. 142. Breitzig, M.T., et al., A mitochondrial delicacy: dynamin-related protein 1 and mitochondrial dynamics. Am J Physiol Cell Physiol, 2018. 315(1): p. C80-C90. 143. Iezaki, T., et al., Transcriptional Modulator Ifrd1 Regulates Osteoclast Differentiation through Enhancing the NF-kappaB/NFATc1 Pathway. Mol Cell Biol, 2016. 36(19): p. 2451-63. 144. Bose, S., et al., Phosphorylation of 20S proteasome alpha subunit C8 (alpha7) stabilizes the 26S proteasome and plays a role in the regulation of proteasome complexes by gamma-interferon. Biochem J, 2004. 378(Pt 1): p. 177-84. 145. Wong, Y.H., et al., KinasePhos 2.0: a web server for identifying protein kinase-specific phosphorylation sites based on sequences and coupling patterns. Nucleic Acids Res, 2007. 35(Web Server issue): p. W588-94. 146. Wu, Z.H., et al., Molecular linkage between the kinase ATM and NF-kappaB signaling in response to genotoxic stimuli. Science, 2006. 311(5764): p. 1141-6. 147. Kucuksayan H, H. and S. Akgun S, Pl3K/Akt/NF-κB Signalling Pathway on NSCLC Invasion. Medicinal chemistry, 2016. 06(04). 148. Kato, T., Jr., et al., CK2 Is a C-Terminal IkappaB Kinase Responsible for NF-kappaB Activation during the UV Response. Mol Cell, 2003. 12(4): p. 829-39. 149. Schmidt, D.R., et al., Metabolomics in cancer research and emerging applications in clinical oncology. CA Cancer J Clin, 2021. 150. Esaki, K., et al., L-Serine Deficiency Elicits Intracellular Accumulation of Cytotoxic Deoxysphingolipids and Lipid Body Formation. J Biol Chem, 2015. 290(23): p. 14595-609. 151. Gao, X., et al., Serine Availability Influences Mitochondrial Dynamics and Function through Lipid Metabolism. Cell Rep, 2018. 22(13): p. 3507-3520. 152. Hartmann, D., et al., Long chain ceramides and very long chain ceramides have opposite effects on human breast and colon cancer cell growth. Int J Biochem Cell Biol, 2012. 44(4): p. 620-8. 153. Sudhadevi, T., et al., Advancements in understanding the role of lysophospholipids and their receptors in lung disorders including bronchopulmonary dysplasia. Biochim Biophys Acta Mol Cell Biol Lipids, 2020. 1865(7): p. 158685. 154. Guenther, G.G., et al., Ceramide starves cells to death by downregulating nutrient transporter proteins. Proc Natl Acad Sci U S A, 2008. 105(45): p. 17402-7. 155. Czubowicz, K. and R. Strosznajder, Ceramide in the molecular mechanisms of neuronal cell death. The role of sphingosine-1-phosphate. Mol Neurobiol, 2014. 50(1): p. 26-37. 156. Guenther, G.G. and A.L. Edinger, A new take on ceramide: starving cells by cutting off the nutrient supply. Cell Cycle, 2009. 8(8): p. 1122-6. 157. Greig, F.H. and G.F. Nixon, Phosphoprotein enriched in astrocytes (PEA)-15: a potential therapeutic target in multiple disease states. Pharmacol Ther, 2014. 143(3): p. 265-74. 158. Schmidt, A. and A. Hall, Guanine nucleotide exchange factors for Rho GTPases: turning on the switch. Genes Dev, 2002. 16(13): p. 1587-609. 159. Pawson, T. and P. Nash, Protein-protein interactions define specificity in signal transduction. Genes Dev, 2000. 14(9): p. 1027-47. 160. Fedorova, O.A., et al., Proteomic analysis of the 20S proteasome (PSMA3)-interacting proteins reveals a functional link between the proteasome and mRNA metabolism. Biochem Biophys Res Commun, 2011. 416(3-4): p. 258-65. 161. Li, Y.H., et al., Mdivi-1, a mitochondrial fission inhibitor, modulates T helper cells and suppresses the development of experimental autoimmune encephalomyelitis. J Neuroinflammation, 2019. 16(1): p. 149. 162. Smith, G. and G. Gallo, To mdivi-1 or not to mdivi-1: Is that the question? Dev Neurobiol, 2017. 77(11): p. 1260-1268. 163. Park, G., et al., The transcriptional modulator Ifrd1 controls PGC-1alpha expression under short-term adrenergic stimulation in brown adipocytes. FEBS J, 2017. 284(5): p. 784-795. 164. Cheng, C.T., et al., Arginine starvation kills tumor cells through aspartate exhaustion and mitochondrial dysfunction. Commun Biol, 2018. 1: p. 178. 165. Park, S., et al., Choline dehydrogenase interacts with SQSTM1/p62 to recruit LC3 and stimulate mitophagy. Autophagy, 2014. 10(11): p. 1906-20. 166. Wollam, J., et al., Chromogranin A regulates vesicle storage and mitochondrial dynamics to influence insulin secretion. Cell Tissue Res, 2017. 368(3): p. 487-501. 167. Dimayuga, F.O., et al., SOD1 overexpression alters ROS production and reduces neurotoxic inflammatory signaling in microglial cells. J Neuroimmunol, 2007. 182(1-2): p. 89-99. 168. Kim, H., et al., A mitochondrial division inhibitor, Mdivi-1, inhibits mitochondrial fragmentation and attenuates kainic acid-induced hippocampal cell death. BMC Neurosci, 2016. 17(1): p. 33. 169. Lucas, S., et al., Serine catabolism is essential to maintain mitochondrial respiration in mammalian cells. Life science alliance, 2018. 1(2): p. e201800036-e201800036. 170. Muthusamy, T., et al., Serine restriction alters sphingolipid diversity to constrain tumour growth. Nature, 2020. 586(7831): p. 790-795. 171. Fresques, T., et al., Regulation of ceramide synthase by casein kinase 2-dependent phosphorylation in Saccharomyces cerevisiae. The Journal of biological chemistry, 2015. 290(3): p. 1395-1403. 172. Kraveka, J.M., et al., Involvement of dihydroceramide desaturase in cell cycle progression in human neuroblastoma cells. J Biol Chem, 2007. 282(23): p. 16718-28. 173. Kitajima, I., et al., Ceramide-induced nuclear translocation of NF-kappa B is a potential mediator of the apoptotic response to TNF-alpha in murine clonal osteoblasts. Bone, 1996. 19(3): p. 263-70. 174. Karunakaran, U., et al., CD36 initiated signaling mediates ceramide-induced TXNIP expression in pancreatic beta-cells. Biochim Biophys Acta, 2015. 1852(11): p. 2414-22. 175. Uehara, K., et al., Significant role of ceramide pathway in experimental gastric ulcer formation in rats. J Pharmacol Exp Ther, 2003. 305(1): p. 232-9. 176. Guenther, G.G., et al., Ceramide starves cells to death by downregulating nutrient transporter proteins. Proceedings of the National Academy of Sciences, 2008. 105(45): p. 17402-17407. 177. Rajan, D.P., et al., Cloning and functional characterization of a Na+-independent, broad-specific neutral amino acid transporter from mammalian intestine. Biochimica et Biophysica Acta (BBA) - Biomembranes, 2000. 1463(1): p. 6-14. 178. Dai, W., et al., Mitochondrial division inhibitor (mdivi-1) decreases oxidative metabolism in cancer. British Journal of Cancer, 2020. 122(9): p. 1288-1297. 179. Wang, J., et al., Mitochondrial division inhibitor 1 (mdivi-1) enhances death receptor-mediated apoptosis in human ovarian cancer cells. Biochem Biophys Res Commun, 2015. 456(1): p. 7-12. 180. Deng, S., et al., Mdivi-1 attenuates lipopolysaccharide-induced acute lung injury by inhibiting MAPKs, oxidative stress and apoptosis. Pulmonary Pharmacology Therapeutics, 2020. 62: p. 101918. 181. Xu, H., et al., Exosome-Transmitted PSMA3 and PSMA3-AS1 Promote Proteasome Inhibitor Resistance in Multiple Myeloma. Clin Cancer Res, 2019. 25(6): p. 1923-1935. 182. Diehl, F.F., et al., Cellular redox state constrains serine synthesis and nucleotide production to impact cell proliferation. Nat Metab, 2019. 1(9): p. 861-867. 183. Pugin, J., et al., Cyclic stretch of human lung cells induces an acidification and promotes bacterial growth. Am J Respir Cell Mol Biol, 2008. 38(3): p. 362-70. "……… | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81970 | - |
| dc.description.abstract | 蛋白體學方法提供了現代科學更全面性研究的渠道,讓我們能更深入了解生物系統中複雜的交互作用,蛋白體學有別於傳統探討個別蛋白質,蛋白體學探討的是高通量的蛋白質混和物。蛋白質可以透過後轉譯修飾來調控蛋白質功能的活性,其中蛋白質磷酸化就是最常見的後轉譯修飾。我們利用整合磷酸化蛋白質體和蛋白質體學方法,探討了週期性拉伸誘導肺細胞的分子機制和粒線體分裂抑制劑於神經母細胞瘤的作用機制。在週期性拉伸實驗中,我們選擇人類肺細胞,因為人體的肺臟會因呼吸時收縮,所以細胞並不是處於靜止狀態,我們探討了肺癌細胞和肺纖維細胞間磷酸化蛋白質的程度,發現有對拉伸敏感的磷酸位點,也有細胞屬性特有的磷酸化反應位點。有趣的是,兩個細胞株在經過二十四小時的週期性拉伸後,粒線體傾向於分裂為體積更小的粒線體,除此之外,經過二十四小時拉伸的細胞,細胞排列的方向會垂直於拉伸方向。 粒線體被譽為細胞的能量工廠,尤其重要在需要大量傳輸訊息的神經細胞,其本體、觸手狀的軸突與樹突都可以發現粒線體的蹤影,粒線體對神經細胞是相當重要的。近幾年隨著顯微鏡學的進步,發現粒線體動態變化(Mitochondrial Dynamic)會影響細胞生理,而過去的研究指出粒線體的融合(Mitochondrial fusion)與分裂(Mitochondrial fission)支持了神經細胞不同階段的生長所需。粒線體分裂抑制劑(mdivi-1)是最常被拿來做粒線體融合分裂實驗的藥劑,但近年的研究發現,它影響的不只是粒線體的型態,在動物模型中被證明有助於減緩阿茲海默症,並影響了細胞週期。在本篇研究中,我們利用蛋白體學、磷酸蛋白體學和生物資訊學進行大數據分析,我們發現Mdivi-1 處理後的神經母細胞瘤細胞SK-N-BE(2)C 胞內絲胺酸(Serine)濃度上升,同時它也活化細胞凋亡路徑和降低神經醯胺(Ceramide)濃度,Mdivi-1 還會促進PSMA3S250 去磷酸化,有趣的是,我們發現Mdivi-1 會同時促進生存和死亡訊號,絲氨酸含量充足和粒線體融合屬於細胞存活訊號,而PSMA3S250 去磷酸化、細胞凋亡路徑和降低神經醯胺(Ceramide)濃度屬於細胞死亡訊號,我們推測因為死亡訊號大於存活訊號,所以經過24 小時處理後的神經母細胞瘤傾向死亡。我們希望透過此研究來挖掘目前未知的分子機制,也期望此項研究能神經母細胞瘤病患提供一個新的且有效的治療策略。 本篇論文使用了多維蛋白體學和標靶代謝體研究細胞週期性拉伸和粒線體分裂抑制劑對於癌細胞的作用機轉,希望未來能應用在肺癌與神經母細胞瘤的治療策略。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-25T05:33:21Z (GMT). No. of bitstreams: 1 U0001-2209202102322900.pdf: 14073522 bytes, checksum: 61c9973a021eed6ddc743bc662754352 (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | "Table of Contents 口試委員審定書 I 致謝 II 中文摘要 IV Abstract VI List of Figures XIII List of Tables XVI Abbreviation XVII Chapter 1 Introduction 1 1.1 Proteomics 1 1.2 Proteomic methodologies 3 1.3 Objective of thesis 4 Chapter 2 Quantitative Phosphoproteomics Reveals Cell Alignment and Mitochondrial Length Change under Cyclic Stretching in Lung Cells 6 2.1 Background 6 2.1.1 Cyclic stretch 6 2.1.2 Phosphoproteomics 7 2.1.3 Phosphorylation in response to cyclic stretch 8 2.2 Aim of this study 9 2.3 Material and methods 9 2.3.1 Cell cultures 9 2.3.2 Selection of cyclic stretch conditions 10 2.3.3 Cellular orientation measurement 10 2.3.4 Protein extraction 10 2.3.5 Phosphoproteome experiments 11 2.3.6 NanoLC-MS/MS Analysis 11 2.3.7 Phosphoproteomics data processing and analysis 12 2.3.8 Functional enrichment analysis of differential phosphoproteins 13 2.3.9 Transcriptomics data analysis 13 2.3.10. Immunofluorescence staining 13 2.3.11 Mitochondrial image analysis 14 2.3.12. Statistical analysis 15 2.4 Results 15 2.4.1 Cell surface area (CSA) determination 15 2.4.2 Quantitative Phosphoproteome of Lung Cells in Response to Cyclic Stretch 16 2.4.3 Functional enrichment of stretching-regulated phosphoproteins 17 2.4.4 Functional enrichment of stretching-regulated gene expression 18 2.4.5 Uniaxial cyclic stretch resulted in cell rearrangement 19 2.4.6 Cyclic stretch enhanced mitochondrial length 19 2.4.7 Global view of the phosphorylation events induced by cyclic stretch 20 2.5 Discussion 21 Chapter 3 Integrative proteomics, phosphoproteomics, and targeted metabolomics reveal the molecular mechanism of neuroblastoma cell death induced by mitochondrial division inhibitor 1 (mdivi-1) 24 3.1 Background 24 3.1.1 Neuroblastoma 24 3.1.2 Mitochondria dynamics 24 3.1.3 Proteomics and phosphoproteomics 25 3.2 Aim of this study 26 3.3 Materials and methods 27 3.3.1 Cell cultures 27 3.3.2 Drug treatment 27 3.3.3 Immunocytochemistry (ICC) 28 3.3.4 Image analysis 28 3.3.5 Plasmid construction and DNA manipulation 28 3.3.6 Experimental design and statistical analysis 29 3.3.7 Protein extraction 30 3.3.8 Phosphoproteome experiments 30 3.3.9 Proteome experiment 31 3.3.10 NanoLC-MS/MS Analysis 32 3.3.11 Mass spectrometric data analysis of the proteome and phosphoproteome 33 3.3.12 Functional enrichment 34 3.3.13 Kinase prediction 34 3.3.14 Western blot 35 3.3.15 L-serine quantification 36 3.3.16 Ceramide isolation 36 3.3.17 Instrumentation and data analysis for targeted metabolism analysis 37 3.3.18 Cell cycle analysis 37 3.3.19 Cell proliferation assay 38 3.3.20 Assessment of cell apoptosis 38 3.3.21 Statistical analysis 38 3.4 Results 39 3.4.1 Mdivi-1 blocks mitochondrial fission 39 3.4.2 Quantitative proteome of mdivi-1-treated SK-N-BE(2)C 39 3.4.3 Quantitative phosphoproteome analysis of mdivi-1-treated SK-N-BE(2)C 40 3.4.4 Functional enrichment of mdivi-1-mediated proteins and protein phosphorylation 41 3.4.5 Validation of proteomics and phosphoproteomics 42 3.4.6 Mdivi-1 influences serine levels and induces apoptosis through the regulation of ceramide 43 3.4.7 Continuously phosphorylated PSMA3-S250 facilitates cell proliferation 46 3.5 Discussion 47 Chapter 4 Future perspectives 51 Chapter 5 References 54 Figures 65 Tables 112 " | |
| dc.language.iso | en | |
| dc.subject | 細胞週期性拉伸 | zh_TW |
| dc.subject | 肺細胞 | zh_TW |
| dc.subject | 多體學 | zh_TW |
| dc.subject | 粒線體 | zh_TW |
| dc.subject | 粒線體抑制劑 | zh_TW |
| dc.subject | 絲氨酸 | zh_TW |
| dc.subject | 神經醯胺 | zh_TW |
| dc.subject | 神經母細胞瘤 | zh_TW |
| dc.subject | proteomics | en |
| dc.subject | lung cancer | en |
| dc.subject | neuroblastoma | en |
| dc.subject | ceramide | en |
| dc.subject | serine | en |
| dc.subject | mitochondrial division inhibitor 1 | en |
| dc.subject | mitochondria | en |
| dc.subject | cyclic stretch | en |
| dc.subject | phosphoproteomics | en |
| dc.title | 肺細胞週期性拉伸與神經母細胞瘤粒線體分裂抑制之蛋白體學研究 | zh_TW |
| dc.title | Proteomics of cyclic stretch in lung cells and mitochondrial division inhibition on neuroblastoma | en |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.advisor-orcid | 阮雪芬(0000-0003-4876-3309) | |
| dc.contributor.coadvisor | 黃宣誠(Hsuan-Cheng Huang) | |
| dc.contributor.coadvisor-orcid | 黃宣誠(0000-0002-3386-0934) | |
| dc.contributor.oralexamcommittee | 徐駿森(Hsin-Tsai Liu),許家郎(Chih-Yang Tseng),張心儀,黃翠琴,蔡懷寬 | |
| dc.subject.keyword | 多體學,肺細胞,細胞週期性拉伸,粒線體,粒線體抑制劑,神經母細胞瘤,絲氨酸,神經醯胺, | zh_TW |
| dc.subject.keyword | proteomics,phosphoproteomics,cyclic stretch,mitochondria,mitochondrial division inhibitor 1,serine,ceramide,neuroblastoma,lung cancer, | en |
| dc.relation.page | 184 | |
| dc.identifier.doi | 10.6342/NTU202103278 | |
| dc.rights.note | 同意授權(限校園內公開) | |
| dc.date.accepted | 2021-09-28 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 基因體與系統生物學學位學程 | zh_TW |
| dc.date.embargo-lift | 2026-09-20 | - |
| 顯示於系所單位: | 基因體與系統生物學學位學程 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2209202102322900.pdf 未授權公開取用 | 13.74 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
