請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81958完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 顏瑞泓(Jui-Hung Yen) | |
| dc.contributor.author | Ming-Han Yu | en |
| dc.contributor.author | 余明翰 | zh_TW |
| dc.date.accessioned | 2022-11-25T03:07:28Z | - |
| dc.date.available | 2023-09-01 | |
| dc.date.copyright | 2021-11-10 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-08-22 | |
| dc.identifier.citation | 方麗萍 (2017)。非選擇性除草劑在臺灣一甲子。中華民國雜草學會會刊,38,63-75。doi: 10.6274/wssroc-2017-0038(1)-063 方麗萍 (2020)。2018 年台灣除草劑市場槪況。中華民國雜草學會會刊,41,55-59。doi: 10.6274/wssroc.202006_41(1).0004 王慶裕 (2017年8月26日)。雜草管理技術。台灣除草劑抗性雜草資料庫。http://web.nchu.edu.tw/~herbicideresist/index.htm 行政院農業委員會動植物防疫檢疫局 (2018年12月11日)。劇毒性農藥巴拉刈108.2.1禁止販賣使用,籲請農民選用替代藥劑避免誤觸法規。行政院農業委員會。https://www.coa.gov.tw/theme_data.php?theme=news sub_theme=agri id=7577 徐玲明、林訓仕 (2005)。三種鬼針草植株、種子外觀形態及發芽率之比較。中華民國雜草學會會刊,26,33-42。doi: 10.6274/WSSROC-2005-026(1)-033 徐玲明、蔣慕琰 (2003)。草坪中六種一年生禾草發芽特性及其防治。中華民國雜草學會會刊,24,9-23。doi: 10.6274/WSSROC 徐曉玫 (2006)。大花咸豐草對鬼針的競爭優勢及入侵性探討 [碩士論文,國立臺灣大學生態學與演化生物學研究所]。臺灣博碩士論文知識加值系統。https://hdl.handle.net/11296/ngxcpq 袁秋英 (2016)。植物相剋化合物於雜草管理之應用。藥毒所專題報導,121,1-19。doi: 10.29952/YTSCTPT 袁秋英 (2017)。雜草及防治技術介紹。行政院農業委員會農業藥物毒物試驗所。https://www.tcavs.tc.edu.tw/upload/1080904175333.pdf 曾顯雄、曾敏南、蔡昇宏、黃子葳、余浡維 (2010)。釋放小花蔓澤蘭銹病菌天敵 Puccinia spegazzinii 防治入侵之小花蔓澤蘭 (行政院農業委員會林務局委託研究計畫系列99-00-5-05)。行政院農業委員會林務局。 温广月、沈国辉、钱振官、李涛、柴晓玲 (2011)。杂草稻对水稻生长及产量的影响。雜草科學,29,51-59。 詹雅琦、許銘智 (2007)。透析治療於急性巴拉刈中毒的應用與照護。臺灣腎臟護理學會雜誌,6,56-63。 劉明宗 (2002)。除草劑抗性的發展:抗性雜草和抗性作物。中華民國雜草學會會刊,23,53-64。doi: 10.6274/WSSROC-2002-023(1)-053 蔣永正 (2011)。除草劑抗藥性發展及抗性雜草管理 [專題演講]。有害生物抗藥性研討會,台中市,臺灣。 蔣永正 (2014)。草坪農藥安全使用介紹 [簡報投影片]。中華民國雜草學會。http://wssroc.agron.ntu.edu.tw/2014data/草坪農藥安全使用介紹(講義)20140828.pdf 蔣永正、蔣慕琰 (2006)。農田雜草管理技術。在蔣永正、蔣慕琰 (主編),農田雜草與除草劑要覽 (頁 9-16)。行政院農業委員會農業藥物毒物試驗所。https://www.tactri.gov.tw/Uploads/Item/c7f293dd-5c53-47ef-9894-fe12028391f4.pdf 蔣永正、蔣慕琰 (2007)。雜草。在鄭清煥 (主編),植物保護圖鑑系列 8 水稻保護 (頁 209-234)。行政院農業委員會動植物防疫檢疫局。https://www.baphiq.gov.tw/redirect_link.php?theme=web_structure id=10245 Agrios, G. N. (2005). Anthracnose diseases caused by ascomycetes and deureromycetes (mitosporic fungi). In G. N. Agrios (Ed.), Plant pathology (5th ed., pp. 483-500). Elsevier Academic Press. Amby, D. B., Manczak, T., Petersen, M. A., Sundelin, T., Weitzel, C., Grajewski, M., Simonsen, H. T., Jensen, B. (2016). Role of the Colletotrichum acutatum sesquiterpene synthase CaTPS in the biosynthesis of sesquiterpenoids. Microbiology, 162, 1773-1783. doi: 10.1099/mic.0.000361 Boas, S. (2015, January 05). Grass carp — the natural solution to clear weeds from lakes. Orlando Sentinel. https://www.orlandosentinel.com/news/lake/os-lk-sherry-boas-01052015-20150105-column.html Broz, A. K., Broeckling, C. D., De-la-Pena, C., Lewis, M. R., Greene, E., Callaway, R. M., Sumner, L. W., Vivanco, J. M. (2010). Plant neighbor identity influences plant biochemistry and physiology related to defense. BMC Plant Biology, 10, Article 115. doi: 10.1186/1471-2229-10-115 Brun, T., Rabuske, J. E., Todero, I., Almeida, T. C., Junior, J. J. D., Ariotti, G., Confortin, T., Arnemann, J. A., Kuhn, R. C., Guedes, J. V. C., Mazutti, M. A. (2016). Production of bioherbicide by Phoma sp. in a stirred-tank bioreactor. 3 Biotech, 6, Article 230. doi: 10.1007/s13205-016-0557-9 Calvo, A. M., Wilson, R. A., Bok, J. W., Keller, N. P. (2002). Relationship between secondary metabolism and fungal development. Microbiology and Molecular Biology Reviews, 66, 447-459. doi: 10.1128/mmbr.66.3.447-459.2002 Cannell, R. J. P., Sarker, S. D., Nahar, L. (2012). Follow-up of natural products isolation. In S. D. Sarker L. Nahar (Eds.), Natural Products Isolation (pp. 473-514). Humana Press. doi: 10.1007/978-1-61779-624-1_7 Cannon, P. F., Damm, U., Johnston, P. R., Weir, B. S. (2012). Colletotrichum - current status and future directions. Studies in Mycology, 73, 181-213. doi: 10.3114/sim0014 Chapla, V. M., Zeraik, M. L., Leptokarydis, I. H., Silva, G. H., Bolzani, V. S., Young, M. C. M., Pfenning, L. H., Araújo, A. R. (2014). Antifungal compounds produced by Colletotrichum gloeosporioides, an endophytic fungus from Michelia champaca. Molecules, 19, 19243-19252. doi: 10.3390/molecules191119243 Chen, X.-W., Yang, Z.-D., Sun, J.-H., Song, T.-T., Zhu, B.-Y., Zhao, J.-W. (2018). Colletotrichine A, a new sesquiterpenoid from Colletotrichum gloeosporioides GT-7, a fungal endophyte of Uncaria rhynchophylla. Natural Product Research, 32, 880-884. doi: 10.1080/14786419.2017.1365071 Chung, K.-R., Shilts, T., Erturk, U., Timmer, L. W., Ueng, P. P. (2003). Indole derivatives produced by the fungus Colletotrichum acutatum causing lime anthracnose and postbloom fruit drop of citrus. FEMS Microbiology Letters, 226, 23-30. doi: 10.1016/s0378-1097(03)00605-0 Cimmino, A., Nocera, P., Linaldeddu, B. T., Masi, M., Gorecki, M., Pescitelli, G., Montecchio, L., Maddau, L., Evidente, A. (2018). Phytotoxic metabolites produced by Diaporthella cryptica, the causal agent of hazelnut branch canker. Journal of Agricultural and Food Chemistry, 66, 3435-3442. doi: 10.1021/acs.jafc.8b00256 Ciriminna, R., Fidalgo, A., Ilharco, L. M., Pagliaro, M. (2019). Herbicides based on pelargonic acid: Herbicides of the bioeconomy. Biofuels, Bioproducts and Biorefining, 13, 1476-1482. doi: 10.1002/bbb.2046 Copping, L. G., Duke, S. O. (2007). Natural products that have been used commercially as crop protection agents. Pest Management Science, 63, 524-554. doi: 10.1002/ps.1378 Courtial, J., Hamama, L., Helesbeux, J. J., Lecomte, M., Renaux, Y., Guichard, E., Voisine, L., Yovanopoulos, C., Hamon, B., Oge, L., Richomme, P., Briard, M., Boureau, T., Gagne, S., Poupard, P., Berruyer, R. (2018). Aldaulactone - an original phytotoxic secondary metabolite involved in the aggressiveness of Alternaria dauci on carrot. Frontiers in Plant Science, 9, Article 502. doi: 10.3389/fpls.2018.00502 CS. (2020, January 16). Luxembourg braces to become first EU country to ban glyphosate. Luxembourg Times. https://www.luxtimes.lu/en/luxembourg/luxembourg-braces-to-become-first-eu-country-to-ban-glyphosate-602d6d87de135b9236b5cc25 Damm, U., Cannon, P. F., Woudenberg, J. H., Crous, P. W. (2012). The Colletotrichum acutatum species complex. Studies in Mycology, 73, 37-113. doi: 10.3114/sim0010 Department of Primary Industries and Regional Development. (2017, July 31). Biological control for declared plants. Government of Western Australia. https://www.agric.wa.gov.au/biological-control/biological-control-declared-plants Deshmukh, A. J., Mehta, B. P., Sabalpara, A. N., Patil, V. A. (2012). In vitro effect of various nitrogen, carbon sources and pH regimes on the growth and sporulation of Colletotrichum gloeosporioides Penz. and Sacc causing anthracnose of Indian bean. Journal of Biopesticides, 5, 46-49. Duke, S. O. (2012). Why have no new herbicide modes of action appeared in recent years? Pest Management Science, 68, 505-512. doi: 10.1002/ps.2333 Duke, S. O., Dayan, F. E. (2013). Clues to new herbicide mechanisms of action from natural sources. In J. J. Beck, J. R. Coats, S. O. Duke, M. E. Koivunen (Eds), Pest Management with Natural Products (pp. 203-215). American Chemical Society. doi: 10.1021/bk-2013-1141.ch014 Duke, S. O., Gohbara, M., Paul, R. N., Duke, M. V. (1992). Colletotrichin causes rapid membrane damage to plant cells. Journal of Phytopathology, 134, 289-305. doi: https://doi.org/10.1111/j.1439-0434.1992.tb01237.x Dyer, W. E. (2008). Herbicide Discovery and Screening [Class handout]. Plant and Soil Sciences eLibrary. https://passel2.unl.edu/view/lesson/e57090ae8bcf/9 Ezzili, C., Otrubova, K., Boger, D. L. (2010). Fatty acid amide signaling molecules. Bioorganic and Medicinal Chemistry Letters, 20, 5959-5968. doi: 10.1016/j.bmcl.2010.08.048 Fukuda, M., Tsujino, Y., Fujimori, T., Wakabayashi, K., Böger, P. (2004). Phytotoxic activity of middle-chain fatty acids I: Effects on cell constituents. Pesticide Biochemistry and Physiology, 80, 143-150. doi: 10.1016/j.pestbp.2004.06.011 Gamboa-Angulo, M. M., García-Sosa, K., Alejos-González, F., Escalante-Erosa, F., Delgado-Lamas, G., Peña-Rodríguez, L. M. (2001). Tagetolone and tagetenolone: Two phytotoxic polyketides from Alternaria tagetica. Journal of Agricultural and Food Chemistry, 49, 1228-1232. doi: 10.1021/jf000872k Garcia-Pajon, C. M., Collado, I. G. (2003). Secondary metabolites isolated from Colletotrichum species. Natural Product Reports, 20, 426-431. doi: 10.1039/b302183c Getzler, Y. (n.d.) Stains for developing TLC plates [Class handout]. Getzler Lab at Kenyon College. https://drive.google.com/file/d/1TvdE5rPpJMtQrVHrvn9IrLrMozzDOpj1/view?usp=sharing Gianessi, L. P., Reigner, N. P. (2007). The value of herbicides in U.S. crop production. Weed Technology, 21, 559-566. doi: 10.1614/wt-06-130.1 Giovannini, C., Straface, E., Modesti, D., Coni, E., Cantafora, A., De Vincenzi, M., Malorni, W., Masella, R. (1999). Tyrosol, the major olive oil biophenol, protects against oxidized-LDL-induced injury in Caco-2 cells. The Journal of Nutrition, 129, 1269-1277. doi: 10.1093/jn/129.7.1269 Gohbara, M., Hyeon, S.-B., Suzuki, A., Tamura, S. (1976). Isolation and structure elucidation of colletopyrone from Colletotrichum nicotianae. Agricultural and Biological Chemistry, 40, 1453-1455. doi: 10.1080/00021369.1976.10862245 Gohbara, M., Kosuge, Y., Yamasaki, S., Kimura, Y., Suzuki, A., Tamura, S. (1978). Isolation, structures and biological activities of colletotrichins, phytotoxic substances from Colletotrichum nicotianae. Agricultural and Biological Chemistry, 42, 1037-1043. doi: 10.1080/00021369.1978.10863104 Gramss, G. (1991). “Definitive senescence” in stock cultures of basidiomycetous wood-decay fungi. Journal of Basic Microbiology, 31, 107-112. doi: 10.1002/jobm.3620310207 Hahn, D. R., Graupner, P. R., Chapin, E., Gray, J., Heim, D., Gilbert, J. R., Gerwick, B. C. (2009). Albucidin: a novel bleaching herbicide from Streptomyces albus subsp. chlorinus NRRL B-24108. The Journal of Antibiotics, 62, 191-194. doi: 10.1038/ja.2009.11 Harker, K. N., O'Donovan, J. T. (2017). Recent weed control, weed management, and integrated weed management. Weed Technology, 27, 1-11. doi: 10.1614/wt-d-12-00109.1 Harvey, A. L. (2007). Natural products as a screening resource. Current Opinion in Chemical Biology, 11, 480-484. doi: 10.1016/j.cbpa.2007.08.012 Heap, I. (n.d.). The International Herbicide-Resistant Weed Database. Retrieved March 6, 2021, from http://www.weedscience.org/Home.aspx Hellwig, V., Dasenbrock, J., Schumann, S., Steglich, W., Leonhardt, K., Anke, T. (1998). New triquinane-type sesquiterpenoids from Macrocystidia cucumis (Basidiomycetes). European Journal of Organic Chemistry, 1998, 73-79. doi: 10.1002/(sici)1099-0690(199801)1998:1<73::aid-ejoc73>3.0.co;2-f Hilton, H. (1957). Herbicide tolerant strains of weeds. Hawaiian Sugar Planters Association Annual Report, 69-72. Hirsch, S., Miroz, A., McCarthy, P., Kashman, Y. (1989). Etzionin, a new antifungal metabolite from a red sea tunicate. Tetrahedron Letters, 30, 4291-4294. doi: https://doi.org/10.1016/S0040-4039(01)80713-9 Hoang Anh, L., Van Quan, N., Tuan Nghia, L., Dang Xuan, T. (2021). Phenolic allelochemicals: Achievements, limitations, and prospective approaches in weed management. Weed Biology and Management, 21, 37-67. doi: 10.1111/wbm.12230 Holt, J. S. (1992). History of identification of herbicide-resistant weeds. Weed Technology, 6, 615-620. doi: 10.1017/s0890037x00035910 Hüter, O. F. (2010). Use of natural products in the crop protection industry. Phytochemistry Reviews, 10, 185-194. doi: 10.1007/s11101-010-9168-y Hyde, K. D., Cai, L., Cannon, P. F., Crouch, J. A., Crous, P. W., Damm, U., Goodwin, P. H., Chen, H., Johnston, P. R., Jones, E. B. G. (2009). Colletotrichum—names in current use. Fungal Diversity, 39, 147-182. International Agency for Research on Cancer (2015). Evaluation of five organophosphate insecticides and herbicides. https://www.iarc.who.int/wp-content/uploads/2018/07/MonographVolume112-1.pdf. Jayasinghe, C. K., Fernando, T. (2001). Toxic activity from liquid culture of Colletotrichum acutatum. Mycopathologia, 152, 97-101. doi: 10.1023/a:1012436024102 Jayawardena, R. S. (2016). Notes on currently accepted species of Colletotrichum. Mycosphere, 7, 1192-1260. doi: 10.5943/mycosphere/si/2c/9 Kim, C. R., Kim, H. S., Choi, S. J., Kim, J. K., Gim, M. C., Kim, Y. J., Shin, D. H. (2018). Erucamide from radish leaves has an inhibitory effect against acetylcholinesterase and prevents memory deficit induced by trimethyltin. Journal of Medicinal Food, 21, 769-776. doi: 10.1089/jmf.2017.4117 Kim, J. W., Shim, S. H. (2019). The fungus Colletotrichum as a source for bioactive secondary metabolites. Archives of Pharmacal Research, 42, 735-753. doi: 10.1007/s12272-019-01142-z King, W. T., Madden, L. V., Ellis, M. A., Wilson, L. L. (1997). Effects of temperature on sporulation and latent period of Colletotrichum Spp. infecting strawberry fruit. Plant Disease, 81, 77-84. doi: 10.1094/pdis.1997.81.1.77 Koch, M. A., Schuffenhauer, A., Scheck, M., Wetzel, S., Casaulta, M., Odermatt, A., Ertl, P., Waldmann, H. (2005). Charting biologically relevant chemical space: a structural classification of natural products (SCONP). Proceedings of the National Academy of Sciences of the United States of America, 102, 17272-17277. doi: 10.1073/pnas.0503647102 Leason, M., Cunliffe, D., Parkin, D., Lea, P. J., Miflin, B. J. (1982). Inhibition of pea leaf glutamine synthetase by methionine sulphoximine, phosphinothricin and other glutamate analogues. Phytochemistry, 21, 855-857. doi: 10.1016/0031-9422(82)80079-4 Lebecque, S., Lins, L., Dayan, F. E., Fauconnier, M. L., Deleu, M. (2019). Interactions between natural herbicides and lipid bilayers mimicking the plant plasma membrane. Frontiers in Plant Science, 10, Article 329. doi: 10.3389/fpls.2019.00329 Lederer, B., Fujimori, T., Tsujino, Y., Wakabayashi, K., Böger, P. (2004). Phytotoxic activity of middle-chain fatty acids II: peroxidation and membrane effects. Pesticide Biochemistry and Physiology, 80, 151-156. doi: 10.1016/j.pestbp.2004.06.010 Lewis, K. A., Tzilivakis, J., Warner, D. J., Green, A. (2016). An international database for pesticide risk assessments and management. Human and Ecological Risk Assessment: An International Journal, 22, 1050-1064. doi: 10.1080/10807039.2015.1133242 Leyte-Lugo, M., Richomme, P., Peña-Rodriguez, L. M. (2020). Diketopiperazines from Alternaria dauci. Journal of the Mexican Chemical Society, 64, 283-290. doi: 10.29356/jmcs.v64i4.1228 Li, X., Kim, S.-K., Nam, K. W., Kang, J. S., Choi, H. D., Son, B. W. (2006). A new antibacterial dioxopiperazine alkaloid related to gliotoxin from a marine isolate of the fungus Pseudallescheria. The Journal of Antibiotics, 59, 248-250. doi: 10.1038/ja.2006.35 Lipkus, A. H., Yuan, Q., Lucas, K. A., Funk, S. A., Bartelt, W. F., 3rd, Schenck, R. J., Trippe, A. J., Registry, C. A. S. (2008). Structural diversity of organic chemistry. A scaffold analysis of the CAS Registry. The Journal of Organic Chemistry, 73, 4443-4451. doi: 10.1021/jo8001276 Lucas, R., Comelles, F., Alcántara, D., Maldonado, O. S., Curcuroze, M., Parra, J. L., Morales, J. C. (2010). Surface-active properties of lipophilic antioxidants tyrosol and hydroxytyrosol fatty acid esters: A potential explanation for the nonlinear hypothesis of the antioxidant activity in oil-in-water emulsions. Journal of Agricultural and Food Chemistry, 58, 8021-8026. doi: 10.1021/jf1009928 Ma, T., Christie, P., Teng, Y., Luo, Y. (2013). Rape (Brassica chinensis L.) seed germination, seedling growth, and physiology in soil polluted with di-n-butyl phthalate and bis(2-ethylhexyl) phthalate. Environmental Science and Pollution Research, 20, 5289-5298. doi: 10.1007/s11356-013-1520-5 Ma, T., Teng, Y., Christie, P., Luo, Y. (2015). Phytotoxicity in seven higher plant species exposed to di-n-butyl phthalate or bis (2-ethylhexyl) phthalate. Frontiers of Environmental Science Engineering, 9, 259-268. doi: 10.1007/s11783-014-0652-2 Mackauer, M. (1976). Genetic problems in the production of biological control agents. Annual Review of Entomology, 21, 369-385. doi: 10.1146/annurev.en.21.010176.002101 Mancilla, G., Jiménez-Teja, D., Femenía-Ríos, M., Macías-Sánchez, A. J., Collado, I. G., Hernández-Galán, R. (2009). Novel macrolide from wild strains of the phytopathogen fungus Colletotrichum acutatum. Natural Product Communications, 4, 395-398. Masi, M., Cimmino, A., Boari, A., Tuzi, A., Zonno, M. C., Baroncelli, R., Vurro, M., Evidente, A. (2017). Colletochlorins E and F, new phytotoxic tetrasubstituted pyran-2-one and dihydrobenzofuran, isolated from Colletotrichum higginsianum with potential herbicidal activity. Journal of Agricultural and Food Chemistry, 65, 1124-1130. doi: 10.1021/acs.jafc.6b05193 Masi, M., Nocera, P., Boari, A., Zonno, M. C., Pescitelli, G., Sarrocco, S., Baroncelli, R., Vannacci, G., Vurro, M., Evidente, A. (2020). Secondary metabolites produced by Colletotrichum lupini, the causal agent of anthachnose of lupin (Lupinus spp.). Mycologia, 112, 533-542. doi: 10.1080/00275514.2020.1732148 Mikaia, A., White, E., Zaikin, V., Zhu, D., Sparkman, O. D., Neta, P., Zenkevich, I., Linstrom, P., Mirokhin, Y., Tchekhovskoi, D. Yang, X. (2014). NIST standard reference database 1A. NIST. https://www.nist.gov/document/nist1aver22manpdf Molitor, D., Liermann, J. C., Berkelmann-Lohnertz, B., Buckel, I., Opatz, T., Thines, E. (2012). Phenguignardic acid and guignardic acid, phytotoxic secondary metabolites from Guignardia bidwellii. Journal of Natural Products, 75, 1265-1269. doi: 10.1021/np2008945 Moraga, J., Gomes, W., Pinedo, C., Cantoral, J. M., Hanson, J. R., Carbú, M., Garrido, C., Durán-Patrón, R., Collado, I. G. (2018). The current status on secondary metabolites produced by plant pathogenic Colletotrichum species. Phytochemistry Reviews, 18, 215-239. doi: 10.1007/s11101-018-9590-0 Morrow, B. J., Boucias, D. G., Heath, M. A. (1989). Loss of virulence in an isolate of an entomopathogenic fungus, Nomuraea rileyi, after serial in vitro passage. Journal of Economic Entomology, 82, 404-407. doi: 10.1093/jee/82.2.404 Munch, S., Lingner, U., Floss, D. S., Ludwig, N., Sauer, N., Deising, H. B. (2008). The hemibiotrophic lifestyle of Colletotrichum species. Journal of Plant Physiology, 165, 41-51. doi: 10.1016/j.jplph.2007.06.008 Pedras, M. S. C., Smith, K. C., Taylor, J. L. (1998). Production of 2,5-dioxopiperazine by a new isolate type of the blackleg fungus Phoma lingam. Phytochemistry, 49, 1575-1577. doi: https://doi.org/10.1016/S0031-9422(98)00271-4 Perfect, S. E., Hughes, H. B., O'Connell, R. J., Green, J. R. (1999). Colletotrichum: A model genus for studies on pathology and fungal-plant interactions. Fungal Genetics and Biology, 27, 186-198. doi: 10.1006/fgbi.1999.1143 Peters, B., Strek, H. J. (2018). Herbicide discovery in light of rapidly spreading resistance and ever-increasing regulatory hurdles. Pest Management Science, 74, 2211-2215. doi: 10.1002/ps.4768 Quastel, J. H. (1950). 2,4-dichlorophenoxyacetic acid (2,4-D) as a selective herbicide. Agricultural Control Chemicals, 1, 244-249. doi: 10.1021/ba-1950-0001.ch045 Reid, R. G., Sarker, S. D. (2012). Isolation of natural products by low-pressure column chromatography. In S. D. Sarker L. Nahar (Eds.), Natural Products Isolation (pp. 155-187). Humana Press. doi: 10.1007/978-1-61779-624-1_7 Reigosa, M. J., Souto, X. C., Gonz´lez, L. (1999). Effect of phenolic compounds on the germination of six weeds species. Plant Growth Regulation, 28, 83-88. doi: 10.1023/A:1006269716762 Reiss, J. (1982). Development of Aspergillus parasiticus and formation of aflatoxin B1 under the influence of conidiogenesis affecting compounds. Archives of Microbiology, 133, 236-238. doi: 10.1007/BF00415008 Ryan, G. (1970). Resistance of common groundsel to simazine and atrazine. Weed Science, 18, 614-616. doi: 10.1017/S0043174500034330 Saarma, K., Tarkka, M. T., Itävaara, M., Fagerstedt, K. V. (2003). Heat shock protein synthesis is induced by diethyl phthalate but not by di(2-ethylhexyl) phthalate in radish (Raphanus sativus). Journal of Plant Physiology, 160, 1001-1010. doi: 10.1078/0176-1617-00525 Shen, Y. M., Liu, H. L., Chang, S. T., Chao, C. H. (2010). First report of anthracnose caused by Colletotrichum acutatum on mung bean sprouts in taiwan. Plant Disease, 94, 131-131. doi: 10.1094/pdis-94-1-0131c Shim, W. B., Woloshuk, C. P. (2001). Regulation of fumonisin B(1) biosynthesis and conidiation in Fusarium verticillioides by a cyclin-like (C-type) gene, FCC1. Applied and Environmental Microbiology, 67, 1607-1612. doi: 10.1128/AEM.67.4.1607-1612.2001 Snyder, L. R. (1974). Classification of the solvent properties of common liquids. Journal of Chromatography A, 92, 223-230. doi: 10.1016/s0021-9673(00)85732-5 Song, Q. Y., Nan, Z. B., Gao, K., Song, H., Tian, P., Zhang, X. X., Li, C. J., Xu, W. B., Li, X. Z. (2015). Antifungal, phytotoxic, and cytotoxic activities of metabolites from Epichloe bromicola, a fungus obtained from Elymus tangutorum grass. Journal of Agricultural and Food Chemistry, 63, 8787-8792. doi: 10.1021/acs.jafc.5b04260 Stierle, A. C., Cardellina, J. H., Strobel, G. A. (1988). Maculosin, a host-specific phytotoxin for spotted knapweed from Alternaria alternata. Proceedings of the National Academy of Sciences of the United States of America, 85, 8008-8011. doi: 10.1073/pnas.85.21.8008 Strobel, G., Kenfield, D., Bunkers, G., Sugawara, F., Clardy, J. (1991). Phytotoxins as potential herbicides. Experientia, 47, 819-826. doi: 10.1007/BF01922462 Sukhoverkov, K. V., Corral, M. G., Leroux, J., Haywood, J., Johnen, P., Newton, T., Stubbs, K. A., , Mylne, J. S. (2021). Improved herbicide discovery using physico-chemical rules refined by antimalarial library screening. RSC Advances, 11, 8459-8467. doi: 10.1039/d1ra00914a Swan Shanna, H., Main Katharina, M., Liu, F., Stewart Sara, L., Kruse Robin, L., Calafat Antonia, M., Redmon, J. B., Ternand Christine, L., Sullivan, S., Teague, J. L. (2005). Decrease in anogenital distance among male infants with prenatal phthalate exposure. Environmental Health Perspectives, 113, 1056-1061. doi: 10.1289/ehp.8100 Tian, C., Ni, J., Chang, F., Liu, S., Xu, N., Sun, W., Xie, Y., Guo, Y., Ma, Y., Yang, Z., Dang, C., Huang, Y., Tian, Z., Wang, Y. (2016). Bio-source of di-n-butyl phthalate production by filamentous fungi. Scientific Reports, 6, Article 19791. doi: 10.1038/srep19791 Todero, I., Confortin, T. C., Luft, L., Brun, T., Ugalde, G. A., de Almeida, T. C., Arnemann, J. A., Zabot, G. L., Mazutti, M. A. (2018). Formulation of a bioherbicide with metabolites from Phoma sp. Scientia Horticulturae, 241, 285-292. doi: 10.1016/j.scienta.2018.07.009 Trigos, A., Reyna, S., Gutierrez, M. L., Sanchez, M. (1997). Diketopiperazines from cultures of the fungus Colletotrichum gloesporoides. Natural Product Letters, 11, 13-16. doi: 10.1080/10575639708043751 Triolet, M., Guillemin, J. P., Andre, O., Steinberg, C. (2020). Fungal-based bioherbicides for weed control: a myth or a reality? Weed Research, 60, 60-77. doi: 10.1111/wre.12389 United States Environmental Protection Agency. (1997). Paraquat dichloride: Reregistration eligibility decision (RED) (EPA 738-F-96-018). https://archive.epa.gov/pesticides/reregistration/web/pdf/0262red.pdf Varejão, E. V. V., Demuner, A. J., Barbosa, L. C. A., Barreto, R. W. (2013). The search for new natural herbicides – Strategic approaches for discovering fungal phytotoxins. Crop Protection, 48, 41-50. doi: 10.1016/j.cropro.2013.02.008 Wakamatsu, K., Masaki, T., Itoh, F., Kondo, K., Sudo, K. (1990). Isolation of fatty acid amide as an angiogenic principle from bovine mesentery. Biochemical and Biophysical Research Communications, 168, 423-429. doi: 10.1016/0006-291x(90)92338-z Westwood, J. H., Charudattan, R., Duke, S. O., Fennimore, S. A., Marrone, P., Slaughter, D. C., Swanton, C., Zollinger, R. (2018). Weed management in 2050: Perspectives on the future of weed science. Weed Science, 66, 275-285. doi: 10.1017/wsc.2017.78 Xu, Z., Shi, M., Tian, Y., Zhao, P., Niu, Y., Liao, M. (2019). Dirhamnolipid produced by the pathogenic fungus Colletotrichum gloeosporioides BWH-1 and its herbicidal activity. Molecules, 24, Article 2969. doi: 10.3390/molecules24162969 Xuan, T. D., Chung, I. M., Khanh, T. D., Tawata, S. (2006). Identification of phytotoxic substances from early growth of barnyard grass (Echinochloa crusgalli) root exudates. Journal of Chemical Ecology, 32, 895-906. doi: 10.1007/s10886-006-9035-x Yang, Z., Bao, L., Yin, Y., Ding, G., Ge, M., Chen, D., Qian, X. (2014). Pyrenocines N–O: two novel pyrones from Colletotrichum sp. HCCB03289. The Journal of Antibiotics, 67, 791-793. doi: 10.1038/ja.2014.59 Zatout, R., Cimmino, A. (in press). Isolation of tyrosol the main phytotoxic metabolite produced by the edible fungus Agaricus litoralis. Egyptian Journal of Chemistry. doi: 10.21608/ejchem.2021.71027.3573 Zhao, D. L., Han, X. B., Wang, M., Zeng, Y. T., Li, Y. Q., Ma, G. Y., Liu, J., Zheng, C. J., Wen, M. X., Zhang, Z. F., Zhang, P., Zhang, C. S. (2020). Herbicidal and antifungal xanthone derivatives from the alga-derived fungus Aspergillus versicolor D5. Journal of Agricultural and Food Chemistry, 68, 11207-11214. doi: 10.1021/acs.jafc.0c04265 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81958 | - |
| dc.description.abstract | "隨著抗性雜草的出現及老舊藥劑的退場,對於具有新作用機制或新有效成分之除草劑的需求愈來愈高。由於天然物具有多樣性的結構,使天然物成為研究除草劑之新作用機制或新有效成分的重要先導化合物 (lead compound)。前人文獻指出 Colletotrichum acutatum BCRC34607 可感染綠豆幼苗並抑制其生長,因此本研究欲探討植物病原菌 C. acutatum BCRC34607 之二次代謝物是否有作為除草劑之潛力。在培養條件的篩選過程中,發現將 C. acutatum BCRC34607 置於察氏培養基 (Czapek-Dox broth) 中搖瓶培養,並以乙酸乙酯萃取菌液,可穩定取得成分相似且具有植物毒性之粗萃取物。使用粗萃取物進行生物試驗,發現其可抑制綠豆幼苗的下胚軸及根之生長,且隨著粗萃取物的濃度上升,綠豆下胚軸及根受抑制情形也更加嚴重,顯示具有劑量效應。粗萃取物亦可抑制雙子葉植物大花咸豐草種子的發芽,但對單子葉植物芒稷種子卻無抑制效果,表示粗萃取物的植物毒性具有選擇性。以矽膠管柱對粗萃物進行半純化,將收集之分液分為兩組並進行生物試驗,結果顯示極性較高的第二組對綠豆幼苗的影響,與控制組相比具有顯著差異,因此再將其細分成兩組進行生物試驗,發現再細分後之兩組分液對綠豆幼苗皆具有生物活性,說明 C. acutatum BCRC34607 的二次代謝物中,可能含有不止一種植物毒素。將粗萃取物以 SepBox 系統純化,並以氣相層析質譜儀 (gas chromatography-mass spectrometry, GC-MS) 初步探討二次代謝物之成分,發現粗萃取物中含 cyclo(Phe-Pro)、tyrosol 及 bis(2-ethylhexyl) phthalate (BEHP) 三種成分,其可能貢獻部分粗萃取物的植物毒性,然而因本研究所選擇之分析方法的限制,故無法得知所有二次代謝物的結構和特性,此部分仍有待未來持續的探討和研究。總結來說,C. acutatum BCRC34607 之二次代謝物中含有具植物毒性之成分,且對雙子葉植物的生長抑制情形較佳,因此具有作為除草劑應用之潛能。" | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-25T03:07:28Z (GMT). No. of bitstreams: 1 U0001-2208202120572100.pdf: 2619357 bytes, checksum: 6f7494b438abd8e8d74aab63e9346d4a (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | 壹、 前言 1 一、 雜草對作物的負面影響 1 二、 雜草的管理方式 2 三、 現今除草劑的困境 3 (一) 高風險除草劑的退場 3 (二) 抗性雜草的出現 4 (三) 新型除草劑的缺乏 5 四、 具除草潛力之化合物來源 7 五、 作為除草劑之天然物的常見來源 8 六、 炭疽菌屬簡介 9 七、 C. acutatum 簡介 12 貳、 研究目的 14 參、 試驗架構 15 肆、 材料與方法 16 一、 菌株來源及繼代培養條件 16 二、 C. acutatum BCRC34607 對綠豆幼苗之影響 16 (一) C. acutatum BCRC34607 孢子懸浮液製備 16 (二) 綠豆種子之病原菌接種 17 三、 具植物毒性之 C. acutatum BCRC34607 分泌物的培養條件篩選及取得 17 (一) 培養基及萃取溶劑的選擇 17 (二) 培養溫度和培養時間的篩選 18 四、 粗萃取物的薄層層析試驗 19 五、 C. acutatum BCRC34607 分泌二次代謝物之穩定度的確認 20 六、 粗萃取物的半純化 20 七、 粗萃取物的二維層析分離 21 (一) 第一道分離管柱分離 21 (二) 第二道分離管柱分離 22 (三) 樣品的乾燥 22 八、 以氣相層析質譜儀對二次代謝物成分初步的探討 23 九、 生物試驗方法 24 (一) 萃取物對綠豆幼苗生長之影響 24 (二) 不同濃度下的萃取物對綠豆幼苗生長之影響 24 (三) 萃取物的專一性及選擇性試驗 24 十、 統計分析 25 伍、 結果與討論 26 一、 C. acutatum BCRC34607 對綠豆幼苗之影響 26 二、 培養條件的篩選及植物毒素的取得 28 (一) 培養基及萃取溶劑的選擇 28 (二) 培養溫度和培養時間的篩選 33 三、 C. acutatum BCRC34607 分泌二次代謝物之穩定度的確認 36 四、 C. acutatum BCRC34607 之粗萃取物的除草活性試驗 39 (一) 不同濃度下的粗萃取物對綠豆幼苗生長之影響 39 (二) 粗萃取物的專一性及選擇性試驗 42 五、 粗萃取物的半純化 46 (一) 沖提系統的選擇 46 (二) 半純化之萃取物對綠豆幼苗生長之影響 48 六、 粗萃取物的二維層析分離 51 七、 二次代謝物成分的初步探討 54 陸、 結論 68 柒、 參考文獻 69 | |
| dc.language.iso | zh-TW | |
| dc.subject | 除草活性 | zh_TW |
| dc.subject | 除草劑 | zh_TW |
| dc.subject | 二次代謝物 | zh_TW |
| dc.subject | 天然物 | zh_TW |
| dc.subject | Colletotrichum acutatum | zh_TW |
| dc.subject | natural product | en |
| dc.subject | herbicide | en |
| dc.subject | herbicidal activity | en |
| dc.subject | secondary metabolite | en |
| dc.subject | Colletotrichum acutatum | en |
| dc.title | 以感染綠豆之炭疽菌 Colletotrichum acutatum 的二次代謝物作為潛力除草劑之研究 | zh_TW |
| dc.title | "The study on the secondary metabolite produced by the mung bean pathogen, Colletotrichum acutatum, as a potential herbicide" | en |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳玟瑾(Hsin-Tsai Liu),林乃君(Chih-Yang Tseng),徐慈鴻,何素鵬 | |
| dc.subject.keyword | Colletotrichum acutatum,二次代謝物,天然物,除草活性,除草劑, | zh_TW |
| dc.subject.keyword | Colletotrichum acutatum,secondary metabolite,natural product,herbicidal activity,herbicide, | en |
| dc.relation.page | 84 | |
| dc.identifier.doi | 10.6342/NTU202102595 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2021-08-23 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 農業化學研究所 | zh_TW |
| dc.date.embargo-lift | 2023-09-01 | - |
| 顯示於系所單位: | 農業化學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2208202120572100.pdf | 2.56 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
