請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81960完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 邱繼輝(Kay-Hooi Khoo) | |
| dc.contributor.author | Yu-Chun Chien | en |
| dc.contributor.author | 簡瑜君 | zh_TW |
| dc.date.accessioned | 2022-11-25T05:33:10Z | - |
| dc.date.available | 2027-02-09 | |
| dc.date.copyright | 2022-02-18 | |
| dc.date.issued | 2022 | |
| dc.date.submitted | 2022-02-10 | |
| dc.identifier.citation | Al Barashdi, M. A., Ali, A., McMullin, M. F., Mills, K. (2021). Protein tyrosine phosphatase receptor type C (PTPRC or CD45). J Clin Pathol, 74 (9), 548-552. doi:10.1136/jclinpath-2020-206927 Andersen, J. N., Elson, A., Lammers, R., Romer, J., Clausen, J. T., Moller, K. B., Moller, N. P. (2001). Comparative study of protein tyrosine phosphatase-epsilon isoforms: membrane localization confers specificity in cellular signalling. Biochem J, 354 (Pt 3), 581-590. Apweiler, R., Hermjakob, H., Sharon, N. (1999). On the frequency of protein glycosylation, as deduced from analysis of the SWISS-PROT database. Biochim Biophys Acta, 1473 (1), 4-8. doi:10.1016/s0304-4165 (99)00165-8 Ardini, E., Agresti, R., Tagliabue, E., Greco, M., Aiello, P., Yang, L. T., . . . Sap, J. (2000). Expression of protein tyrosine phosphatase alpha (RPTPalpha) in human breast cancer correlates with low tumor grade, and inhibits tumor cell growth in vitro and in vivo. Oncogene, 19 (43), 4979-4987. doi:10.1038/sj.onc.1203869 Aschner, Y., Khalifah, A. P., Briones, N., Yamashita, C., Dolgonos, L., Young, S. K., . . . Downey, G. P. (2014). Protein tyrosine phosphatase alpha mediates profibrotic signaling in lung fibroblasts through TGF-beta responsiveness. Am J Pathol, 184 (5), 1489-1502. doi:10.1016/j.ajpath.2014.01.016 Aschner, Y., Nelson, M., Brenner, M., Roybal, H., Beke, K., Meador, C., . . . Downey, G. P. (2020). Protein tyrosine phosphatase-alpha amplifies transforming growth factor-beta-dependent profibrotic signaling in lung fibroblasts. Am J Physiol Lung Cell Mol Physiol, 319 (2), L294-L311. doi:10.1152/ajplung.00235.2019 Badgett, M. J., Boyes, B., Orlando, R. (2017). Predicting the Retention Behavior of Specific O-Linked Glycopeptides. J Biomol Tech, 28 (3), 122-126. doi:10.7171/jbt.17-2803-003 Baker, P. R., Trinidad, J. C., Chalkley, R. J. (2011). Modification Site Localization Scoring Integrated into a Search Engine. Molecular Cellular Proteomics, 10 (7). doi:10.1074/mcp.M111.008078 Belouzard, S., Chu, V. C., Whittaker, G. R. (2009). Activation of the SARS coronavirus spike protein via sequential proteolytic cleavage at two distinct sites. Proc Natl Acad Sci U S A, 106 (14), 5871-5876. doi:10.1073/pnas.0809524106 Bern, M., Kil, Y. J., Becker, C. (2012). Byonic: advanced peptide and protein identification software. Curr Protoc Bioinformatics, Chapter 13, Unit13 20. doi:10.1002/0471250953.bi1320s40 Bilwes, A. M., den Hertog, J., Hunter, T., Noel, J. P. (1996). Structural basis for inhibition of receptor protein-tyrosine phosphatase-alpha by dimerization. Nature, 382 (6591), 555-559. doi:10.1038/382555a0 Brockhausen, I., Stanley, P. (2015). O-GalNAc Glycans. In rd, A. Varki, R. D. Cummings, J. D. Esko, P. Stanley, G. W. Hart, M. Aebi, A. G. Darvill, T. Kinoshita, N. H. Packer, J. H. Prestegard, R. L. Schnaar, P. H. Seeberger (Eds.), Essentials of Glycobiology 3rd edition (pp. 113-123). Cold Spring Harbor (NY). Cao, W. Q., Liu, M. Q., Kong, S. Y., Wu, M. X., Zhang, Y., Yang, P. Y. (2021). Recent Advances in Software Tools for More Generic and Precise Intact Glycopeptide Analysis. Molecular Cellular Proteomics, 20. doi:ARTN 10006010.1074/mcp.R120.002090 Casalino, L., Gaieb, Z., Goldsmith, J. A., Hjorth, C. K., Dommer, A. C., Harbison, A. M., . . . Amaro, R. E. (2020). Beyond Shielding: The Roles of Glycans in the SARS-CoV-2 Spike Protein. ACS Cent Sci, 6 (10), 1722-1734. doi:10.1021/acscentsci.0c01056 Chen, Y. J., Yen, T. C., Lin, Y. H., Chen, Y. L., Khoo, K. H., Chen, Y. J. (2021). ZIC-cHILIC-Based StageTip for Simultaneous Glycopeptide Enrichment and Fractionation toward Large-Scale N-Sialoglycoproteomics. Anal Chem, 93 (48), 15931-15940. doi:10.1021/acs.analchem.1c03224 Chernykh, A., Kawahara, R., Thaysen-Andersen, M. (2021). Towards structure-focused glycoproteomics. Biochem Soc Trans, 49 (1), 161-186. doi:10.1042/BST20200222 Cho, K. C., Chen, L., Hu, Y., Schnaubelt, M., Zhang, H. (2019). Developing Workflow for Simultaneous Analyses of Phosphopeptides and Glycopeptides. Acs Chemical Biology, 14 (1), 58-66. doi:10.1021/acschembio.8b00902 Choo, M. S., Wan, C., Rudd, P. M., Nguyen-Khuong, T. (2019). GlycopeptideGraphMS: Improved Glycopeptide Detection and Identification by Exploiting Graph Theoretical Patterns in Mass and Retention Time. Anal Chem, 91 (11), 7236-7244. doi:10.1021/acs.analchem.9b00594 Dobrica, M. O., Lazar, C., Branza-Nichita, N. (2020). N-Glycosylation and N-Glycan Processing in HBV Biology and Pathogenesis. Cells, 9 (6). doi:10.3390/cells9061404 Finkelshtein, E., Lotinun, S., Levy-Apter, E., Arman, E., den Hertog, J., Baron, R., Elson, A. (2014). Protein tyrosine phosphatases epsilon and alpha perform nonredundant roles in osteoclasts. Mol Biol Cell, 25 (11), 1808-1818. doi:10.1091/mbc.E14-03-0788 Frese, C. K., Altelaar, A. F., van den Toorn, H., Nolting, D., Griep-Raming, J., Heck, A. J., Mohammed, S. (2012). Toward full peptide sequence coverage by dual fragmentation combining electron-transfer and higher-energy collision dissociation tandem mass spectrometry. Anal Chem, 84 (22), 9668-9673. doi:10.1021/ac3025366 Gil-Henn, H., Elson, A. (2003). Tyrosine phosphatase-epsilon activates Src and supports the transformed phenotype of Neu-induced mammary tumor cells. J Biol Chem, 278 (18), 15579-15586. doi:10.1074/jbc.M210273200 Gupta, R., Birch, H., Rapacki, K., Brunak, S., Hansen, J. E. (1999). O-GLYCBASE version 4.0: a revised database of O-glycosylated proteins. Nucleic Acids Res, 27 (1), 370-372. doi:10.1093/nar/27.1.370 Han, S., Collins, B. E., Bengtson, P., Paulson, J. C. (2005). Homomultimeric complexes of CD22 in B cells revealed by protein-glycan cross-linking. Nature Chemical Biology, 1 (2), 93-97. doi:10.1038/nchembio713 Hang, H. C., Yu, C., Kato, D. L., Bertozzi, C. R. (2003). A metabolic labeling approach toward proteomic analysis of mucin-type O-linked glycosylation. Proc Natl Acad Sci U S A, 100 (25), 14846-14851. doi:10.1073/pnas.2335201100 Hollingsworth, M. A., Swanson, B. J. (2004). Mucins in cancer: protection and control of the cell surface. Nat Rev Cancer, 4 (1), 45-60. doi:10.1038/nrc1251 Hu, Y., Shah, P., Clark, D. J., Ao, M., Zhang, H. (2018). Reanalysis of Global Proteomic and Phosphoproteomic Data Identified a Large Number of Glycopeptides. Anal Chem, 90 (13), 8065-8071. doi:10.1021/acs.analchem.8b01137 Jaimes, J. A., Whittaker, G. R. (2018). Feline coronavirus: Insights into viral pathogenesis based on the spike protein structure and function. Virology, 517, 108-121. doi:10.1016/j.virol.2017.12.027 Kaji, H., Saito, H., Yamauchi, Y., Shinkawa, T., Taoka, M., Hirabayashi, J., . . . Isobe, T. (2003). Lectin affinity capture, isotope-coded tagging and mass spectrometry to identify N-linked glycoproteins. Nat Biotechnol, 21 (6), 667-672. doi:10.1038/nbt829 Kawahara, R., Chernykh, A., Alagesan, K., Bern, M., Cao, W., Chalkley, R. J., . . . Thaysen-Andersen, M. (2021). Author Correction: Community evaluation of glycoproteomics informatics solutions reveals high-performance search strategies for serum glycopeptide analysis. Nat Methods. doi:10.1038/s41592-021-01368-0 Khoo, K. H. (2021). Glycoproteomic software solutions spotlight glycans. Nat Methods, 18 (12), 1457-1458. doi:10.1038/s41592-021-01310-4 Krueger, N. X., Streuli, M., Saito, H. (1990). Structural diversity and evolution of human receptor-like protein tyrosine phosphatases. EMBO J, 9 (10), 3241-3252. Kudelka, M. R., Stowell, S. R., Cummings, R. D., Neish, A. S. (2020). Intestinal epithelial glycosylation in homeostasis and gut microbiota interactions in IBD. Nat Rev Gastroenterol Hepatol. doi:10.1038/s41575-020-0331-7 Kuo, C. W., Yang, T. J., Chien, Y. C., Yu, P. Y., Hsu, S. D., Khoo, K. H. (2021). Distinct shifts in site-specific glycosylation pattern of SARS-CoV-2 spike proteins associated with arising mutations in the D614G and Alpha variants. Glycobiology. doi:10.1093/glycob/cwab102 Lee, L. Y., Moh, E. S., Parker, B. L., Bern, M., Packer, N. H., Thaysen-Andersen, M. (2016). Toward Automated N-Glycopeptide Identification in Glycoproteomics. J Proteome Res, 15 (10), 3904-3915. doi:10.1021/acs.jproteome.6b00438 Lemmon, M. A., Schlessinger, J. (2010). Cell signaling by receptor tyrosine kinases. Cell, 141 (7), 1117-1134. doi:10.1016/j.cell.2010.06.011 Liang, S. Y., Wu, S. W., Pu, T. H., Chang, F. Y., Khoo, K. H. (2014). An adaptive workflow coupled with Random Forest algorithm to identify intact N-glycopeptides detected from mass spectrometry. Bioinformatics, 30 (13), 1908-1916. doi:10.1093/bioinformatics/btu139 Linden, S. K., Sutton, P., Karlsson, N. G., Korolik, V., McGuckin, M. A. (2008). Mucins in the mucosal barrier to infection. Mucosal Immunol, 1 (3), 183-197. doi:10.1038/mi.2008.5 Lippold, S., de Ru, A. H., Nouta, J., van Veelen, P. A., Palmblad, M., Wuhrer, M., de Haan, N. (2020). Semiautomated glycoproteomics data analysis workflow for maximized glycopeptide identification and reliable quantification. Beilstein J Org Chem, 16, 3038-3051. doi:10.3762/bjoc.16.253 Liu, G., Cheng, K., Lo, C. Y., Li, J., Qu, J., Neelamegham, S. (2017). A Comprehensive, Open-source Platform for Mass Spectrometry-based Glycoproteomics Data Analysis. Molecular Cellular Proteomics, 16 (11), 2032-2047. doi:10.1074/mcp.M117.068239 Liu, M. Q., Zeng, W. F., Fang, P., Cao, W. Q., Liu, C., Yan, G. Q., . . . Yang, P. Y. (2017). pGlyco 2.0 enables precision N-glycoproteomics with comprehensive quality control and one-step mass spectrometry for intact glycopeptide identification. Nat Commun, 8 (1), 438. doi:10.1038/s41467-017-00535-2 Lu, L., Riley, N. M., Shortreed, M. R., Bertozzi, C. R., Smith, L. M. (2020). O-Pair Search with MetaMorpheus for O-glycopeptide characterization. Nat Methods, 17 (11), 1133-1138. doi:10.1038/s41592-020-00985-5 Luchansky, S. J., Goon, S., Bertozzi, C. R. (2004). Expanding the diversity of unnatural cell-surface sialic acids. Chembiochem, 5 (3), 371-374. doi:10.1002/cbic.200300789 Lynn, K. S., Chen, C. C., Lih, T. M., Cheng, C. W., Su, W. C., Chang, C. H., . . . Sung, T. Y. (2015). MAGIC: an automated N-linked glycoprotein identification tool using a Y1-ion pattern matching algorithm and in silico MS (2) approach. Anal Chem, 87 (4), 2466-2473. doi:10.1021/ac5044829 Ma, C., Liu, D., Li, D., Zhang, J., Xu, X. Q., Zhu, H., . . . Li, L. (2020). Comprehensive N- and O-glycosylation mapping of human coagulation factor V. J Thromb Haemost, 18 (8), 1884-1892. doi:10.1111/jth.14861 Machida, E., Nakayama, J., Amano, J., Fukuda, M. (2001). Clinicopathological significance of core 2 beta1,6-N-acetylglucosaminyltransferase messenger RNA expressed in the pulmonary adenocarcinoma determined by in situ hybridization. Cancer Res, 61 (5), 2226-2231. Malaker, S. A., Pedram, K., Ferracane, M. J., Bensing, B. A., Krishnan, V., Pett, C., . . . Bertozzi, C. R. (2019). The mucin-selective protease StcE enables molecular and functional analysis of human cancer-associated mucins. Proc Natl Acad Sci U S A, 116 (15), 7278-7287. doi:10.1073/pnas.1813020116 Nakamura, K., Niimi, K., Yamamoto, E., Ikeda, Y., Nishino, K., Suzuki, S., . . . Kikkawa, F. (2021). Core 2 beta1,6-N-acetylglucosaminyltransferases accelerate the escape of choriocarcinoma from natural killer cell immunity. Biochem Biophys Rep, 26, 100951. doi:10.1016/j.bbrep.2021.100951 Okamoto, T., Yoneyama, M. S., Hatakeyama, S., Mori, K., Yamamoto, H., Koie, T., . . . Tsuboi, S. (2013). Core2 O-glycan-expressing prostate cancer cells are resistant to NK cell immunity. Mol Med Rep, 7 (2), 359-364. doi:10.3892/mmr.2012.1189 Palmisano, G., Melo-Braga, M. N., Engholm-Keller, K., Parker, B. L., Larsen, M. R. (2012). Chemical deamidation: a common pitfall in large-scale N-linked glycoproteomic mass spectrometry-based analyses. J Proteome Res, 11 (3), 1949-1957. doi:10.1021/pr2011268 Paltrinieri, S., Giordano, A., Stranieri, A., Lauzi, S. (2021). Feline infectious peritonitis (FIP) and coronavirus disease 19 (COVID-19): Are they similar? Transbound Emerg Dis, 68 (4), 1786-1799. doi:10.1111/tbed.13856 Pang, K. T., Tay, S. J., Wan, C., Walsh, I., Choo, M. S. F., Yang, Y. S., . . . Nguyen-Khuong, T. (2021). Semi-Automated Glycoproteomic Data Analysis of LC-MS Data Using GlycopeptideGraphMS in Process Development of Monoclonal Antibody Biologics. Front Chem, 9, 661406. doi:10.3389/fchem.2021.661406 Park, G. W., Kim, J. Y., Hwang, H., Lee, J. Y., Ahn, Y. H., Lee, H. K., . . . Yoo, J. S. (2016). Integrated GlycoProteome Analyzer (I-GPA) for Automated Identification and Quantitation of Site-Specific N-Glycosylation. Sci Rep, 6, 21175. doi:10.1038/srep21175 Pioch, M., Hoffmann, M., Pralow, A., Reichl, U., Rapp, E. (2018). glyXtool (MS): An Open-Source Pipeline for Semiautomated Analysis of Glycopeptide Mass Spectrometry Data. Analytical Chemistry, 90 (20), 11908-11916. doi:10.1021/acs.analchem.8b02087 Polasky, D. A., Yu, F., Teo, G. C., Nesvizhskii, A. I. (2020). Fast and comprehensive N- and O-glycoproteomics analysis with MSFragger-Glyco. Nat Methods, 17 (11), 1125-1132. doi:10.1038/s41592-020-0967-9 Pompach, P., Chandler, K. B., Lan, R., Edwards, N., Goldman, R. (2012). Semi-Automated Identification of N-Glycopeptides by Hydrophilic Interaction Chromatography, nano-Reverse-Phase LC-MS/MS, and Glycan Database Search. Journal of Proteome Research, 11 (3), 1728-1740. doi:10.1021/pr201183w Praissman, J. L., Wells, L. (2020). Getting more for less: new software solutions for glycoproteomics. Nature Methods, 17 (11), 1081-1082. doi:10.1038/s41592-020-00987-3 Riley, N. M., Bertozzi, C. R., Pitteri, S. J. (2021). A Pragmatic Guide to Enrichment Strategies for Mass Spectrometry-Based Glycoproteomics. Mol Cell Proteomics, 20, 100029. doi:10.1074/mcp.R120.002277 Saba, J., Dutta, S., Hemenway, E., Viner, R. (2012). Increasing the productivity of glycopeptides analysis by using higher-energy collision dissociation-accurate mass-product-dependent electron transfer dissociation. Int J Proteomics, 2012, 560391. doi:10.1155/2012/560391 Sap, J., D'Eustachio, P., Givol, D., Schlessinger, J. (1990). Cloning and expression of a widely expressed receptor tyrosine phosphatase. Proc Natl Acad Sci U S A, 87 (16), 6112-6116. Shajahan, A., Supekar, N. T., Gleinich, A. S., Azadi, P. (2020). Deducing the N- and O-glycosylation profile of the spike protein of novel coronavirus SARS-CoV-2. Glycobiology, 30 (12), 981-988. doi:10.1093/glycob/cwaa042 Shen, J., Jia, L., Dang, L., Su, Y., Zhang, J., Xu, Y., . . . Sun, S. (2021). StrucGP: de novo structural sequencing of site-specific N-glycan on glycoproteins using a modularization strategy. Nat Methods, 18 (8), 921-929. doi:10.1038/s41592-021-01209-0 Shon, D. J., Malaker, S. A., Pedram, K., Yang, E., Krishnan, V., Dorigo, O., Bertozzi, C. R. (2020). An enzymatic toolkit for selective proteolysis, detection, and visualization of mucin-domain glycoproteins. Proc Natl Acad Sci U S A, 117 (35), 21299-21307. doi:10.1073/pnas.2012196117 Singh, C., Zampronio, C. G., Creese, A. J., Cooper, H. J. (2012). Higher energy collision dissociation (HCD) product ion-triggered electron transfer dissociation (ETD) mass spectrometry for the analysis of N-linked glycoproteins. J Proteome Res, 11 (9), 4517-4525. doi:10.1021/pr300257c Stadlmann, J., Hoi, D. M., Taubenschmid, J., Mechtler, K., Penninger, J. M. (2018). Analysis of PNGase F-Resistant N-Glycopeptides Using SugarQb for Proteome Discoverer 2.1 Reveals Cryptic Substrate Specificities. Proteomics, 18 (13), e1700436. doi:10.1002/pmic.201700436 Stadlmann, J., Taubenschmid, J., Wenzel, D., Gattinger, A., Durnberger, G., Dusberger, F., . . . Penninger, J. M. (2017). Comparative glycoproteomics of stem cells identifies new players in ricin toxicity. Nature, 549 (7673), 538-542. doi:10.1038/nature24015 Stanford, S. M., Maestre, M. F., Campbell, A. M., Bartok, B., Kiosses, W. B., Boyle, D. L., . . . Bottini, N. (2013). Protein tyrosine phosphatase expression profile of rheumatoid arthritis fibroblast-like synoviocytes: a novel role of SH2 domain-containing phosphatase 2 as a modulator of invasion and survival. Arthritis Rheum, 65 (5), 1171-1180. doi:10.1002/art.37872 Stanford, S. M., Svensson, M. N., Sacchetti, C., Pilo, C. A., Wu, D. J., Kiosses, W. B., . . . Bottini, N. (2016). Receptor Protein Tyrosine Phosphatase alpha-Mediated Enhancement of Rheumatoid Synovial Fibroblast Signaling and Promotion of Arthritis in Mice. Arthritis Rheumatol, 68 (2), 359-369. doi:10.1002/art.39442 Stanley, P., Taniguchi, N., Aebi, M. (2015). N-Glycans. In rd, A. Varki, R. D. Cummings, J. D. Esko, P. Stanley, G. W. Hart, M. Aebi, A. G. Darvill, T. Kinoshita, N. H. Packer, J. H. Prestegard, R. L. Schnaar, P. H. Seeberger (Eds.), Essentials of Glycobiology 3rd edition (pp. 99-111). Cold Spring Harbor (NY). Steentoft, C., Vakhrushev, S. Y., Joshi, H. J., Kong, Y., Vester-Christensen, M. B., Schjoldager, K. T., . . . Clausen, H. (2013). Precision mapping of the human O-GalNAc glycoproteome through SimpleCell technology. EMBO J, 32 (10), 1478-1488. doi:10.1038/emboj.2013.79 Su, J., Muranjan, M., Sap, J. (1999). Receptor protein tyrosine phosphatase alpha activates Src-family kinases and controls integrin-mediated responses in fibroblasts. Curr Biol, 9 (10), 505-511. doi:10.1016/s0960-9822 (99)80234-6 Swaney, D. L., McAlister, G. C., Wirtala, M., Schwartz, J. C., Syka, J. E., Coon, J. J. (2007). Supplemental activation method for high-efficiency electron-transfer dissociation of doubly protonated peptide precursors. Anal Chem, 79 (2), 477-485. doi:10.1021/ac061457f Syka, J. E., Coon, J. J., Schroeder, M. J., Shabanowitz, J., Hunt, D. F. (2004). Peptide and protein sequence analysis by electron transfer dissociation mass spectrometry. Proc Natl Acad Sci U S A, 101 (26), 9528-9533. doi:10.1073/pnas.0402700101 Taniguchi, N., Kizuka, Y. (2015). Glycans and cancer: role of N-glycans in cancer biomarker, progression and metastasis, and therapeutics. Adv Cancer Res, 126, 11-51. doi:10.1016/bs.acr.2014.11.001 Tonks, N. K. (2006). Protein tyrosine phosphatases: from genes, to function, to disease. Nat Rev Mol Cell Biol, 7 (11), 833-846. doi:10.1038/nrm2039 Trastoy, B., Naegeli, A., Anso, I., Sjogren, J., Guerin, M. E. (2020). Structural basis of mammalian mucin processing by the human gut O-glycopeptidase OgpA from Akkermansia muciniphila. Nat Commun, 11 (1), 4844. doi:10.1038/s41467-020-18696-y Trinidad, J. C., Barkan, D. T., Gulledge, B. F., Thalhammer, A., Sali, A., Schoepfer, R., Burlingame, A. L. (2012). Global identification and characterization of both O-GlcNAcylation and phosphorylation at the murine synapse. Mol Cell Proteomics, 11 (8), 215-229. doi:10.1074/mcp.O112.018366 Trinidad, J. C., Schoepfer, R., Burlingame, A. L., Medzihradszky, K. F. (2013). N- and O-glycosylation in the murine synaptosome. Mol Cell Proteomics, 12 (12), 3474-3488. doi:10.1074/mcp.M113.030007 Trowbridge, I. S., Thomas, M. L. (1994). CD45: an emerging role as a protein tyrosine phosphatase required for lymphocyte activation and development. Annu Rev Immunol, 12, 85-116. doi:10.1146/annurev.iy.12.040194.000505 Tsuboi, S., Fukuda, M. (2001). Roles of O-linked oligosaccharides in immune responses. Bioessays, 23 (1), 46-53. doi:10.1002/1521-1878 (200101)23:1<46::AID-BIES1006>3.0.CO;2-3 Vainauskas, S., Guntz, H., McLeod, E., McClung, C., Ruse, C., Shi, X., Taron, C. H. (2021). A Broad-Specificity O-Glycoprotease That Enables Improved Analysis of Glycoproteins and Glycopeptides Containing Intact Complex O-Glycans. Anal Chem. doi:10.1021/acs.analchem.1c04055 Veillon, L., Fakih, C., Abou-El-Hassan, H., Kobeissy, F., Mechref, Y. (2018). Glycosylation Changes in Brain Cancer. ACS Chem Neurosci, 9 (1), 51-72. doi:10.1021/acschemneuro.7b00271 Viner, R. I., Zhang, T., Second, T., Zabrouskov, V. (2009). Quantification of post-translationally modified peptides of bovine alpha-crystallin using tandem mass tags and electron transfer dissociation. J Proteomics, 72 (5), 874-885. doi:10.1016/j.jprot.2009.02.005 Wandall, H. H., Nielsen, M. A. I., King-Smith, S., de Haan, N., Bagdonaite, I. (2021). Global functions of O-glycosylation: promises and challenges in O-glycobiology. FEBS J, 288 (24), 7183-7212. doi:10.1111/febs.16148 Wang, E. A., Chen, W. Y., Wong, C. H. (2020). Multiple Growth Factor Targeting by Engineered Insulin-like Growth Factor Binding Protein-3 Augments EGF Receptor Tyrosine Kinase Inhibitor Efficacy. Sci Rep, 10 (1), 2735. doi:10.1038/s41598-020-59466-6 Wang, Q., Chung, C. Y., Yang, W., Yang, G., Chough, S., Chen, Y., . . . Zhang, H. (2019). Combining Butyrated ManNAc with Glycoengineered CHO Cells Improves EPO Glycan Quality and Production. Biotechnol J, 14 (4), e1800186. doi:10.1002/biot.201800186 Watanabe, Y., Allen, J. D., Wrapp, D., McLellan, J. S., Crispin, M. (2020). Site-specific glycan analysis of the SARS-CoV-2 spike. Science, 369 (6501), 330-333. doi:10.1126/science.abb9983 Wu, S. W., Liang, S. Y., Pu, T. H., Chang, F. Y., Khoo, K. H. (2013). Sweet-Heart - an integrated suite of enabling computational tools for automated MS2/MS3 sequencing and identification of glycopeptides. J Proteomics, 84, 1-16. doi:10.1016/j.jprot.2013.03.026 Wu, S. W., Pu, T. H., Viner, R., Khoo, K. H. (2014). Novel LC-MS (2) product dependent parallel data acquisition function and data analysis workflow for sequencing and identification of intact glycopeptides. Anal Chem, 86 (11), 5478-5486. doi:10.1021/ac500945m Xu, Y., Zhang, H. (2021). Putting the pieces together: mapping the O-glycoproteome. Curr Opin Biotechnol, 71, 130-136. doi:10.1016/j.copbio.2021.07.006 Xu, Z., Weiss, A. (2002). Negative regulation of CD45 by differential homodimerization of the alternatively spliced isoforms. Nat Immunol, 3 (8), 764-771. doi:10.1038/ni822 Yang, S., Onigman, P., Wu, W. W., Sjogren, J., Nyhlen, H., Shen, R. F., Cipollo, J. (2018). Deciphering Protein O-Glycosylation: Solid-Phase Chemoenzymatic Cleavage and Enrichment. Anal Chem, 90 (13), 8261-8269. doi:10.1021/acs.analchem.8b01834 Yang, S., Wu, W. W., Shen, R., Sjogren, J., Parsons, L., Cipollo, J. F. (2020). Optimization of O-GIG for O-Glycopeptide Characterization with Sialic Acid Linkage Determination. Anal Chem, 92 (16), 10946-10951. doi:10.1021/acs.analchem.0c01346 Yang, T. J., Chang, Y. C., Ko, T. P., Draczkowski, P., Chien, Y. C., Chang, Y. C., . . . Hsu, S. D. (2020). Cryo-EM analysis of a feline coronavirus spike protein reveals a unique structure and camouflaging glycans. Proc Natl Acad Sci U S A, 117 (3), 1438-1446. doi:10.1073/pnas.1908898117 Yang, W., Ao, M., Hu, Y., Li, Q. K., Zhang, H. (2018). Mapping the O-glycoproteome using site-specific extraction of O-linked glycopeptides (EXoO). Mol Syst Biol, 14 (11), e8486. doi:10.15252/msb.20188486 Yang, W., Ao, M., Song, A., Xu, Y., Sokoll, L., Zhang, H. (2020). Mass Spectrometric Mapping of Glycoproteins Modified by Tn-Antigen Using Solid-Phase Capture and Enzymatic Release. Anal Chem, 92 (13), 9230-9238. doi:10.1021/acs.analchem.0c01564 Yang, W., Shah, P., Hu, Y., Toghi Eshghi, S., Sun, S., Liu, Y., Zhang, H. (2017). Comparison of Enrichment Methods for Intact N- and O-Linked Glycopeptides Using Strong Anion Exchange and Hydrophilic Interaction Liquid Chromatography. Anal Chem, 89 (21), 11193-11197. doi:10.1021/acs.analchem.7b03641 Yang, W., Song, A., Ao, M., Xu, Y., Zhang, H. (2020). Large-scale site-specific mapping of the O-GalNAc glycoproteome. Nat Protoc, 15 (8), 2589-2610. doi:10.1038/s41596-020-0345-1 Yao, Z., Darowski, K., St-Denis, N., Wong, V., Offensperger, F., Villedieu, A., . . . Stagljar, I. (2017). A Global Analysis of the Receptor Tyrosine Kinase-Protein Phosphatase Interactome. Mol Cell, 65 (2), 347-360. doi:10.1016/j.molcel.2016.12.004 Yin, X., Bern, M., Xing, Q., Ho, J., Viner, R., Mayr, M. (2013). Glycoproteomic analysis of the secretome of human endothelial cells. Mol Cell Proteomics, 12 (4), 956-978. doi:10.1074/mcp.M112.024018 Zacharias, L. G., Hartmann, A. K., Song, E., Zhao, J., Zhu, R., Mirzaei, P., Mechref, Y. (2016). HILIC and ERLIC Enrichment of Glycopeptides Derived from Breast and Brain Cancer Cells. J Proteome Res, 15 (10), 3624-3634. doi:10.1021/acs.jproteome.6b00429 Zeng, W. F., Cao, W. Q., Liu, M. Q., He, S. M., Yang, P. Y. (2021). Precise, fast and comprehensive analysis of intact glycopeptides and modified glycans with pGlyco3. Nat Methods, 18 (12), 1515-1523. doi:10.1038/s41592-021-01306-0 Zeng, W. F., Liu, M. Q., Zhang, Y., Wu, J. Q., Fang, P., Peng, C., . . . Yang, P. (2016). pGlyco: a pipeline for the identification of intact N-glycopeptides by using HCD- and CID-MS/MS and MS3. Sci Rep, 6, 25102. doi:10.1038/srep25102 Zhang, H., Guo, T., Li, X., Datta, A., Park, J. E., Yang, J., . . . Sze, S. K. (2010). Simultaneous characterization of glyco- and phosphoproteomes of mouse brain membrane proteome with electrostatic repulsion hydrophilic interaction chromatography. Mol Cell Proteomics, 9 (4), 635-647. doi:10.1074/mcp.M900314-MCP200 Zhang, H., Li, X. J., Martin, D. B., Aebersold, R. (2003). Identification and quantification of N-linked glycoproteins using hydrazide chemistry, stable isotope labeling and mass spectrometry. Nat Biotechnol, 21 (6), 660-666. doi:10.1038/nbt827 Zhao, P., Praissman, J. L., Grant, O. C., Cai, Y., Xiao, T., Rosenbalm, K. E., . . . Wells, L. (2020). Virus-Receptor Interactions of Glycosylated SARS-CoV-2 Spike and Human ACE2 Receptor. Cell Host Microbe, 28 (4), 586-601 e586. doi:10.1016/j.chom.2020.08.004 Zielinska, D. F., Gnad, F., Wisniewski, J. R., Mann, M. (2010). Precision mapping of an in vivo N-glycoproteome reveals rigid topological and sequence constraints. Cell, 141 (5), 897-907. doi:10.1016/j.cell.2010.04.012 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81960 | - |
| dc.description.abstract | 以質譜分析蛋白特異性位點的醣基化,目前仍有許多尚待克服的技術面困難點。就N型醣蛋白而言,最常遇到的問題是軟體錯誤鑑定;O型醣蛋白則是難以精準定位;而多重N型及O型醣蛋白更是缺乏一個定點精準分析的流程,因此本研究致力於研發多重醣基化胜肽的質譜分析方法,並著重於數據深度分析,以利未來有效應用於醣蛋白質體學。 近年來,由新型冠狀病毒(SARS-CoV-2)引起的嚴重特殊傳染性肺炎(COVID-19)擴散於世界各地,目前已知新型冠狀病毒的棘蛋白結構、抗原性、功能等會受特異性醣基化影響;而貓冠狀病毒中的貓傳染性腹膜炎病毒 (Feline infectious peritonitis virus;FIPV)也會引起致死性貓傳染性腹膜炎 (FIP)。先前已利用軟體 (Byonic)分析過新型冠狀病毒及貓傳染性腹膜炎病毒的棘蛋白所產生的醣胜肽,為了進一步了解特異性位點的醣基化,本研究導入不同原理的分析軟體 (pGlyco3)以建立更值得信賴的定性及定量流程。藉由門檻設定篩選後,兩種軟體皆鑑定到的醣胜肽最為可信,由其中一種軟體鑑定到的醣胜肽次之,而利用滯留時間分組可更進一步校正醣的異構物以降低偽陽性的鑑定結果;另外,大部分的定量分析結果一致,但微量的醣胜肽在兩種分析軟體並不完全一致,則需進一步驗證。 先前已知蛋白酪氨酸磷酸酶A型受體 (Receptor-like protein-tyrosine phosphatase alpha;PTPRA) 的膜外區域只有122個胺基酸,卻是個高度N型醣基化的蛋白。缺乏PTPRA的成纖維細胞會減少其訊號傳導、細胞遷移及轉移的能力,但此能力是否受醣基化影響,且其N型特異性位點及是否有高度O型醣基化位點仍未知。為進一步了解PTPRA的特異性醣位點,在此利用PTPRA-Fc融合蛋白建立多重N型及O型醣蛋白的分析方法。首先,利用去N型及去O型醣蛋白來評估不同軟體對於多重N型及O型醣胜肽的分析能力。從去O型醣蛋白的醣胜肽分析結果發現Byonic與 pGlyco3 分別鑑定到的非重複醣胜肽總數目相近,但 Byonic 可提供較多的匹配結果,且只有Byonic可以鑑定到N型醣胜肽的N型共有序列上的O型醣基化修飾。相較於Byonic, pGlyco3及O-pair這兩種數據分析軟體則可以鑑定到更多源自去N型醣蛋白的O型醣胜肽,結果顯示突變的去N型醣蛋白有更多的O型醣基化修飾,而以同樣的樣品處理方式製備PTPRA-Fc,只能鑑定到少數的醣胜肽片段。因此,接下來以不同蛋白酶降低醣胜肽的長度及複雜度。在胰蛋白酶及絲氨酸蛋白酶的雙作用下,總共鑑定到四個N型及八個O型特異性醣基化位點,但只有其中一個O型位點具有唾液酸修飾;以胰蛋白酶及O型蛋白酶 (OpeRATOR) 雙作用則能找到更多唾液酸修飾的N型醣基化修飾並額外找到19個O型醣基化位點,且得以驗證O型蛋白酶的作用位點傾向在帶有core 1的O型醣基化絲氨酸及蘇氨酸。此外,分析結果也顯示醣胜肽的滯留時間會受到O型醣基化的數量影響。 為了減少偽陰性鑑定,本研究進一步開發一Fishing策略,利用相同胜肽序列會有相近的滯留時間特性,由可信的醣胜肽為基準,找出未鑑定到的醣異構物修飾。由此方法,可找到更多唾液酸化的 PTPRA醣胜肽,雖然因缺乏證據性的斷片離子,無法得知特異性位點,但可藉由滯留時間的特性,推斷出有幾個O型醣基化位點。最後,將成功建立的分析流程應用於全長的 PTPRA,總共可鑑定到兩段不同的胜肽序列,並由酵素的特性推斷出此全長的醣蛋白相較於融合蛋白可能有更多Tn、core 2或唾液酸化 core 1的O型醣基化修飾。 總結而言,由於目前內生性膜蛋白的醣基化修飾分析仍有技術上的高度困難,可藉由蛋白如PTPRA-Fc先建立分析方法,並評估各醣蛋白數據分析軟體的優勢及限制,以利往後更有效分析目前不易鑑定到的多重N型及O型醣胜肽。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-25T05:33:10Z (GMT). No. of bitstreams: 1 U0001-0802202214451900.pdf: 9810975 bytes, checksum: bc24e63c720990d1a6de1392e524117e (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | 謝誌 I 摘要 II Abstract IV Chapter 1 Introduction 1 1.1 Protein N- and O-glycosylation 1 1.1.1 Site-specific N-glycosylation 3 1.1.2 Heavily O-glycosylated mucin domain 4 1.1.3 Heavily O-glycosylated and N-glycosylated domain structures 6 1.2 General glycopeptide analysis 8 1.2.1 LC-MS/MS for N- and O-glycopeptides 10 1.2.2 Software for N- and O-glycopeptides 13 1.3 Limitation of the glycopeptide analysis 17 1.3.1 N-glycopeptide analysis 17 1.3.2 O- glycopeptide analysis 19 1.3.3 Analysis of N- and O- glycopeptide 21 1.4 Specific Aims 22 Chapter 2 Material and Methods 25 2.1 Plasmid construction and protein purification 25 2.2 Proteolytic digestion 25 2.3 TMT0 labeling 25 2.4 Glycan analysis 26 2.5 Glycopeptide identification 26 2.6 Data analysis 26 Chapter 3 Results 29 3.1 To reduce false-positive assignments of the identified glycopeptides by dual software 29 3.1.1 Establishing an automated N-glycopeptide data analysis workflow 29 3.1.2 The advantage of the combined workflow 36 3.2 To characterize the N-glycopeptide with multiple O-glycans 43 3.2.1 De-N- or de-O-glycosylated glycopeptide analysis 46 3.2.1.1 Analysis of de-O-glycosylated N-glycopeptides 47 3.2.1.2 Analysis of de-N-glycosylated O-glycopeptides 50 3.2.2 N- and O-glycopeptide analysis 56 3.2.3 Characterization of the elution time of N-glycopeptides with multiple O-glycans on the C18 column 62 3.2.3.1 N-glycopeptide with an O-glycan 62 3.2.3.2 Multiple O-glycan on the same peptide 64 3.2.3.3 N-glycopeptide with multiple O-glycans 67 3.2.4 Glycopeptide analysis with TMT labeling 68 3.3 To develop a fishing strategy to reduce false-negative results 71 3.3.1 Workflow of fishing strategy 71 3.3.2 Application to PTPRAFc 73 3.3.3 Application to PTPRAFL 78 3.3.3.1 Two bands of PTPRAFL-YFP by in gel digestions 78 3.3.3.2 PTPRAFL-TST compared to PTPRAFL-YFP and PTPRAFC by in solution digestions 81 3.3.3.3 PTPRAFL-TST by in gel digestions 83 Chapter 4 Discussion and Perspectives 88 4.1 Dual search strategy helps to identify reliable N-glycopeptides 88 4.1.1 Identification of N-glycopeptides 88 4.1.2 Quantification of N-glycopeptides 88 4.2 Characterization of the N- and multiple O-glycosylated peptides by LC-MS/MS 90 4.2.1 Identification of N- and multiple O-glycosylated peptides 90 4.2.2 Various software for N- and multiple O-glycosylated peptides 92 4.2.3 Combinations of proteases for N- and multiple O-glycosylated peptides 95 4.2.4 Elution orders of the N- and multiple O-glycosylated peptides 96 4.3 Fishing strategy with the aid of retention time 97 4.3.1 Verification of fishing strategy by application to PTPRAFc 97 4.3.2 Application of fishing strategy to PTPRAFL 99 4.4 Current and future perspectives 100 4.4.1 Biochemical aspects 100 4.4.2 Analytical aspects 103 References 105 | |
| dc.language.iso | en | |
| dc.subject | 醣胜肽 | zh_TW |
| dc.subject | glycopeptide | en |
| dc.title | 開發質譜分析流程以探討多重N型及O型醣蛋白定點精準分析技術 | zh_TW |
| dc.title | Development and applications of advanced mass spectrometry-based analytical workflows for multiple N- and O-glycosylated glycoproteins | en |
| dc.date.schoolyear | 110-1 | |
| dc.description.degree | 博士 | |
| dc.contributor.author-orcid | 0000-0002-2485-2932 | |
| dc.contributor.oralexamcommittee | 孟子青(Da-Ming Wang),安形高志(Jeffrey Chi-Sheng Wu),徐尚德(Chii-Dong Chen),陳玉如(Wen-Zern Hwang) | |
| dc.subject.keyword | 醣胜肽, | zh_TW |
| dc.subject.keyword | glycopeptide, | en |
| dc.relation.page | 112 | |
| dc.identifier.doi | 10.6342/NTU202200381 | |
| dc.rights.note | 同意授權(限校園內公開) | |
| dc.date.accepted | 2022-02-11 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 生化科學研究所 | zh_TW |
| dc.date.embargo-lift | 2027-02-09 | - |
| 顯示於系所單位: | 生化科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-0802202214451900.pdf 未授權公開取用 | 9.58 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
