請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8196完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 葉德銘(Der-Ming Yeh) | |
| dc.contributor.author | Cheng-Shan Wu | en |
| dc.contributor.author | 吳政珊 | zh_TW |
| dc.date.accessioned | 2021-05-20T00:49:56Z | - |
| dc.date.available | 2025-08-01 | |
| dc.date.available | 2021-05-20T00:49:56Z | - |
| dc.date.copyright | 2020-08-24 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-08-14 | |
| dc.identifier.citation | 王嬿婷. 2015. 釋氧物質與氯化鈣提升菊花對高溫淹水之耐受性. 國立臺灣大學園藝暨景觀學系碩士論文. 臺北. 呂學義. 2010. 日日春花器構造、花粉活力與微體繁殖再生系統之建立. 國立嘉義大學農學研究所碩士論文. 嘉義. 李文南、張喜寧. 2012. 蝴蝶蘭耐寒性之快速檢測與水楊酸及過氧化氫預處理提升耐寒性. 臺東區農業改良場研究彙報 22:79-96. 林煥耿. 2016. 重瓣懸垂日日春之育種. 國立臺灣大學園藝暨景觀學系碩士論文. 臺北. 林慧靜. 2001. 草坪植物耐寒性指標與提高耐寒性之研究. 國立臺灣大學園藝暨景觀學系碩士論文. 臺北. 邱奕璇. 2012. 菊花耐淹水指標與水分生理. 國立臺灣大學園藝暨景觀學系碩士論文. 臺北. 洪嘉樺、葉德銘. 2015. 介質體積含水量對夏秋季花壇植物生長與光合作用之影響. 臺灣園藝. 61:263-280. 高景輝. 1988. 淹水與植物發育. 科學農業叢書第十三號. 科學農業社編印. 臺灣. 臺北. 陳永漢、吳麗春. 1997. 日日春栽培管理. 農業新知. 10-12. 陳俊位、林俊義、許振川. 1997. 台灣日日春病害之發生. 臺中區農業改良場研究彙報 54:47-57. 陳錦木. 2013. 重瓣日日春之花芽型態、花型遺傳及育種. 國立臺灣大學園藝暨景觀學系博士論文. 臺北. 陳錦木、李窓明、葉德銘. 2011. 臺灣的花壇植物產業現況與展望. p.154-167. 綠色城市與花卉產業國際研討會論文集. 國立臺灣大學園藝暨景觀學系編印. 台北. 臺灣. 許謙信、葉德銘. 2007. 菊花耐淹水品種系之選拔. 台中區農業改良場研究彙報 96:23-32. 劉敏俐. 2012. 葉綠素螢光在作物耐熱性篩選之應用. 高雄區農業改良場研究彙報. 21:1-15. 歐陽瑋、吳文希. 1998. 臺灣長春花病害之調查. 植物病理學會刊 7:147-149. 蔡有堂. 2018. 日日春之雄不稔性、花色遺傳與盆花選育. 國立臺灣大學園藝藝景觀學系碩士論文. 臺北. 鶴島 久男. 2005. 花壇學講座(17)-10.主な花壇用花きの育種と品種の發達の譜系(IV)-サルビアとビンか(カサランサス). 農業あよび園藝 80:602-607. Adams, S.R., S. Pearson, and P. Hadley. 1998. The effect of temperature on inflorescence initiation and subsequent development in chrysanthemum cv. Snowdon (Chrysanthemum ×morifolium Ramat.). Scientia Hort. 77:59-72. Adams, S.R., P. Hadley, and S. Pearson. 1998. The effects of temperature, photoperiod, and photosynthetic photon flux on the time to flowering of petunia ‘Express Blush pink’. J. Amer. Soc. Hort. Sci. 123:577-580. Agarwal, S. and A. Grover. 2006. Molecular biology, biotechnology and genomics of flooding-associated low O2 stress response in plants. Crit. Rev. Plant Sci. 25:1-21. Ahsan, N., D.G. Lee, S.H. Lee, K.Y. Kang, J.D. Bahk, M.S. Choi, I.J. Lee, J. Renaut, and B.H. Lee. 2007. A comparative proteomic analysis of tomato leaves in response to waterlogging stress. Physiol. Plant. 131:555-570. All America Selections. 2019. Vinca. 25 Feb 2019. https://all-americaselections.org/product-category/annuals/vinca/ Allen, D.J. and D.R. Ort. 2001. Impacts of chilling temperatures on photosynthesis in warm-climate plants. Trends Plant Sci. 6:36-42. Arbona, V., M.F. Lopez-Climent, R.M. Perez-Clemente, and A. Gomez-Cadenas. 2009. Maintenance of a high photosynthetic performance is linked to flooding tolerance in citrus. Environ. Expt. Bot. 66:135-142. Ashraf, M. and M. Arfan. 2005. Gas exchange characteristics and water relations in two cultivars of Hibiscus esculentus under waterlogging. Biol. Plant. 49:459-462. Ball, V. 1998. Ball Redbook.16th ed. Ball Publ, Batavia, IL. Bacanamwo, M. and L.C. Purcell. 1999. Soybean root morphological and anatomical traits associated with acclimation to flooding. Crop Sci. 39:143-149. Blazich, F.A., P.H. Henry, and F.C. Wise. 1995. Seed germination of annual vinca responds to irradiation and temperature. HortScience 30:357-359. Brüggemann, W. 1992. Low-temperature limitations of photosynthesis in three tropical Vigna species: a chlorophyll fluorescence study. Photosyn. Res. 34:301-310. Campos, P.S., V. Quartin, J.C. Ramalho, and M.A. Nunes. 2003. Electrolyte leakage and lipid degradation account for cold sensitivity in leaves of Coffea sp. plants. J. Plant Physiol. 160:283-292. Carpenter, W.J. and J.F. Boucher. 1992. Germination and storage of vinca seed is influenced by light, temperature, and relative humidity. HortScience 27:993-996. Cathey, H.M. 1976. Seed germination, p. 47–54. In: J.W. Mastalerz (ed.). Bedding plants: A manual on the culture of bedding plants as a greenhouse crop. 2nd ed. Pennsylvania Flower Growers, University Park, PA. Casanova, M.T. and M.A. Brock. 2000. How do depth, duration and frequency of flooding influence the establishment of wetland plant communities? Plant Ecol. 147:237-250. Celik, G. and E. Turhan. 2011. Genotypic variation in growth and physiological responses of common bean (Phaseolus vulgaris L.) seedlings to flooding. Afr. J. Biotechnol. 10:7372-7380. Chen, C.M., T.Y. Wei, and D.M. Yeh. 2012. Morphology and inheritance of double floweredness in Catharanthus roseus. HortScience 47:1679-1681. Curry, H.A. 2012. Naturalising the exotic and exoticising the naturalised:Horticulture, natural history and the rosy periwinkle. Environ. History 18:243-365. Dat, J.F., N. Capelli, H. Folzer, P. Bourgeade, and P.M. Badot. 2004. Sensing and signalling during plant flooding. Plant Physiol. Biochem. 42:273-282. Das, K.K., D. Panda, R.K. Sarkar, J.N. Reddy, and A.M. Ismail. 2009. Submergence tolerance in relation to variable floodwater conditions in rice. Environ. Expt. Bot. 66:425-434. Davidson, R.L. 1968. Effect of root/leaf temperature differentials on root/shoot ratios in some pasture grasses and clover. Ann. Bot. 33:561-569. Ezin, V., R.D.L. Pena, and A. Ahanchede. 2010. Flooding tolerance of tomato genotypes during vegetative and reproductive stages. Braz. J. Plant Physiol. 22: 131-142. Faust, J.E., V. Holcombe, N.C. Rajapakse, and D.R. Layne. The effect of daily light integral on bedding plant growth and flowering. HortScience 40:645-649. Gutierrez Boem, F.H., R.S. Lavado, and C.A. Porcelli. 1996. Note on the effects of winter and spring waterlogging on growth, chemical composition and yield of rapeseed. Field Crops Res. 47:175-179. Halevy, A.H. 1985. Catharanthus roseus, p.166-168. In: CRC handbook of flowering volume II. CRC Press, Boca Raton, FL. Heinze, W. 1976. Growth and flowering of Catharanthus roseus. Gartenbauwissenschaften 41:156-159. Henson, D.Y., S.E. Newman, and D.E. Hartley. 2006. Performance of selected herbaceous annual ornamentals grown at decreasing levels of irrigation. HortScience 41:1481-1486. Heinrichs, D.H. 1972. Root-zone temperature effects on flooding tolerance of legumes. Can. J. Plant Sci. 52:985-990. Howe, T.K. and W.E. Waters. 1994. Evaluation of Catharanthus (vinca) cultivars for the landscape. Proc. Fla. State Hort. Soc. 107:404-408. Hu, W., K. Shi, X.S. Song, X. Xia, Y. Zhou, and J. Yu. 2006. Different effects of chilling on respiration in leaves and roots of cucumber (Cucumis sativus). Plant Physiol. Biochem. 44:837-843. Islam, M.A. and S.E. Macdonald. 2004. Ecophysiological adaptations of black spruce (Picea mariana) and tamarack (Larix laricina) seedlings to flooding. Trees 18:35-42. Jaleel, C.A., R. Gopi, B. Sankar, M. Gomathinayagam, and R. Panneerselvam. 2008. Differential responses in water use efficiency in two varieties of Catharanthus roseus under drought stress. Comptes Rendus Biol. 331:42-47. Jackson M.B. and M.C. Drew. 1984. Effects of flooding on growth and metabolism of herbaceous plants, p 47-128. In:T.T. Kozlowskii (ed.). Flooding and plant growth. Academic Press, Orlando, FL. Kalaji, H.M. and P. Guo. 2008. Chlorophyll fluorescence: a useful tool in barley plant breeding programs. p. 447-471. In: A. Sánchez and S.J. Gutierrez (eds.). Photochemistry Research Progress. Nova Science Publishers, Inc, NY. Kumar, P., M. Pal, R Joshi, and R.K. Sairam. 2013. Yield, growth and physiological responses of mung bean [Vigna radiata (L.) Wilczek] genotypes to waterlogging at vegetative stage. Physiol. Mol. Biol. Plants. 19:209-220. Łata, B. 2007. Cultivation, mineral nutrition and seed production of Catharanthus roseus (L.) G. Don in the temperate climate zone. Phytochem. Rev. 6:403-411. Leshem, Y. 1992. Plant Membranes: A biophysical approach to structure. Development and Senescence. Kluwer. London. Liao, C.T. and C.H. Lin. 2001. Physiological adaptation of crop plants to flooding stress. Proc. Natl. Sci. Council, R.O.C. 25:148-157. Liao, F.Y., Y. Xie, and H. Jiang. 2013. The effect of water stress on the physiology of Vinca major ‘Variegata’. Appl. Mech. Materi. 409:782-787. Lin, H.K., T.Y. Wei, C.M. Chen, and D.M. Yeh. 2018. Relationship between phloem fiber and trailing habit, and independent inheritance of growth habit and flower form in periwinkle. J. Amer. Soc. Hort. Sci. 143:67-71. Lone, A.A., M.H. Khan, Z.A. Dar, and S.H. Wani. 2016. Breeding strategies for improving growth and yield under waterlogging conditions in maize: A review. Maydica 61:1-11. Lukatkin, A.S., A. Brazaityte, C. Bobinas, and P. Duchovskis. 2012. Chilling injury in chilling-sensitive plants: A review. Agriculture 99:111-124. Malik, A.I., T.D. Colmer, H. Lambers, T.L. Setter, and M. Schortemeyer. 2002. Short-term waterlogging has long-term effects on the growth and physiology of wheat. New Phytol. 153:225-236. Miyajima, D. 2004. Pollination and seed set in vinca [Catharanthus roseus (L.) G. Don]. J. Hort. Sci. Biotechnol. 79:771-775. National Garden Bureau Inc. 2002. 2002: Year of the Vinca. 8th May 2013. Nau, J. 1991. Vinca, p. 782–784. In: V. Ball (ed.). Ball red book: Greenhouse growing. 15th ed. Geo. J. Ball Publishing, West Chicago, IL. Niu, G., D.S. Rodriguez, and Y.T. Wang. 2006. Impact of drought and temperature on growth and leaf gas exchange of six bedding plant species under greenhouse conditions. HortScience 41:1408-1411. Ojeda, M., B. Schaffer, and F.S. Davies. 2004. Flooding, root temperature, physiology and growth of two Annona species. Tree Physiol. 24:1019-1025. Olivella, C., C. Biel, M. Vendrell, and R. Savé. 2000. Hormonal and physiological responses of Gerbera jamesonii to flooding stress. HortScience 35:222-225. Ou, L.J., X.Z Dai, Z.Q. Zheng, and X.X. Zou. 2011. Responses of pepper to waterlogging stress. Photosynthetica 49:339-345. Peterson, D.L. and F.A. Bazzaz. 1984. Photosynthetic and growth responses of silver maple (Acer saccharinum L.) seedlings to flooding. Amer. Midland Natur. 112:261-272. Pietsch, G.M., W.H. Carlson, R.D. Heins, and J.E. Faust. 1995. The effect of day and night temperature and irradiance on development of Catharanthus roseus (L.) ‘Grape Cooler’. J. Amer. Soc. Hort. Sci.120:877-881. Pociecha, E., J. Kościelniak, and W. Filek. 2008. Effects of root flooding and stage of development on the growth and photosynthesis of field bean (Vicia faba L. minor). Acta Physiol. Plant. 30: 529-535. Reilly, A. 1978. Park’s success with seeds. Geo. W. Park Seed Co., Greenwood, S.C. Silva, S.D.D.A., M.J.C.D.M. Sereno, C.F.L Silva, and A.C. De Oliveira, J.F.B. Neto. 2007. Inheritance of tolerance to flooded soils in maize. Crop Breeding Appl. Biotechnol. 7:165-172. Striker, G.G., R.F. Izaguirre, M.E. Manzur, and A.A. Grimoldi. 2012. Different strategies of Lotus japonicus, L. corniculatus and L. tenuis to deal with complete submergence at seedling stage. Plant Biol. 14:50-55. Su, J., F. Zhang, X. Yang, Y. Feng, X. Yang, Y. Wu, Z. Guan, W. Feng, and F. Chen. 2017. Combining ability, heterosis, genetic distance and their intercorrelations for waterlogging tolerance traits in chrysanthemum. Euphytica 213:42. Syngenta Flowers North America. 2020. Cora® XDR Mix. 14. May 2020. < https://www.syngentaflowers-us.com/product/flower/70081609 > Tang, S. L. and H. H. Chang. 1990. Studies on the flooding tolerance during seed germination of soybean II. Relationship between ADH activity, ethanol accumulation and flooding tolerance. J. Agr. Assoc. China. 150:22-33. Trippi, V.S. and K.V. Thirnann. 1983. The exudation of solutes during senescence of oat leaves. Physiol. Plant. 58:21-28. Trought, M.C.T. and M.C. Drew. 1980. The development of waterlogging damage in wheat seedlings (Triticum aestivum L.). Plant Soil 54:77-94. Ueber, E. and L. Hendriks. 1992. Effects of intensity, duration and timing of a temperature drop on the growth and flowering of Euphorbia pulcherrima Willd. ex Klotzsch. Acta Hort. 327:33-40. USDA. 2014. Census of Horticultural Specialties. United States Department of Agriculture, Washington. 20 Feb 2019. <https://www.nass.usda.gov/Publications/AgCensus/2012/Online_Resources/Census_of_Horticulture_Specialties/> Vaid, M. and E.S.Runkle. 2013. Developing flowering rate models in response to mean temperature for common annual ornamental crops. Scientia Hort. 161:15-23. Vu, J.C.V. and G. Yelenosky. 1991. Photosynthetic responses of citrus trees to soil flooding. Physiol. Plant. 81:7-14. Wang, K.H. and Y.W. Jiang. 2007. Waterlogging tolerance of kentucky bluegrass cultivars. HortScience 42:386-390. Wang, H., Y. Chen, W. Hu, J.L. Snider, and Z. Zhou. 2019. Short-term soil-waterlogging contributes to cotton cross tolerance to chronic elevated temperature by regulating ROS metabolism in the subtending leaf. Plant Physiol. Biochem. 139:333-341. Warner, R.M. 2020. Differential temperature sensitivity of flowering time and crop quality parameters of 20 seed-propagated petunia cultivars. HortScience 55:362-367. Williamson, M. 2019. Vinca diseases. Home Garden Info. Ctr. 2108. Worku, W. 2016. Waterlogging effects on growth, nodulation and productivity of Desi and Kabuli chickpea (Cicer arietinum L.). Ethiopian J. Biol. Sci.15:55-77. Xu, L., R. Pan, L. Shabala, S. Shabala, and W.Y. Zhang. 2019. Temperature influences waterlogging stress-induced damage in Arabidopsis through the regulation of photosynthesis and hypoxia-related genes. Plant Growth Regulat. 89:143-152. Yan, B., Q. Dai, X.Z. Liu, S.B. Huang, and Z.X. Wang. 1996. Flooding-induced membrane damage, lipid oxidation and activated oxygen generation in corn leaves. Plant Soil 179:261-268. Yasumoto, S., Y. Terakado, M. Matsuzaki ,and K. Okada. 2011. Effects of high water table and short-term flooding on growth, yield, and seed quality of sunflower. Plant Prod. Sci. 14:233-248. Yeboah, M.A., X.H. Chen, G.H. Liang, M.H. Gu, and C.W. Xu. 2008. Inheritance of waterlogging tolerance in cucumber (Cucumis sativus L.). Euphytica 162:145-154. Yin, D.M., S.M. Chen, F.D. Chen, Z.Y. Guan, and W. Fang. 2009. Morphological and physiological responses of two chrysanthemum cultivars differing in their tolerance to waterlogging. Environ. Expt. Bot. 67:87-93 Yin, D.M., S.M. Chen, F.D. Chen, Z.Y. Guan, and W. Fang. 2010. Morpho-anatomical and physiological responses of two Dendranthema species to waterlogging. Environ. Expt. Bot. 68:122-130. Zhou, M.L., J.R. Shao, and Y.X. Tang. 2009. Production and metabolic engineering of terpenoid indole alkaloids in cell cultures of the medicinal plant Catharanthus roseus (L.) G. Don (Madagascar periwinkle). Biotech. Appl. Biochem. 52:313-323. Zheng, B., P. Lyu, and X.Y. Wang. 2016. Effects of waterlogging in different growth stages on the photosynthesis, growth, yield, and protein content of three wheat cultivars in Jianghan Plain. Agr. Sci. Technol. 17:1083-1088. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8196 | - |
| dc.description.abstract | 日日春[Catharanthus roseus (L.) G. Don]為亞熱帶/熱帶重要花壇植物,耐熱但不耐溼。本研究比較淹水對不同品種日日春於穴盤苗期與開花株生長與生理之影響,選拔較耐淹水之雜交後裔,以期了解並改善日日春之生產及景觀應用問題。 冬季淹水16天後排水四天,參試日日春品種之開花株葉片黃化、葉片萎凋下垂反捲或甚至呈水浸狀,花朵變小且變少。參試品種中,外觀表現以 ‘Cora Cascade Magenta’ (CCM)維持較佳,‘Jams ‘N Jellies Blackberry’ (JBlack) 與 ‘Cora Cascade Strawberry’ (CCS) 較差。罹病程度 CCM最低,JBlack 次之,CCS 最高。CCM 較耐淹水,JBlack 與 CCS 較不耐淹水。於淹水處理後,較耐淹水的 CCM 光合作用較佳,較不耐淹水的 CCS 較差,且淨光合作用速率(net CO2 assimilation rate, Pn)、氣孔導度(stomatal conductance, gs)、蒸散速率(transpiration rate, Tr)於品種對淹水耐受性之排序趨勢一致,淹水逆境使光合作用降低為氣孔因素導致。 於春夏季淹水處理七天後恢復正常澆水十天,參試品種中‘Mega Bloom Lavender’ 植株外觀受逆境影響較不明顯,而 ‘Tattoo Raspberry’與‘Tattoo Papaya’葉片下垂反捲。光合作用及葉綠素螢光調查顯示,淹水處理使Pn、gs、Tr 降低,非光化學淬熄(Non-photochemical quenching, qN) 上升。‘Tattoo Raspberry’與‘Tattoo Papaya’ 之Pn降低 79.8% - 84.7%,qN升高 51.1% - 52.0%,為不耐淹水之品種;‘Mega Bloom Lavender’之Pn降低66.2%,qN升高39.8% 受淹水影響相對較小。本試驗結果顯示Pn與qN可作為耐淹水之生理指標。 於7-8月試驗中穴盤苗淹水抑制所有參試12品種生長,使所有植株外觀矮小,葉片黃化,株高、葉面積、地上部與全株乾重皆低於正常澆水之對照組,但品種之耐受程度有異;1-2月間淹水處理則生長影響不明顯,全株乾重與葉面積可作為穴盤苗期耐淹水性之指標。‘Mega Bloom Polka Dot’穴盤苗於兩次試驗皆較能維持生長,對淹水較不敏感;‘Jams ‘N Jellies Blackberry’穴盤苗生長於兩次試驗皆受淹水處理影響大,為淹水敏感之品種。 將耐開花株淹水之‘Cora Cascade Magenta’ (CCM) 與蔡(2018)選育具淡橘紅色花冠且具有紫色中型眼圈及小型白色眼圈之新穎花色純系TP1701033為親本進行全互交,得CCM⊗、TP1701033 F6、CCM×TP1701033 F5、TP1701033 F5×CCM。四個日日春自交與雜交組合之實生苗於夏季進行穴盤苗期淹水,淹水處理使葉片數、葉綠素計讀值、葉面積、地上下部乾重與全株乾重皆顯著降低。淹水對CCM⊗ 於株高、葉面積、地上下部乾重、全株乾重受淹水影響最小,TP1701033 F6、CCM×TP1701033 F5與TP1701033 F5×CCM三者生長量因淹水而減少之比率較多且相近。CCM×TP1701033 F5、TP1701033 F5 ×CCM 後裔葉面積、地上、地下部與全株乾重於淹水處理與對照組之頻度分布高峰多介於CCM⊗、TP1701033 F6之間,前述之所有授粉組合對提升TP1701033 後代穴盤苗耐淹水性之效果不明顯,未見雜種優勢或母系遺傳現象。 從日日春開放授粉種子選出強健單株,經由自交選出大花強健單株,再進行自交或與TP1701033 F6為種子親雜交,將其360株自交與雜交後裔進行開花株淹水十天後正常澆水十天選拔。選出五株耐淹水單株,分別具有亮粉紅色花冠 (RP 64C)帶有大型白色擴散眼圈;洋紅色花冠(RP 61B)帶有大型白色眼圈;其中三株為淡橘色花冠(R 43C)帶有深紫色中型眼圈且花托筒周圍有小型白色眼圈,具有大花、對比鮮豔且新穎花色等優良性狀,可作為後續耐淹水品種之選育材料。 將日日春大花耐淹水後裔TS1901024、TS1901048、TS1901080與其對照品種‘Valiant Pure White’、‘Mega Bloom Orchid Halo’、‘Pacifica Burgundy Halo XP’ (PBH)扦插苗於日夜均溫17.1ºC/14.6ºC環境涼溫處理或日夜均溫33.4ºC/25.0ºC 生長適溫處理35天。涼溫使日日春生長減緩,開花較晚且花徑與花朵數減少,光合作用降低。TS1901080具紫紅色花冠帶有白色中至大型眼圈,於涼溫處理之花徑較對照品種PBH大,且到花天數提早8天,其光合作用與乾重因涼溫而降低量最小,且生長適溫下栽培花徑可達6.2 cm,顯著高於對照品種,具有大花、耐淹水、較耐低溫等優良特性,深具商業潛力。 | zh_TW |
| dc.description.abstract | Vinca [Catharanthus roseus (L.) G. Don] is an important bedding plant due to its heat-tolerance. However, vinca is rather susceptible to waterlogging (WL) during rainy summer in tropical areas. The objectives of this study were to compare the growth responses of plug seedlings and flowering plants to WL in different vinca cultivars under various seasonal environments, and to select progenies that were WL-tolerant. After 16-d WL followed by 4-d draining, flowering plants of vinca produced chlorotic, wilting, drooping, and even water-soaked leaves, with smaller and fewer flowers. After WL, ‘Cora Cascade Magenta’ (CCM) performed acceptable, with lowest disease symptoms and highest net CO2 assimilation rate (Pn), stomatal conductance (gs), and transpiration rate (Tr). In contrast, ‘Jams ‘N Jellies Blackberry’ and ‘Cora Cascade Strawberry’ grew poorly under WL, were more susceptible to disease, with lowest Pn, gs, and Tr. Decreased photosynthesis by WL was caused by stomatal limitation. After 7-d WL followed by 10-d recovery in early summer, flowering plants of some cultivars produced drooping leaves. Non-photochemical quenching (qN) increased, and the Pn, gs, and Tr decreased in all WL-cultivars tested. The WL-sensitive ‘Tattoo Raspberry’ and ‘Tattoo Papaya’ showed Pn decreased by 79.8% - 84.7%, and qN increased by 51.1% - 52.0 %. In contrast, the WL-tolerant ‘Mega Bloom Lavender’ performed well, Pn decreased by 66.2%, and qN increased by 39.8%. Photosynthesis and qN could be used as indicators to select WL-tolerant cultivars. After sowing for 10 days, young plug seedlings of twelve vinca cultivars were well-drained or WL for 40-50 days. Results show that all WL-treated plants exhibited leaf chlorosis and reduced growth in July to August. However, the WL effects were not so obvious in plants treated in January to February. Plant total dry weight and leaf area could be used as indicators of WL tolerance in plug seedling stage. Plug seedlings of ‘Mega Bloom Polka Dot’ exhibited consistently higher tolerance to WL. In contrast, growth of WL-sensitive ‘Jams ‘N Jellies Blackberry’ was greatly affected by WL. The WL-tolerant ‘Cora Cascade Magenta’(CCM) and TP1701033, a novelty pure line with a pale orange-red corolla, purple mid-size eye zone and small white eye zone selected by Tsai (2018), were used as parents. Plug seedlings of CCM⊗, TP1701033 F6, CCM×TP1701033 F5, and TP1701033 F5×CCM were well-drained or WL for 40 days in summer. The WL treatment reduced the number of leaves, SPAD-502 value, leaf area, and dry weights in progenies from all cross combinations. The WL- CCM⊗ exhibited lowest reductions in plant height, leaf area, and dry weight, as compared with WL-progenies from other three crosses. The leaf area, shoot, root, and total dry weight distribution of CCM×TP1701033 F5 and TP1701033 F5×CCM progenies peaked were often between CCM⊗ and TP1701033 F6, indicating that the above combinations showed limited improvement to the WL-tolerance of plug seedlings. There were no transgressive segregation or maternal inheritance. A vigorous open pollinated vinca progeny was used as self-crossed parent. Twelve vigorous progenies with and large flowers were selected, and thereafter self-crossed or crossed with TP1701033 F6 as male parent. Five WL-tolerant plants were then selected from 360 selfed and crossed pollinated progenies after 10-d WL followed by 10-d recovery. These selected five plants had light pink corolla (RP 64C) with large white diffuse eye zone, magenta corolla (RP 61B) with large white eye zone. Three of the selected plants have light orange corolla (R 43C) with dark purple medium-sized eye zone and small white eye around hypanthium. These selected WL-tolarent and large flowered plants had commercial potential and could be used as breeding materials for WL-tolerance. The cutting seedlings of WL-tolarent and large flowered progenies, TS1901024, TS1901048, and TS1901080, and those similar cultivars, ‘Valiant Pure White’, ‘Mega Bloom Orchid Halo’, and ‘Pacifica Burgundy Halo XP’ were treated in cool temperature (day/night temp. 17.1ºC/14.6ºC phytotron) or optimum temperature (day/night temp. 33.4ºC/25.0ºC phytotron) for 35 days. Plants in cool temperature growed slower, bloomed later, had smaller and fewer flower, and had lower photosynthesis rate. The WL-tolarent and large flowered progeny TS1901080 has magenta corolla with medium to large white eye zone. TS1901080 had larger flower than similar cultivar ‘Pacifica Burgundy Halo XP’, the day to flower get earlier for 8-d, the photosynthesis rate and dry weight reduced fewer in cool temperature. TS1901080 had 6.2 cm flowers in optimum temperature, which was larger than similar cultivar ‘Pacifica Burgundy Halo XP’. TS1901080 has excellent characteristics such as large flower, WL- tolerance, and cool temperature tolerance. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-20T00:49:56Z (GMT). No. of bitstreams: 1 U0001-1408202020053400.pdf: 5169511 bytes, checksum: 0296115b7fb08e776cfd2c0d900d93f6 (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 摘要 i Abstract iii 目錄 vi 表目錄 viii 圖目錄 x 前言 (Introduction) 1 前人研究 (Literature Review) 3 一、日日春 3 二、淹水對植物之生長與生理反應 5 三、影響植物淹水耐受性之因子 11 四、耐淹水植物之雜交選育 13 五、低溫對花壇植物生長與生理之影響 14 材料與方法 (Materials and Methods) 16 試驗一、冬季淹水16天後排水四天對四品種日日春開花株生長與光合作用之影響 16 試驗二、春夏季淹水七天後正常澆水十天對五品種日日春開花株生長與光合作用之影響 19 試驗三、於7-8月淹水對12品種日日春穴盤苗生長之影響 20 試驗四、於1-2月淹水對12品種日日春穴盤苗生長之影響 22 試驗五、日日春雜交後代實生穴盤苗之耐淹水性 22 試驗六、耐淹水之雜交後裔開花株選拔 24 試驗七、涼溫對日日春耐淹水後裔及對照品種扦插苗生長與開花之影響 26 結果 (Results) 30 試驗一、冬季淹水16天後排水四天對四品種日日春開花株生長與光合作用之影響 30 試驗二、春夏季淹水七天後正常澆水十天對五品種日日春開花株生長與光合作用之影響 31 試驗三、於7-8月淹水對12品種日日春穴盤苗生長之影響 33 試驗四、於1-2月淹水對12品種日日春穴盤苗生長之影響 35 試驗五、日日春雜交後代實生穴盤苗耐淹水性 37 試驗六、耐淹水之雜交後裔開花株選拔 39 試驗七、涼溫對日日春耐淹水後裔及對照品種扦插苗生長與開花之影響 40 討論 (Discussion) 44 試驗一、冬季淹水16天後排水四天對四品種日日春開花株生長與光合作用之影響 44 試驗二、春夏季淹水七天後正常澆水十天對五品種日日春開花株生長與光合作用之影響 46 試驗三、於7-8月淹水對12品種日日春穴盤苗生長之影響 49 試驗四、於1-2月淹水對12品種日日春穴盤苗生長之影響 53 試驗五、日日春雜交後代實生苗耐淹水性 54 試驗六、耐淹水之雜交後裔開花株選拔 55 試驗七、涼溫對日日春耐淹水後裔及對照品種扦插苗生長與開花之影響 57 綜合討論與結論 (General Discussion and Conclusion) 60 參考文獻 (References) 109 | |
| dc.language.iso | zh-TW | |
| dc.title | 淹水對日日春生長之影響及選育大花耐淹水之後裔 | zh_TW |
| dc.title | Effects of Waterlogging on Growth of Vinca Cultivars and Selection of Large-flowered and Waterlogging-tolerant Progeny | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 沈榮壽(Rong-Show Shen),林淑怡(Shu-I Lin),許富鈞(Fu-Chiun Hsu) | |
| dc.subject.keyword | 光合作用,電解質滲漏,乾重,開花, | zh_TW |
| dc.subject.keyword | photosynthesis,electrolyte leakage,dry weight,flowering, | en |
| dc.relation.page | 117 | |
| dc.identifier.doi | 10.6342/NTU202003483 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2020-08-16 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 園藝暨景觀學系 | zh_TW |
| dc.date.embargo-lift | 2025-08-01 | - |
| 顯示於系所單位: | 園藝暨景觀學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1408202020053400.pdf | 5.05 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
