請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81943完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張慕傑(Mu-Chieh Chang) | |
| dc.contributor.author | Chia-Hung Lin | en |
| dc.contributor.author | 林家弘 | zh_TW |
| dc.date.accessioned | 2022-11-25T03:07:08Z | - |
| dc.date.available | 2023-09-01 | |
| dc.date.copyright | 2021-11-12 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-08-31 | |
| dc.identifier.citation | 1. (a) Lucas, R. E. (2002). The Industrial Revolution: Past and Future. Retrieved from https://www.minneapolisfed.org/article/2004/the-industrial-revolution-past-and-future#n2 (b) Lahlou, S. (Ed.). (2011). System Innovation for Sustainability 4: Case Studies in Sustainable Consumption and Production — Energy Use and the Built Environment. London, England: Routledge. 2. (a) Appel, A. M.; Bercaw, J. E.; Bocarsly, A. B.; Dobbek, H.; DuBois, D. L.; Dupuis, M.; Ferry, J. G.; Fujita, E.; Hille, R.; Kenis, P. J. A.; Kerfeld, C. A.; Morris, R. H.; Peden, C. H. F.; Portis, A. R.; Ragsdale, S. W.; Rauchfuss, T. B.; Reek, J. N. H.; Seefeldt, L. C.; Thauer, R. K.; Waldrop, G. L. Frontiers, Opportunities, and Challenges in Biochemical and Chemical Catalysis of CO2 Fixation. Chem. Rev. 2013, 113, 6621−6658. (b) Bilgen, S. Structure and Environmental Impact of Global Energy Consumption. Renew. Sustain. Energy Rev. 2014, 38, 890−902. (c) Klankermayer, J.; Wesselbaum, S.; Beydoun, K.; Leitner, W. Selective Catalytic Synthesis Using the Combination of Carbon Dioxide and Hydrogen: Catalytic Chess at the Interface of Energy and Chemistry. Angew. Chem., Int. Ed. 2016, 55, 7296–7343. (d) Guo, L.; Sun, J.; Ge, Q.; Tsubaki, N. Recent Advances in Direct Catalytic Hydrogenation of Carbon Dioxide to Valuable C2+ Hydrocarbons. J. Mater. Chem. A. 2018, 6, 23244−23262. (e) Jiang, X.; Nie, X.; Guo, X.; Song, C.; Chen, J. G. Recent Advances in Carbon Dioxide Hydrogenation to Methanol via Heterogeneous Catalysis. Chem. Rev. 2020, 120, 7984−8034. (f) Sen, R.; Goeppert, A.; Kar, S.; Prakash, G. K. S. Hydroxide Based Integrated CO2 Capture from Air and Conversion to Methanol. J. Am. Chem. Soc. 2020, 142, 4544−4549. (g) Subramanian, S.; Song, Y.; Kim, D.; Yavuz, C. T. Redox and Nonredox CO2 Utilization: Dry Reforming of Methane and Catalytic Cyclic Carbonate Formation. ACS Energy Lett. 2020, 5, 1689–1700. (h) Ra, E. C.; Kim, K. Y.; Kim, E. H.; Lee, H.; An, K.; Lee, J. S. Recycling Carbon Dioxide through Catalytic Hydrogenation: Recent Key Developments and Perspectives. ACS Catal. 2020, 10, 11318−11345. (i) De, S.; Dokania, A.; Ramirez, A.; Gascon, J. Advances in the Design of Heterogeneous Catalysts and Thermocatalytic Processes for CO2 Utilization. ACS Catal. 2020, 10, 14147−14185. 3. (a) Li, J.; Lin, Y.; Yao, H.; Yuan, C.; Liu, J. Tuning Thin-Film Electrolyte for Lithium Battery by Grafting Cyclic Carbonate and Combed Poly(ethylene oxide) on Polysiloxane. ChemSusChem 2014, 7, 1901−1908. (b) Pascual, A.; Tan, J. P. K.; Yuen, A.; Chan, J. M. W.; Coady, D. J.; Mecerreyes, D.; Hedrick, J. L.; Yang, Y. Y.; Sardon, H. Broad-Spectrum Antimicrobial Polycarbonate Hydrogels with Fast Degradability. Biomacromolecules 2015, 16, 1169–1178. (c) Tsai, F.-T.; Wang, Y.; Darensbourg, D. J. Environmentally Benign CO2‐Based Copolymers: Degradable Polycarbonates Derived from Dihydroxybutyric Acid and Their Platinum−Polymer Conjugates. J. Am. Chem. Soc. 2016, 138, 4626−4633. 4. (a) Lu, X.-B.; Liang, B.; Zhang, Y.-J.; Tian, Y.-Z.; Wang, Y.-M.; Bai, C.-X.; Wang, H.; Zhang, R. Asymmetric Catalysis with CO2: Direct Synthesis of Optically Active Propylene Carbonate from Racemic Epoxides. J. Am. Chem. Soc. 2004, 126, 3732–3733. (b) Paddock, R. L.; Nguyen, S. T. Chiral (salen)Co(III) Catalyst for the Synthesis of Cyclic Carbonates. Chem. Commun. 2004, 1622–1623. (c) Miao, C.-X.; Wang, J.-Q.; Wu, Y.; Du, Y.; He, L.-N. Bifunctional Metal-Salen Complexes as Efficient Catalysts for the Fixation of CO2 with Epoxides under Solvent-Free Conditions. ChemSusChem 2008, 1, 236–241. (d) Ramidi, P.; Gerasimchuk, N.; Gartia, Y.; Feltona, C. M.; Ghosh, A. Synthesis and Characterization of Co(III) Amidoamine Complexes: Influence of Substituents of the Ligand on Catalytic Cyclic Carbonate Synthesis from Epoxide and Carbon Dioxide. Dalton Trans. 2013, 42, 13151–13160. (e) Rulev, Y. A.; Larionov, V. A.; Lokutova, A. V.; Moskalenko, M. A.; Lependina, O.g.L.; Maleev, V. I.; North, M.; Belokon, Y. N. Chiral Cobalt(III) Complexes as Bifunctional Brønsted Acid–Lewis Base Catalysts for the Preparation of Cyclic Organic Carbonates. ChemSusChem 2016, 9, 216–222. (f) Jiang, X.; Gou, F.; Chen, F.; Jing, H. Cycloaddition of Epoxides and CO2 Catalyzed by Bisimidazole-Functionalized Porphyrin Cobalt(III) Complexes. Green Chem. 2016, 18, 3567–3576. (g) Zhou, F.; Xie, S.-L.; Gao, X.-T.; Zhang, R.; Wang, C.-H.; Yin, G.-Q.; Zhou, J. Activation of (salen)CoI Complex by Phosphorane for Carbon Dioxide Transformation at Ambient Temperature and Pressure. Green Chem. 2017, 19, 3908–3915. (h) Song, W.-Y.; Liu, Q.; Bu, Q.; Wei, D.; Dai, B.; Liu, N. Rational Design of Cobalt Complexes Based on the trans Effect of Hybrid Ligands and Evaluation of their Catalytic Activity in the Cycloaddition of Carbon Dioxide with Epoxide. Organometallics 2020, 39, 3546−3561. 5. Shaikh, R. R.; Pornpraprom, S.; D’Elia, V. Catalytic Strategies for the Cycloaddition of Pure, Diluted, and Waste CO2 to Epoxides under Ambient Conditions. ACS Catal. 2018, 8, 419–450. 6. (a) Poliakoff, M.; Licence, L. Green Chemistry. Nature 2007, 450, 810–812. (b) Anastas, P.; Eghbali, N. Green Chemistry: Principles and Practice. Chem. Soc. Rev. 2010, 39, 301–312. 7. (a) Trost, B. M. Atom Economy—A Challenge for Organic Synthesis: Homogeneous Catalysis Leads the Way. Angew. Chem., Int. Ed. Engl. 1995, 3, 259−281. (b) Kubas, G. J. Fundamentals of H2 Binding and Reactivity on Transition Metals Underlying Hydrogenase Function and H2 Production and Storage. Chem. Rev. 2007, 107, 4152−4205. (c) Himeda, Y. Conversion of CO2 into Formate by Homogeneously Catalyzed Hydrogenation in Water: Tuning Catalytic Activity and Water Solubility through the Acid–Base Equilibrium of the Ligand. Eur. J. Inorg. Chem. 2007, 25, 3927–3941. (d) Sanfilippo, D.; Rylander, P. N. Hydrogenation and Dehydrogenation. In Ullmann's Encyclopedia of Industrial Chemistry, Wiley-VCH: Weinheim, Germany, 2009, 18, 451−472. (e) Tollefson, J. Hydrogen Vehicles: Fuel of the Future? Nature 2010, 464, 1262−1264. (f) Crabtree, R. H. Dihydrogen Complexation. Chem. Rev. 2016, 116, 8750−8769. 8. (a) Osborn, J. A.; Jardine, F. H.; Young, J. F.; Wilkinson, G. The Preparation and Properties of Tris(triphenylphosphine)halogenorhodium(I) and Some Reactions Thereof Including Catalytic Homogeneous Hydrogenation of Olefins and Acetylenes and Their Derivatives. J. Chem. Soc. A 1966, 1711−1732. (b) Crabtree, R. Iridium Compounds in Catalysis. Acc. Chem. Res. 1979, 12, 331−337. (c) Shvo, Y.; Czarkie, D.; Rahamim Y.; Chodosh, D. F. A New Group of Ruthenium Complexes - Structure and Catalysis. J. Am. Chem. Soc. 1986, 108, 7400–7402. (d) Gunanathan, C.; Milstein, D. Bond Activation and Catalysis by Ruthenium Pincer Complexes. Chem. Rev. 2014, 114, 12024−12087. (e) Brown, J. M. Rhodium Asymmetric Hydrogenation Observed during its Exponential Growth Phase. Organometallics 2014, 33, 5912–5923. (f) Chelucci, G.; Baldino, S.; Baratta, W. Recent Advances in Osmium-Catalyzed Hydrogenation and Dehydrogenation Reactions. Acc. Chem. Res. 2015, 48, 363–379. (g) Zhao, D.; Candish, L.; Paul, D.; Glorius, F. N-Heterocyclic Carbenes in Asymmetric Hydrogenation. ACS Catal. 2016, 6, 5978–5988. (h) Guthertz, A.; Leutzsch, M.; Wolf, L. M.; Gupta, P.; Rummelt, S. M.; Goddard, R.; Fares̀, C.; Thiel, W.; Fürstner, A. Half-Sandwich Ruthenium Carbene Complexes Link trans- Hydrogenation and gem-Hydrogenation of Internal Alkynes. J. Am. Chem. Soc. 2018, 140, 3156−3169. 9. (a) Chirik, P. J.; Wieghardt, K. Radical Ligands Confer Nobility on Base-Metal Catalysts. Science 2010, 327, 794–795. (b) Du, X.; Huang, Z. Advances in Base-Metal-Catalyzed Alkene Hydrosilylation. ACS Catal. 2017, 7, 1227–1243. (c) Karunananda, M. K.; Mankad N. P. Cooperative Strategies for Catalytic Hydrogenation of Unsaturated Hydrocarbons. ACS Catal. 2017, 7, 6110−6119. 10. (a) Benson, S. W. Bond Energies. J Chem Educ 1965, 42, 502−518. (b) Wang, H.; Wen, J.; Zhang, X. Chiral Tridentate Ligands in Transition Metal-Catalyzed Asymmetric Hydrogenation. Chem. Rev. 2021, 121, 7530–7567. 11. Ai, W.; Zhong, R.; Liu, X.; Liu, Q. Hydride Transfer Reactions Catalyzed by Cobalt Complexes. Chem. Rev. 2019, 119, 2876−2953. 12. (a) Jørgensen, C. K. Differences Between the Four Halide Ligands, and Discussion Remarks on Trigonal-Bipyramidal Complexes, on Oxidation States, and on Diagonal Elements of One-Electron Energy. Coord. Chem. Rev. 1966, 1, 164-178. (b) Gunanathan, C.; Milstein, D. Metal−Ligand Cooperation by Aromatization−Dearomatization: A New Paradigm in Bond Activation and “Green” Catalysis. Acc. Chem. Res. 2011, 44, 588−602. (c) Chirik, P. J. Preface: Forum on Redox-Active Ligands. Inorg. Chem. 2011, 50, 9737–9740. (d) Khusnutdinova, J. R.; Milstein, D. Metal–Ligand Cooperation. Angew. Chem., Int. Ed. 2015, 54, 12236−12273. (e) Khan, F. F.; Chowdhury, A. D.; Lahiri, G. K. Bond Activations Assisted by Redox Active Ligand Scaffolds. Eur. J. Inorg. Chem. 2020, 13, 1138–1146. (f) Elsby, M. R.; Baker, R. T. Strategies and Mechanisms of Metal–Ligand Cooperativity in First-Row Transition Metal Complex Catalysts. Chem. Soc. Rev. 2020, 49, 8933−8987. 13. (a) Alig, L.; Fritz, M.; Schneider, S. First-Row Transition Metal (De)Hydrogenation Catalysis Based on Functional Pincer Ligands. Chem. Rev. 2019, 119, 2681– 2751. (b) Smith, N. E.; Bernskoetter, W. H.; Hazari, N. The Role of Proton Shuttles in the Reversible Activation of Hydrogen via Metal-Ligand Cooperation. J. Am. Chem. Soc. 2019, 141, 17350–17360. (c) Rauch, M.; Kar, S.; Kumar, A.; Avram, L.; Shimon, L. J. W.; Milstein, D. Metal–Ligand Cooperation Facilitates Bond Activation and Catalytic Hydrogenation with Zinc Pincer Complexes. J. Am. Chem. Soc. 2020, 142, 14513–14521. 14. (a) van der Vlugt, J. I. Cooperative Catalysis with First-Row Late Transition Metals. Eur. J. Inorg. Chem. 2012, 2012, 363–375. (b) Butschke, B.; Fillman, K. L.; Bendikov, T.; Shimon, L. J.; Diskin-Posner, Y.; Leitus, G.; Gorelsky, S. I.; Neidig, M. L.; Milstein, D. How Innocent are Potentially Redox Non-Innocent Ligands? Electronic Structure and Metal Oxidation States in Iron-PNN Complexes as a Representative Case Study. Inorg. Chem. 2015, 54, 4909-4926. (c) Rahman, Md. H.; Ryan, M. D.; Vazquez-Lima, H.; Alemayehu, A.; Ghosh, A. Infrared Spectroelectrochemistry of Iron-Nitrosyl Triarylcorroles. Implications for Ligand Noninnocence. Inorg. Chem. 2020, 59, 3232−3238. 15. Lyaskovskyy, V.; de Bruin, B. Redox Non-Innocent Ligands: Versatile New Tools to Control Catalytic Reactions. ACS Catal. 2012, 2, 270−279. 16. (a) Ringenberg, M. R.; Kokatam, S. L.; Heiden, Z. M.; Rauchfuss, T. B. J. Am. Chem. Soc. 2008, 130, 788−789. (b) Ringenberg, M. R.; Nilges, M. J.; Rauchfuss, T. B.; Wilson, S. R. Oxidation of Dihydrogen by Iridium Complexes of Redox-Active Ligands. Organometallics 2010, 29, 1956–1965. (c) Ringenberg, M. R.; Rauchfuss, T. B. Eur. J. Inorg. Chem. 2012, 3, 490−495. 17. Allgeier, A. M.; Mirkin, C. A. Angew. Chem., Int. Ed. 1998, 37, 894−908. 18. (a) Boyer, J. L.; Rochford, J.; Tsai, M.-K.; Muckerman, J. T.; Fujita, E. Ruthenium Complexes with Non-Innocent Ligands: Electron Distribution and Implications for Catalysis. Coord. Chem. Rev. 2010, 254, 309−330. (b) Kaim, W.; Schwederski, B. Non-Innocent Ligands in Bioinorganic Chemistry—An Overview. Coord. Chem. Rev. 2010, 254, 1580–1588. (c) Dzik, W. I.; van der Vlugt, J. I.; Reek, J. N. H.; de Bruin, B. Ligands that Store and Release Electrons during Catalysis. Angew. Chem., Int. Ed. 2011, 50, 3356−3358. (d) Gautam, R.; Loughrey, J. J.; Astashkin, A. V.; Shearer, J.; Tomat, E. Tripyrrindione as a Redox-Active Ligand: Palladium(II) Coordination in Three Redox States. Angew. Chem., Int. Ed. 2015, 54, 14894–14897. (e) Wong, J. L.; Higgins, R. F.; Bhowmick, I.; Cao, D. X.; Szigethy, G.; Ziller, J. W.; Shores, M. P.; Heyduk, A. F. Bimetallic Iron–Iron and Iron–Zinc Complexes of the Redox-Active ONO Pincer Ligand. Chem. Sci. 2016, 7, 1594–1599. (f) Li, B.; Kundu, S.; Stückl, A. C.; Zhu, H.; Keil, H.; Herbst-Irmer, R.; Stalke, D.; Schwederski, B.; Kaim, W.; Andrada, D. M.; Frenking, G.; Roesky, H. W. A Stable Neutral Radical in the Coordination Sphere of Aluminum. Angew. Chem., Int. Ed. 2017, 56, 397–400. (g) Kaspar, M.; Altmann, P. J.; Pöthig, A.; Sproules, S.; Hess, C. R. A Macrocyclic ‘Co0’ Complex: The Relevance of Ligand Non-Innocence to Reactivity. Chem. Commun. 2017, 53, 7282–7285. (h) Curcio, M.; Pankhurst, J. R.; Sproules, S.; Mignard, D.; Love, J. B. Triggering Redox Activity in a Thiophene Compound: Radical Stabilization and Coordination Chemistry. Angew. Chem., Int. Ed. 2017, 129, 8047–8051. 19. (a) Bart, S. C.; Lobkovsky, E.; Chirik, P. J. Preparation and Molecular and Electronic Structures of Iron(0) Dinitrogen and Silane Complexes and Their Application to Catalytic Hydrogenation and Hydrosilation. J. Am. Chem. Soc. 2004, 126, 13794–13807. (b) Bouwkamp, M. W.; Bowman, A. C.; Lobkovsky, E.; Chirik, P. J. Iron-Catalyzed [2π + 2π] Cycloaddition of α,ω-Dienes: The Importance of Redox-Active Supporting Ligands. J. Am. Chem. Soc. 2006, 128, 13340–13341. (c) Bart, S. C.; Chłopek, K.; Bill, E.; Bouwkamp, M. W.; Lobkovsky, E.; Neese, F.; Wieghardt, K.; Chirik, P. J. Electronic Structure of Bis(imino)pyridine Iron Dichloride, Monochloride, and Neutral Ligand Complexes: A Combined Structural, Spectroscopic, and Computational Study. J. Am. Chem. Soc. 2006, 128, 13901–13912. (d) Chirik, P. J.; Wieghardt, K. Radical Ligands Confer Nobility on Base-Metal Catalysts. Science 2010, 327, 794–795. (e) Russell, S. K.; Lobkovsky, E.; Chirik, P. J. Iron-Catalyzed Intermolecular [2π + 2π] Cycloaddition. J. Am. Chem. Soc. 2011, 133, 8858–8861. (f) Hoyt, J. M.; Sylvester, K. T.; Semproni, S. P.; Chirik, P. J. Synthesis and Electronic Structure of Bis(imino)pyridine Iron Metallacyclic Intermediates in Iron-Catalyzed Cyclization Reactions. J. Am. Chem. Soc. 2013, 135, 4862−4877. (g) Hoyt, J. M.; Schmidt, V. A.; Tondreau, A. M.; Chirik, P. J. Iron-Catalyzed Intermolecular [2+2] Cycloadditions of Unactivated Alkenes. Science 2015, 349, 960−963. 20. Jurss, J. W.; Khnayzer, R. S.; Panetier, J. A.; El Roz, K. A.; Nichols, E. M.; Head-Gordon, M.; Long, J. R.; Castellano, F. N.; Chang, C. J. Bioinspired Design of Redox-Active Ligands for Multielectron Catalysis: Effects of Positioning Pyrazine Reservoirs on Cobalt for Electro- and Photocatalytic Generation of Hydrogen from Water. Chem. Sci. 2015, 6, 4954–4972. 21. (a) Tondreau, A. M.; Atienza, C. C. H.; Weller, K. J.; Nye, S. A.; Lewis, K. M.; Delis, J. G. P.; Chirik, P. J. Iron Catalysts for Selective Anti-Markovnikov Alkene Hydrosilylation Using Tertiary Silanes. Science 2012, 335, 567−570. (b) Schuster, C. H.; Diao, T.; Pappas, I.; Chirik, P. J. Bench-Stable, Substrate-Activated Cobalt Carboxylate Pre-Catalysts for Alkene Hydrosilylation with Tertiary Silanes. ACS Catal. 2016, 6, 2632−2636. 22. Sylvester, K. T.; Chirik, P. J. Iron-Catalyzed, Hydrogen-Mediated Reductive Cyclization of 1,6-Enynes and Diynes: Evidence for Bis(imino)pyridine Ligand Participation. J. Am. Chem. Soc. 2009, 131, 8772−8774. 23. (a) Nguyen, A. I.; Zarkesh, R. A.; Lacy, D. C.; Thorson, M. K.; Heyduk, A. F. Catalytic Nitrene Transfer by a Zirconium(IV) Redox-Active Ligand Complex. Chem. Sci. 2011, 2, 166–169. (b) Myers, T. W.; Berben, L. A. Redox Active Aluminium (III) Complexes Convert CO2 into MgCO3 or CaCO3 in a Synthetic Cycle Using Mg or Ca Metal. Chem. Commun. 2013, 49, 4175–4177. 24. Chaudhuri, P.; Hess, M.; Flörke, U.; Wieghardt, K. From Structural Models of Galactose Oxidase to Homogeneous Catalysis: Efficient Aerobic Oxidation of Alcohols. Angew. Chem., Int. Ed. 1998, 37, 2217−2220. 25. Chaudhuri, P.; Wieghardt, K.; Weyhermüller, T.; Paine, T. K.; Mukherjee, S.; Mukherjee, C. Biomimetic Metal-Radical Reactivity: Aerial Oxidation of Alcohols, Amines, Aminophenols and Catechols Catalyzed by Transition Metal Complexes. Biol. Chem. 2005, 386, 1023−1033. 26. (a) Wang, K.; Stiefel, E. I. Toward Separation and Purification of Olefins Using Dithiolene Complexes: An Electrochemical Approach. Science 2001, 291, 106−109. (b) Grapperhaus, C. A.; Ouch, K.; Mashuta, M. S. Redox-Regulated Ethylene Binding to a Rhenium-Thiolate Complex. J. Am. Chem. Soc. 2009, 131, 64−65. (c) Ouch, K.; Mashuta, M. S.; Grapperhaus, C. A. Metal-Stabilized Thiyl Radicals as Scaffolds for Reversible Alkene Addition via C−S Bond Formation/Cleavage. Inorg. Chem. 2011, 50, 9904−9914. 27. Schauer, P. A.; Low, P. J. Ligand Redox Non-Innocence in Transition Metal σ-Alkynyl and Related Complexes. Eur. J. Inorg. Chem. 2012, 3, 390−411. 28. King, E. R.; Hennessy, E. T.; Betley, T. A. Catalytic C−H Bond Amination from High-Spin Iron Imido Complexes. J. Am. Chem. Soc. 2011, 133, 4917−4923. 29. Biernesser, A. B.; Li, B.; Byers, J. A. Redox-Controlled Polymerization of Lactide Catalyzed by Bis(imino)pyridine Iron Bis(alkoxide) Complexes. J. Am. Chem. Soc. 2013, 135, 16553−16560. 30. Gregson, C. K. A.; Gibson, V. C.; Long, N. J.; Marshall, E. L.; Oxford, P. J.; White, A. J. P. Redox Control within Single-Site Polymerization Catalysts. J. Am. Chem. Soc. 2006, 128, 7410−7411. 31. (a) Anderson, W. C.; Rhinehart, J. L.; Tennyson, A. G.; Long, B. K. Redox-Active Ligands: An Advanced Tool to Modulate Polyethylene Microstructure. J. Am. Chem. Soc. 2016, 138, 774−777. (b) Zhao, M.; Chen, C. Accessing Multiple Catalytically Active States in Redox-Controlled Olefin Polymerization. ACS Catal. 2017, 7, 7490−7494. 32. (a) Fortier, S.; Le Roy, J. J.; Chen, C.-H.; Vieru, V.; Murugesu, M.; Chibotaru, L. F.; Mindiola, D. J.; Caulton, K. G. A Dinuclear Cobalt Complex Featuring Unprecedented Anodic and Cathodic Redox Switches for Single-Molecule Magnet Activity. J. Am. Chem. Soc. 2013, 135, 14670−14678. (b) Norel, L.; Feng, M.; Bernot, K.; Roisnel, T.; Guizouarn, T.; Costuas, K.; Rigaut, S. Redox Modulation of Magnetic Slow Relaxation in a 4f-Based Single-Molecule Magnet with a 4d Carbon-Rich Ligand. Inorg. Chem. 2014, 53, 2361–2363. (c) Demir, S.; Nippe, M.; Gonzalez, M. I.; Long, J. R. Exchange Coupling and Magnetic Blocking in Dilanthanide Complexes Bridged by the Multi-Electron Redox-Active Ligand 2,3,5,6-Tetra(2-pyridyl)pyrazine. Chem. Sci. 2014, 5, 4701– 4711. (d) Ma, X.; Liu, Y.; Song, W.; Wang, Z.; Liu, X.; Xie, G.; Chen, S.; Gao, S. A Difunctional Azido-Cobalt(II) Coordination Polymer Exhibiting Slow Magnetic Relaxation Behaviour and High-Energy Characteristics with Good Thermostability and Insensitivity. Dalton Trans 2018, 47, 12092–12104. (e) Massoud, S. S.; Perez, Z. E.; Courson, J. R.; Fischer, R. C.; Mautner, F. A.; Vančo, J.; Čajan, M.; Trávníček, Z. Slow Magnetic Relaxation in Penta-Coordinate Cobalt(II) Field-Induced Single-Ion Magnets (SIMs) with Easy-Axis Magnetic Anisotropy. Dalton Trans 2020, 49, 11715–11726. 33. (a) DeGayner, J. A.; Jeon, I. R.; Sun, L.; Dincǎ, M.; Harris, T. D. 2D Conductive Iron-Quinoid Magnets Ordering up to Tc = 105 K via Heterogenous Redox Chemistry. J. Am. Chem. Soc. 2017, 139, 4175– 4184. (b) Miner, E. M.; Gul, S.; Ricke, N. D.; Pastor, E.; Yano, J.; Yachandra, V. K.; Voorhis, T. V.; Dincǎ, M. Mechanistic Evidence for Ligand-Centered Electrocatalytic Oxygen Reduction with the Conductive MOF Ni3(hexaiminotriphenylene)2. ACS Catal. 2017, 7, 7726– 7731. 34. (a) Schmitz, M.; Seibel, M.; Kelm, H.; Demeshko, S.; Meyer, F.; Krüger, H.-J. How Does a Coordinated Radical Ligand Affect the Spin Crossover Properties in an Octahedral Iron(II) Complex? Angew. Chem., Int. Ed. 2014, 53, 5988–5992. (b) Travieso-Puente, R.; Broekman, J. O. P.; Chang, M.-C.; Demeshko, S.; Meyer, F.; Otten, E. Spin-Crossover in a Pseudo-tetrahedral Bis(formazanate) Iron Complex. J. Am. Chem. Soc. 2016, 138, 5503–5506. 35. (a) Curtis, C. J.; Miedaner, A.; Ciancanelli, R.; Ellis, W. W.; Noll, B. C.; Rakowski DuBois, M.; DuBois, D. L. [Ni(Et2PCH2NMeCH2PEt2)2]2+ as a Functional Model for Hydrogenases. Inorg. Chem. 2003, 42, 216–227. (b) Rakowski Dubois, M.; Dubois, D. L. Development of Molecular Electrocatalysts for CO2 Reduction and H2 Production/Oxidation. Acc. Chem. Res. 2009, 42, 1974–1982. (c) Helm, M. L.; Stewart, M. P.; Bullock, R. M.; Rakowski DuBois, M.; DuBois, D. L. A Synthetic Nickel Electrocatalyst with a Turnover Frequency Above 100,000 s-1 for H2 Production. Science 2011, 333 , 863–866. (d) Liu, T.; DuBois, D. L.; Bullock, R. M. An Iron Complex with Pendant Amines as a Molecular Electrocatalyst for Oxidation of Hydrogen. Nat. Chem. 2013, 5, 228–233. (e) Liu, T.; Wang, X.; Hoffmann, C.; DuBois, D. L.; Bullock, R. M. Heterolytic Cleavage of Hydrogen by an Iron Hydrogenase Model: An Fe-H···H-N Dihydrogen Bond Characterized by Neutron Diffraction. Angew. Chem., Int. Ed. 2014, 53, 5300–5304. (f) Thammavongsy, Z.; Mercer, I. P.; Yang, J. Y. Promoting Proton Coupled Electron Transfer in Redox Catalysts through Molecular Design. Chem. Commun. 2019, 55, 10342–10358. 36. (a) Wilson, A. D.; Newell, R. H.; McNevin, M. J.; Muckerman, J. T.; Rakowski DuBois, M.; DuBois, D. L. Hydrogen Oxidation and Production Using Nickel-Based Molecular Catalysts with Positioned Proton Relays. J. Am. Chem. Soc. 2006, 128, 358–366. (b) Kilgore, U. J.; Roberts, J. A. S.; Pool, D. H.; Appel, A. M.; Stewart, M. P.; Rakowski DuBois, M.; Dougherty, W. G.; Kassel, W. S.; Bullock, R. M.; DuBois, D. L. [Ni(PPh2NC6H4X2)2]2+ Complexes as Electrocatalysts for H2 Production: Effect of Substituents, Acids, and Water on Catalytic Rates. J. Am. Chem. Soc. 2011, 133, 5861–5872. (c) Raugei, S.; Chen, S.; Ho, M.-H.; Ginovska-Pangovska, B.; Rousseau, R. J.; Dupuis, M.; DuBois, D. L.; Bullock, R. M. The Role of Pendant Amines in the Breaking and Forming of Molecular Hydrogen Catalyzed by Nickel Complexes. Chem. Eur. J. 2012, 18, 6493–6506. 37. Appel, A. M.; Pool, D. H.; O’Hagan, M.; Shaw, W. J.; Yang, J. Y.; Rakowski DuBois, M.; DuBois, D. L.; Bullock, R. M. [Ni(PPh2NBn2)2(CH3CN)]2+ as an Electrocatalyst for H2 Production: Dependence on Acid Strength and Isomer Distribution. ACS Catal. 2011, 1, 777–785. 38. Belkova, N. V.; Epstein, L. M.; Filippov, O. A.; Shubina, E. S. Hydrogen and Dihydrogen Bonds in the Reactions of Metal Hydrides. Chem. Rev. 2016, 116, 8545−8587. 39. Weiss, C. J.; Das, P.; Miller, D. L.; Helm, M. L.; Appel, A. M. Catalytic Oxidation of Alcohol via Nickel Phosphine Complexes with Pendant Amines. ACS Catal. 2014, 4, 2951−2958. 40. (a) Gunanathan, C.; Ben-David, Y.; Milstein, D. Direct Synthesis of Amides from Alcohols and Amines with Liberation of H2. Science 2007, 317, 790–792. (b) Choi, J.; MacArthur, A. H. R.; Brookhart, M.; Goldman, A. S. Dehydrogenation and Related Reactions Catalyzed by Iridium Pincer Complexes. Chem. Rev. 2011, 111, 1761–1779. (c) Zuo, W.; Lough, A. J.; Li, Y. F.; Morris, R. H. Amine(imine)diphosphine Iron Catalysts for Asymmetric Transfer Hydrogenation of Ketones and Imines. Science 2013, 342, 1080–1083. (d) Semproni, S. P.; Milsmann, C.; Chirik, P. J. Four-Coordinate Cobalt Pincer Complexes: Electronic Structure Studies and Ligand Modification by Homolytic and Heterolytic Pathways. J. Am. Chem. Soc. 2014, 136, 9211−9224. 41. Kounalis, E.; Lutz, M.; Broere, D. L. J. Cooperative H2 Activation on Dicopper(I) Facilitated by Reversible Dearomatization of an “Expanded PNNP Pincer” Ligand. Chem. Eur. J. 2019, 25, 13280–13284. 42. Morris, R. H. Exploiting Metal−Ligand Bifunctional Reactions in the Design of Iron Asymmetric Hydrogenation Catalysts. Acc. Chem. Res. 2015, 48, 1494−1502. 43. Han, Z.; Rong, L.; Wu, J.; Zhang, L.; Wang, Z.; Ding, K. Catalytic Hydrogenation of Cyclic Carbonates: A Practical Approach from CO2 and Epoxides to Methanol and Diols. Angew. Chem., Int. Ed. 2012, 124, 13218–13222. 44. Wang, D.; Astruc, D. The Golden Age of Transfer Hydrogenation. Chem. Rev. 2015, 115, 6621−6686. 45. (a) Hull, J. F.; Himeda, Y.; Wang, W.-H.; Hashiguchi, B.; Periana, R.; Szalda, D. J.; Muckerman, J. T.; Fujita, E. Reversible Hydrogen Storage Using CO2 and a Proton-Switchable Iridium Catalyst in Aqueous Media under Mild Temperatures and Pressures. Nat. Chem. 2012, 4, 383−388. (b) Anaby, A.; Feller, M.; Ben-David, Y.; Leitus, G.; Diskin-Posner, Y.; Shimon, L. J. W.; Milstein, D. Bottom-Up Construction of a CO2-Based Cycle for the Photocarbonylation of Benzene, Promoted by a Rhodium(I) Pincer Complex. J. Am. Chem. Soc. 2016, 138, 9941–9950. 46. (a) Dunn, P. L.; Chatterjee, S.; MacMillan, S. N.; Pearce, A. J.; Lancaster, K. M.; Tonks, I. A. The 4‐Electron Cleavage of a N=N Double Bond by a Trimetallic TiNi2 Complex. Inorg. Chem. 2019, 58, 11762−11772. (b) Xiong, N.; Zhang, G.; Sun, X.; Zeng, R. Metal‐Metal Cooperation in Dinucleating Complexes Involving Late Transition Metals Directed towards Organic Catalysis. Chin. J. Chem. 2020, 38, 185–201. 47. (a) Einsle, O.; Tezcan, F. A.; Andrade, S. L. A.; Schmid, B.; Yoshida, M.; Howard, J. B.; Rees, D. C. Nitrogenase MoFe-Protein at 1.16 Å Resolution: A Central Ligand in the FeMo-Cofactor. Science 2002, 297, 1696−1700. (b) Yano, J.; Yachandra, V. Mn4Ca Cluster in Photosynthesis: Where and How Water is Oxidized to Dioxygen. Chem. Rev. 2014, 114, 4175−4205. 48. (a) Wei, Z.; Sun, J.; Li, Y.; Datye, A. K.; Wang, Y. Bimetallic Catalysts for Hydrogen Generation. Chem. Soc. Rev. 2012, 41, 7994–8008. (b) Sankar, M.; Dimitratos, N.; Miedziak, P. J.; Wells, P. P.; Kiely, C. J.; Hutchings, G. J. Designing Bimetallic Catalysts for a Green and Sustainable Future. Chem. Soc. Rev. 2012, 41, 8099–8139. (c) Buchwalter, P.; Rosé, J.; Braunstein, P. Multimetallic Catalysis Based on Heterometallic Complexes and Clusters. Chem. Rev. 2015, 115, 28−126. (d) Pritchard, J.; Filonenko, G. A.; van Putten, R.; Hensen, E. J. M.; Pidko, E. A. Heterogeneous and Homogeneous Catalysis for the Hydrogenation of Carboxylic Acid Derivatives: History, Advances and Future Directions. Chem. Soc. Rev. 2015, 44, 3808–3833. (e) Jia, J.; Qian, C.; Dong, Y.; Li, Y. F.; Wang, H.; Ghoussoub, M.; Butler, K. T.; Walsh, A.; Ozin, G. A. Heterogeneous Catalytic Hydrogenation of CO2 by Metal Oxides: Defect Engineering – Perfecting Imperfection. Chem. Soc. Rev. 2017, 46, 4631–4644. 49. (a) Gouré, E.; Gerey, B.; Clémancey, M.; Pécaut, J.; Molton, F.; Latour, J.-M.; Blondin, G.; Collomb, M.-N. Intramolecular Electron Transfers Thwart Bistability in a Pentanuclear Iron Complex. Inorg. Chem. 2016, 55, 9178−9186. (b) Okamura, M.; Kondo, M.; Kuga, R.; Kurashige, Y.; Yanai, T.; Hayami, S.; Praneeth, V. K. K.; Yoshida, M.; Yoneda, K.; Kawata, S.; Masaoka, S. A Pentanuclear Iron Catalyst Designed for Water Oxidation. Nature 2016, 530, 465−468. 50. (a) Ellis, W. C.; McDaniel, N. D.; Bernhard, S.; Collins, T. J. Fast Water Oxidation Using Iron. J. Am. Chem. Soc. 2010, 132, 10990–10991. (b) Fillol, J. L.; Codolà, Z.; Garcia-Bosch, I.; Gómez, L.; Pla, J. J.; Costas, M. Efficient Water Oxidation Catalysts Based on Readily Available Iron Coordination Complexes. Nat. Chem. 2011, 3, 807–813. (c) Hong, D.; Mandal, S.; Yamada, Y.; Lee, Y.-M.; Nam, W.; Llobet, A.; Fukuzumi, S. Water Oxidation Catalysis with Nonheme Iron Complexes under Acidic and Basic Conditions: Homogeneous or Heterogeneous? Inorg. Chem. 2013, 52, 9522−9531. (d) Coggins, M. K.; Zhang, M.-T.; Vannucci, A. K.; Dares, C. J.; Meyer, T. J. Electrocatalytic Water Oxidation by a Monomeric Amidate-Ligated Fe(III)−Aqua Complex. J. Am. Chem. Soc. 2014, 136, 5531−5534. 51. Prat, J. R.; Gaggioli, C. A.; Cammarota, R. C.; Bill, E.; Gagliardi, L.; Lu, C. C. Bioinspired Nickel Complexes Supported by an Iron Metalloligand. Inorg. Chem. 2020, 59, 14251−14262. 52. (a) Cammarota, R. C.; Lu, C. C. Tuning Nickel with Lewis Acidic Group 13 Metalloligands for Catalytic Olefin Hydrogenation. J. Am. Chem. Soc. 2015, 137, 12486−12489. (b) Cammarota, R. C.; Vollmer, M. V.; Xie, J.; Ye, J.; Linehan, J. C.; Burgess, S. A.; Appel, A. M.; Gagliardi, L.; Lu, C. C. A Bimetallic Nickel−Gallium Complex Catalyzes CO2 Hydrogenation via the Intermediacy of an Anionic d10 Nickel Hydride. J. Am. Chem. Soc. 2017, 139, 14244−14250. (c) Ye, J.; Cammarota, R. C.; Xie, J.; Vollmer, M. V.; Truhlar, D. G.; Cramer, C. J.; Lu, C. C.; Gagliardi, L. Rationalizing the Reactivity of Bimetallic Molecular Catalysts for CO2 Hydrogenation. ACS Catal. 2018, 8, 4955−4968. 53. (a) Siedschlag, R. B.; Bernales, V.; Vogiatzis, K. D.; Planas, N.; Clouston, L. J.; Bill, E.; Gagliardi, L.; Lu, C. C. Catalytic Silylation of Dinitrogen with a Dicobalt Complex. J. Am. Chem. Soc. 2015, 137, 4638−4641. (b) Clouston, L. J.; Bernales, V.; Carlson, R. K.; Gagliardi, L.; Lu, C. C. Bimetallic Cobalt–Dinitrogen Complexes: Impact of the Supporting Metal on N2 Activation. Inorg. Chem. 2015, 54, 9263–9270. 54. Vollmer, M. V.; Ye, J.; Linehan, J. C.; Graziano, B. J.; Preston, A.; Wiedner, E. S.; Lu, C. C. Cobalt-Group 13 Complexes Catalyze CO2 Hydrogenation via a Co(-I)/Co(I) Redox Cycle. ACS Catal. 2020, 10, 2459–2470. 55. (a) Rudd, P. A.; Liu, S.; Planas, N.; Bill, E.; Gagliardi, L.; Lu, C. C. Multiple Metal–Metal Bonds in Iron–Chromium Complexes. Angew. Chem., Int. Ed. 2013, 52, 4449–4452. (b) Clouston, L. J.; Siedschlag, R. B.; Rudd, P. A.; Planas, N.; Hu, S. X.; Miller, A. D.; Gagliardi, L.; Lu, C. C. Systematic Variation of Metal–Metal Bond Order in Metal–Chromium Complexes. J. Am. Chem. Soc. 2013, 135, 13142–13148. (c) Berry, J. F.; Lu, C. C. Metal–Metal Bonds: From Fundamentals to Applications. Inorg. Chem. 2017, 56, 7577–7581. (d) Chipman, J. A.; Berry, J. F. Paramagnetic Metal−Metal Bonded Heterometallic Complexes. Chem. Rev. 2020, 120, 2409−2447. (d) Chapovetsky, A.; Langeslay, R. R.; Celik, G.; Perras, F. A.; Pruski, M.; Ferrandon, M. S.; Wegener, E. C.; Kim, H.; Dogan, F.; Wen, J.; Khetrapal, N.; Sharma, P.; White, J.; Kropf, A. J.; Sattelberger, A. P.; Kaphan, D. M.; Delferro, M. Activation of Low-Valent, Multiply M−M Bonded Group VI Dimers toward Catalytic Olefin Metathesis via Surface Organometallic Chemistry. Organometallics 2020, 39, 1035−1045. (f) Eaton, M. C.; Catalano, V. J.; Shearer, J.; Murray, L. J. Dinitrogen Insertion and Cleavage by a Metal−Metal Bonded Tricobalt(I) Cluster. J. Am. Chem. Soc. 2021, 143, 5649−5653. 56. (a) Shima, T.; Luo, Y.; Stewart, T.; Bau, R.; McIntyre, G. J.; Mason, S. A.; Hou, Z. Molecular Heterometallic Hydride Clusters Composed of Rare-Earth and d-Transition Metals. Nat. Chem. 2011, 3, 814−820. (b) Shima, T.; Hu, S.; Luo, G.; Kang, X.; Luo, Y.; Hou, Z. Dinitrogen Cleavage and Hydrogenation by a Trinuclear Titanium Polyhydride Complex. Science 2013, 340, 1549−1552. (c) Hu, S.; Shima, T.; Hou, Z. Carbon–Carbon Bond Cleavage and Rearrangement of Benzene by a Trinuclear Titanium Hydride. Nature 2014, 512, 413−415. (d) Perutz, R. N.; Procacci, B. Photochemistry of Transition Metal Hydrides. Chem. Rev. 2016, 116, 8506−8544. (e) Jordan, A. J.; Lalic, G.; Sadighi, J. P. Coinage Metal Hydrides: Synthesis, Characterization, and Reactivity. Chem. Rev. 2016, 116, 8318−8372. 57. Zhou, Y.-Y.; Hartline, D. R.; Steiman, T. J.; Fanwick, P. E.; Uyeda, C. Dinuclear Nickel Complexes in Five States of Oxidation Using a Redox-Active Ligand. Inorg. Chem. 2014, 53, 11770−11777. 58. (a) Steiman, T. J.; Uyeda, C. Reversible Substrate Activation and Catalysis at an Intact Metal−Metal Bond Using a Redox-Active Supporting Ligand. J. Am. Chem. Soc. 2015, 137, 6104−6110. (b) Pal, S.; Uyeda, C. Evaluating the Effect of Catalyst Nuclearity in Ni-Catalyzed Alkyne Cyclotrimerizations. J. Am. Chem. Soc. 2015, 137, 8042−8045. (c) Steiman, T. J.; Pal, S.; Uyeda, C. Catalytically Active Nickel–Nickel Bonds Using Redox-Active Ligands. Synlett 2016, 27, 814–820. (d) Zhou, Y.-Y.; Uyeda, C. Reductive Cyclopropanations Catalyzed by Dinuclear Nickel Complexes. Angew. Chem., Int. Ed. 2016, 55, 3171–3175. (e) Powers, I. G.; Kiattisewee, C.; Mullane, K. C.; Schelter, E. J.; Uyeda, C. A 1,2-Addition Pathway for C(sp2)–H Activation at a Dinickel Imide. Chem. Eur. J. 2017, 23, 7694–7697. (f) Maity, A. K.; Zeller, M.; Uyeda, C. Carbene Formation and Transfer at a Dinickel Active Sit……… | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81943 | - |
| dc.description.abstract | " 在工業上,常用來達到經濟效益的方法是透過催化反應,對低成本的小分子進行活化應用。其中,將地球豐富的二氧化碳轉化為具有附加價值的化學物質就是一個實際例子。此外,氫氣的活化在哈伯法製氨中扮演著重要的角色。然而,地球豐富的卑金屬如鈷,並不容易對這類多質子或多電子的反應有良好的反應性。為了提高由卑金屬合成的催化劑,對多質子或多電子反應的活性,我們將金屬−配位基協同作用和金屬−金屬協同作用引入到我們的多功能鈷催化劑。根據文獻資料,這種在單一催化劑中使用多個功能的策略,可以有效穩定催化過程產生的中間體,進而提供卑金屬催化劑進行多質子和多電子轉移的能力。 在本篇論文中,我們首先完成了配位基H2L的合成與鑑定,接著再利用去質子化的配位基和CoX2 (X = Cl, Br, I)等鹽類起始物進行反應,合成混合價數的三鈷錯合物10-12。我們利用各種鑑定方式去了解10-12在固態和溶液狀態下的結構,以及他們的電子和電化學性質。我們發現可以使用錯合物12,催化二氧化碳與環氧丙烷的環加成反應,在常溫常壓的條件下以中等產率生成碳酸丙烯酯。" | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-25T03:07:08Z (GMT). No. of bitstreams: 1 U0001-3008202121140200.pdf: 18893596 bytes, checksum: 393e8514abebb07232b85c0310ebb034 (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | "致謝 i 摘要 iii Abstract iv Contents v List of Figures viii List of Schemes xiv List of Tables xviii Chapter 1 Introduction 1 1.1 Based Metal Homogeneous Catalyst 1 1.2 Metal-Ligand Cooperation 3 1.2.1 Redox-Active Ligand 5 1.2.2 Pendant Proton Relay 13 1.3 Metal-Metal Cooperation 16 1.4 Motivation of Multifunctional Catalysts Designed 20 Chapter 2 Results and Discussions 27 2.1 Ligand Synthesis, Characterization and Reaction 27 2.1.1 Ligand Synthesis and Characterization 27 2.1.2 Deprotonation Tests of the Ligand 36 2.1.3 Electrochemical Properties of Ligand 42 2.1.4 H-Atom Abstraction Test of Ligand 44 2.2 Synthesis, Characterization and Application of Tricobalt Complexes 47 2.2.1 Synthesis and Structure Characterization of Complexes 47 2.2.2 Electronic Structure of Tricobalt Complexes 65 2.2.3 Electrochemical Properties of Tricobalt Complexes 68 2.2.4 Catalytic Cycloaddition of CO2 with Epoxypropane 75 Chapter 3 Conclusion and Future Work 79 Chapter 4 Experimental Section 81 General Information 81 Physical Measurement 82 Preparation 85 2,3-Dihydrophthalazine-1,4-dione (2) 85 1,4-Dichlorophthalazine (3) 86 1,1'-(Phthalazine-1,4-diyl)bis(ethan-1-one) (8) from 1,4-dichlorophthalazine (3) 88 1,4-Dihydrazineylphthalazine (6) 90 Phthalazine (7) 91 1,1'-(Phthalazine-1,4-diyl)bis(ethan-1-one) (8) from Phthalazine (7) 93 1,4-Bis((Z)-1-(2-phenylhydrazineylidene)ethyl)phthalazine (H2L) 95 [(HL)3CoII,III2X][CoIIX3(THF)] (X = Cl: 10; X = Br: 11; X = I: 12) 97 Purification Process after Catalytic Cycloaddition of CO2 with Epoxypropane 100 Reference 101 Appendix 135" | |
| dc.language.iso | en | |
| dc.subject | 多功能三鈷錯合物 | zh_TW |
| dc.subject | ligand-based reduction | zh_TW |
| dc.subject | 金屬−金屬協同作用 | zh_TW |
| dc.subject | 金屬−配位基協同作用 | zh_TW |
| dc.subject | 二氧化碳環化加成 | zh_TW |
| dc.subject | ligand-based reduction | en |
| dc.subject | cycloaddition of CO2 | en |
| dc.subject | multifunctional tricobalt complex | en |
| dc.subject | metal-metal cooperation | en |
| dc.subject | metal-ligand cooperation | en |
| dc.title | 混合價數多功能三鈷錯合物的合成、鑑定與應用 | zh_TW |
| dc.title | "Synthesis, Characterization and Application of Mix-Valence Multifunctional Tricobalt Complexes" | en |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 劉學儒(Hsin-Tsai Liu),林峻毅(Chih-Yang Tseng) | |
| dc.subject.keyword | 金屬−配位基協同作用,金屬−金屬協同作用,多功能三鈷錯合物,ligand-based reduction,二氧化碳環化加成, | zh_TW |
| dc.subject.keyword | metal-ligand cooperation,metal-metal cooperation,multifunctional tricobalt complex,ligand-based reduction,cycloaddition of CO2, | en |
| dc.relation.page | 196 | |
| dc.identifier.doi | 10.6342/NTU202102863 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2021-08-31 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 化學研究所 | zh_TW |
| dc.date.embargo-lift | 2023-09-01 | - |
| 顯示於系所單位: | 化學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-3008202121140200.pdf | 18.45 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
