Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生化科技學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81931
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林甫容(Fu-Jung Lin)
dc.contributor.authorYing-Fang Chenen
dc.contributor.author陳盈方zh_TW
dc.date.accessioned2022-11-25T03:06:53Z-
dc.date.available2024-09-27
dc.date.copyright2021-10-23
dc.date.issued2021
dc.date.submitted2021-09-13
dc.identifier.citation1. Singh, R., et al., Increased Expression of Beige/Brown Adipose Markers from Host and Breast Cancer Cells Influence Xenograft Formation in Mice. Mol Cancer Res, 2016. 14(1): p. 78-92. 2. Wu, Q., et al., Exosomes from the tumour-adipocyte interplay stimulate beige/brown differentiation and reprogram metabolism in stromal adipocytes to promote tumour progression. J Exp Clin Cancer Res, 2019. 38(1): p. 223. 3. Uhlén, M., et al. Expression of UCP1 in cancer. 2015; Available from: https://www.proteinatlas.org/ENSG00000109424-UCP1/pathology. 4. Petruzzelli, M., et al., A switch from white to brown fat increases energy expenditure in cancer-associated cachexia. Cell Metab, 2014. 20(3): p. 433-47. 5. Gantov, M., et al., Beige adipocytes contribute to breast cancer progression. Oncol Rep, 2021. 45(1): p. 317-328. 6. Waks, A.G. and E.P. Winer, Breast Cancer Treatment: A Review. Jama, 2019. 321(3): p. 288-300. 7. Dai, X., et al., Breast Cancer Cell Line Classification and Its Relevance with Breast Tumor Subtyping. J Cancer, 2017. 8(16): p. 3131-3141. 8. El Sayed, R., et al., Endocrine and Targeted Therapy for Hormone-Receptor-Positive, HER2-Negative Advanced Breast Cancer: Insights to Sequencing Treatment and Overcoming Resistance Based on Clinical Trials. Front Oncol, 2019. 9: p. 510. 9. Tremont, A., J. Lu, and J.T. Cole, Endocrine Therapy for Early Breast Cancer: Updated Review. Ochsner J, 2017. 17(4): p. 405-411. 10. Wang, J. and B. Xu, Targeted therapeutic options and future perspectives for HER2-positive breast cancer. Signal Transduct Target Ther, 2019. 4: p. 34. 11. Badve, S., et al., Basal-like and triple-negative breast cancers: a critical review with an emphasis on the implications for pathologists and oncologists. Mod Pathol, 2011. 24(2): p. 157-67. 12. Ibrahim, M.M., Subcutaneous and visceral adipose tissue: structural and functional differences. Obes Rev, 2010. 11(1): p. 11-8. 13. Coelho, M., T. Oliveira, and R. Fernandes, Biochemistry of adipose tissue: an endocrine organ. Arch Med Sci, 2013. 9(2): p. 191-200. 14. Zhang, Y., et al., Positional cloning of the mouse obese gene and its human homologue. Nature, 1994. 372(6505): p. 425-32. 15. Matafome, P. and R. Seiça, Function and Dysfunction of Adipose Tissue. Adv Neurobiol, 2017. 19: p. 3-31. 16. Lee, M.W., M. Lee, and K.J. Oh, Adipose Tissue-Derived Signatures for Obesity and Type 2 Diabetes: Adipokines, Batokines and MicroRNAs. J Clin Med, 2019. 8(6). 17. Ravussin, E. and J.E. Galgani, The implication of brown adipose tissue for humans. Annu Rev Nutr, 2011. 31: p. 33-47. 18. Leitner, B.P., et al., Mapping of human brown adipose tissue in lean and obese young men. Proc Natl Acad Sci U S A, 2017. 114(32): p. 8649-8654. 19. Svensson, P.A., et al., Characterization of brown adipose tissue in the human perirenal depot. Obesity (Silver Spring), 2014. 22(8): p. 1830-7. 20. Lidell, M.E., Brown Adipose Tissue in Human Infants. Handb Exp Pharmacol, 2019. 251: p. 107-123. 21. Kozak, L.P., The genetics of brown adipocyte induction in white fat depots. Front Endocrinol (Lausanne), 2011. 2: p. 64. 22. Obregon, M.J., Adipose tissues and thyroid hormones. Front Physiol, 2014. 5: p. 479. 23. Okla, M., et al., Dietary Factors Promoting Brown and Beige Fat Development and Thermogenesis. Adv Nutr, 2017. 8(3): p. 473-483. 24. Villarroya, F. and A. Vidal-Puig, Beyond the sympathetic tone: the new brown fat activators. Cell Metab, 2013. 17(5): p. 638-43. 25. Rybinska, I., et al., Adipocytes in Breast Cancer, the Thick and the Thin. Cells, 2020. 9(3). 26. Giordano, A., et al., White, brown and pink adipocytes: the extraordinary plasticity of the adipose organ. Eur J Endocrinol, 2014. 170(5): p. R159-71. 27. Ghaben, A.L. and P.E. Scherer, Adipogenesis and metabolic health. Nat Rev Mol Cell Biol, 2019. 20(4): p. 242-258. 28. Rosen, E.D., et al., Transcriptional regulation of adipogenesis. Genes Dev, 2000. 14(11): p. 1293-307. 29. Longo, K.A., et al., Wnt10b inhibits development of white and brown adipose tissues. J Biol Chem, 2004. 279(34): p. 35503-9. 30. Matsushita, K. and V.J. Dzau, Mesenchymal stem cells in obesity: insights for translational applications. Lab Invest, 2017. 97(10): p. 1158-1166. 31. Bennett, C.N., et al., Regulation of Wnt signaling during adipogenesis. J Biol Chem, 2002. 277(34): p. 30998-1004. 32. Fontaine, C., et al., Hedgehog signaling alters adipocyte maturation of human mesenchymal stem cells. Stem Cells, 2008. 26(4): p. 1037-46. 33. Margoni, A., L. Fotis, and A.G. Papavassiliou, The transforming growth factor-beta/bone morphogenetic protein signalling pathway in adipogenesis. Int J Biochem Cell Biol, 2012. 44(3): p. 475-9. 34. Ignotz, R.A. and J. Massagué, Type beta transforming growth factor controls the adipogenic differentiation of 3T3 fibroblasts. Proc Natl Acad Sci U S A, 1985. 82(24): p. 8530-4. 35. Zhou, S., K. Eid, and J. Glowacki, Cooperation between TGF-beta and Wnt pathways during chondrocyte and adipocyte differentiation of human marrow stromal cells. J Bone Miner Res, 2004. 19(3): p. 463-70. 36. Gori, F., et al., Differentiation of human marrow stromal precursor cells: bone morphogenetic protein-2 increases OSF2/CBFA1, enhances osteoblast commitment, and inhibits late adipocyte maturation. J Bone Miner Res, 1999. 14(9): p. 1522-35. 37. Hata, K., et al., Differential roles of Smad1 and p38 kinase in regulation of peroxisome proliferator-activating receptor gamma during bone morphogenetic protein 2-induced adipogenesis. Mol Biol Cell, 2003. 14(2): p. 545-55. 38. Neumann, K., et al., BMP7 promotes adipogenic but not osteo-/chondrogenic differentiation of adult human bone marrow-derived stem cells in high-density micro-mass culture. J Cell Biochem, 2007. 102(3): p. 626-37. 39. Tang, Q.Q., T.C. Otto, and M.D. Lane, Commitment of C3H10T1/2 pluripotent stem cells to the adipocyte lineage. Proc Natl Acad Sci U S A, 2004. 101(26): p. 9607-11. 40. Wabitsch, M., et al., The role of growth hormone/insulin-like growth factors in adipocyte differentiation. Metabolism, 1995. 44(10 Suppl 4): p. 45-9. 41. Zhao, P., et al., Insulin-like growth factor 1 promotes the proliferation and adipogenesis of orbital adipose-derived stromal cells in thyroid-associated ophthalmopathy. Exp Eye Res, 2013. 107: p. 65-73. 42. Schild, T., et al., Unique Metabolic Adaptations Dictate Distal Organ-Specific Metastatic Colonization. Cancer Cell, 2018. 33(3): p. 347-354. 43. Hardaway, A.L., et al., Bone marrow fat: linking adipocyte-induced inflammation with skeletal metastases. Cancer Metastasis Rev, 2014. 33(2-3): p. 527-43. 44. Lehuédé, C., et al., Adipocytes promote breast cancer resistance to chemotherapy, a process amplified by obesity: role of the major vault protein (MVP). Breast Cancer Res, 2019. 21(1): p. 7. 45. Delort, L., et al., Hormonal Therapy Resistance and Breast Cancer: Involvement of Adipocytes and Leptin. Nutrients, 2019. 11(12). 46. Bougaret, L., et al., Adipocyte/breast cancer cell crosstalk in obesity interferes with the anti-proliferative efficacy of tamoxifen. PLoS One, 2018. 13(2): p. e0191571. 47. Wang, T., et al., JAK/STAT3-Regulated Fatty Acid β-Oxidation Is Critical for Breast Cancer Stem Cell Self-Renewal and Chemoresistance. Cell Metab, 2018. 27(1): p. 136-150.e5. 48. Bochet, L., et al., Cancer-associated adipocytes promotes breast tumor radioresistance. Biochem Biophys Res Commun, 2011. 411(1): p. 102-6. 49. Wu, B., et al., Adipose PD-L1 Modulates PD-1/PD-L1 Checkpoint Blockade Immunotherapy Efficacy in Breast Cancer. Oncoimmunology, 2018. 7(11): p. e1500107. 50. Wu, Q., et al., Cancer-associated adipocytes: key players in breast cancer progression. J Hematol Oncol, 2019. 12(1): p. 95. 51. Dirat, B., et al., Cancer-associated adipocytes exhibit an activated phenotype and contribute to breast cancer invasion. Cancer Res, 2011. 71(7): p. 2455-65. 52. Choi, J., Y.J. Cha, and J.S. Koo, Adipocyte biology in breast cancer: From silent bystander to active facilitator. Prog Lipid Res, 2018. 69: p. 11-20. 53. Warburg, O., On the origin of cancer cells. Science, 1956. 123(3191): p. 309-14. 54. Chiavarina, B., et al., Pyruvate kinase expression (PKM1 and PKM2) in cancer-associated fibroblasts drives stromal nutrient production and tumor growth. Cancer Biol Ther, 2011. 12(12): p. 1101-13. 55. Wilde, L., et al., Metabolic coupling and the Reverse Warburg Effect in cancer: Implications for novel biomarker and anticancer agent development. Semin Oncol, 2017. 44(3): p. 198-203. 56. Pinheiro, C., et al., Role of monocarboxylate transporters in human cancers: state of the art. J Bioenerg Biomembr, 2012. 44(1): p. 127-39. 57. Li, Z., et al., Monocarboxylate transporters in breast cancer and adipose tissue are novel biomarkers and potential therapeutic targets. Biochem Biophys Res Commun, 2018. 501(4): p. 962-967. 58. Huang, C.K., et al., Adipocytes promote malignant growth of breast tumours with monocarboxylate transporter 2 expression via β-hydroxybutyrate. Nat Commun, 2017. 8: p. 14706. 59. Pope, B.D., et al., Microenvironmental Control of Adipocyte Fate and Function. Trends Cell Biol, 2016. 26(10): p. 745-755. 60. Hoy, A.J., S. Balaban, and D.N. Saunders, Adipocyte-Tumor Cell Metabolic Crosstalk in Breast Cancer. Trends Mol Med, 2017. 23(5): p. 381-392. 61. Lengyel, E., et al., Cancer as a Matter of Fat: The Crosstalk between Adipose Tissue and Tumors. Trends Cancer, 2018. 4(5): p. 374-384. 62. Zaidi, N., et al., Lipogenesis and lipolysis: the pathways exploited by the cancer cells to acquire fatty acids. Prog Lipid Res, 2013. 52(4): p. 585-9. 63. Carracedo, A., L.C. Cantley, and P.P. Pandolfi, Cancer metabolism: fatty acid oxidation in the limelight. Nat Rev Cancer, 2013. 13(4): p. 227-32. 64. Bensaad, K., et al., Fatty acid uptake and lipid storage induced by HIF-1α contribute to cell growth and survival after hypoxia-reoxygenation. Cell Rep, 2014. 9(1): p. 349-365. 65. Jethwa, N., et al., Endomembrane PtdIns(3,4,5)P3 activates the PI3K-Akt pathway. J Cell Sci, 2015. 128(18): p. 3456-65. 66. Su, X. and N.A. Abumrad, Cellular fatty acid uptake: a pathway under construction. Trends Endocrinol Metab, 2009. 20(2): p. 72-7. 67. Ladanyi, A., et al., Adipocyte-induced CD36 expression drives ovarian cancer progression and metastasis. Oncogene, 2018. 37(17): p. 2285-2301. 68. Watt, M.J., et al., Suppressing fatty acid uptake has therapeutic effects in preclinical models of prostate cancer. Sci Transl Med, 2019. 11(478). 69. Shafat, M.S., et al., Leukemic blasts program bone marrow adipocytes to generate a protumoral microenvironment. Blood, 2017. 129(10): p. 1320-1332. 70. Nieman, K.M., et al., Adipocytes promote ovarian cancer metastasis and provide energy for rapid tumor growth. Nat Med, 2011. 17(11): p. 1498-503. 71. Guaita-Esteruelas, S., et al., Adipose-Derived Fatty Acid-Binding Proteins Plasma Concentrations Are Increased in Breast Cancer Patients. Oncologist, 2017. 22(11): p. 1309-1315. 72. Martinez-Outschoorn, U.E., et al., Ketone body utilization drives tumor growth and metastasis. Cell Cycle, 2012. 11(21): p. 3964-71. 73. Martinez-Outschoorn, U.E., et al., Cancer metabolism: a therapeutic perspective. Nat Rev Clin Oncol, 2017. 14(1): p. 11-31. 74. Martinez-Outschoorn, U.E., et al., Ketone bodies and two-compartment tumor metabolism: stromal ketone production fuels mitochondrial biogenesis in epithelial cancer cells. Cell Cycle, 2012. 11(21): p. 3956-63. 75. Sanchez-Alvarez, R., et al., Mitochondrial dysfunction in breast cancer cells prevents tumor growth: understanding chemoprevention with metformin. Cell Cycle, 2013. 12(1): p. 172-82. 76. Melgarejo, E., et al., Monocyte chemoattractant protein-1: a key mediator in inflammatory processes. Int J Biochem Cell Biol, 2009. 41(5): p. 998-1001. 77. Saji, H., et al., Significant correlation of monocyte chemoattractant protein-1 expression with neovascularization and progression of breast carcinoma. Cancer, 2001. 92(5): p. 1085-91. 78. Khalid, A., et al., Recent Advances in Discovering the Role of CCL5 in Metastatic Breast Cancer. Mini Rev Med Chem, 2015. 15(13): p. 1063-72. 79. D'Esposito, V., et al., Adipose microenvironment promotes triple negative breast cancer cell invasiveness and dissemination by producing CCL5. Oncotarget, 2016. 7(17): p. 24495-509. 80. Song, X., et al., Emodin inhibits epithelial‑mesenchymal transition and metastasis of triple negative breast cancer via antagonism of CC‑chemokine ligand 5 secreted from adipocytes. Int J Mol Med, 2018. 42(1): p. 579-588. 81. Guo, Y., et al., Interleukin-6 signaling pathway in targeted therapy for cancer. Cancer Treat Rev, 2012. 38(7): p. 904-10. 82. Zhao, C., et al., Cancer-associated adipocytes: emerging supporters in breast cancer. Journal of Experimental Clinical Cancer Research, 2020. 39(1): p. 156. 83. Gyamfi, J., et al., Multifaceted Roles of Interleukin-6 in Adipocyte-Breast Cancer Cell Interaction. Transl Oncol, 2018. 11(2): p. 275-285. 84. Chan, D.S.M., et al., Body mass index and survival in women with breast cancer-systematic literature review and meta-analysis of 82 follow-up studies. Ann Oncol, 2014. 25(10): p. 1901-1914. 85. Lee, M.J., Y. Wu, and S.K. Fried, Adipose tissue remodeling in pathophysiology of obesity. Curr Opin Clin Nutr Metab Care, 2010. 13(4): p. 371-6. 86. Kim, H.S., et al., IL-6-mediated cross-talk between human preadipocytes and ductal carcinoma in situ in breast cancer progression. J Exp Clin Cancer Res, 2018. 37(1): p. 200. 87. Lee, J., et al., Transition into inflammatory cancer-associated adipocytes in breast cancer microenvironment requires microRNA regulatory mechanism. PLoS One, 2017. 12(3): p. e0174126. 88. Deng, T., et al., Obesity, Inflammation, and Cancer. Annu Rev Pathol, 2016. 11: p. 421-49. 89. Shen, Q., et al., Notch Shapes the Innate Immunophenotype in Breast Cancer. Cancer Discov, 2017. 7(11): p. 1320-1335. 90. Stender, J.D., et al., Structural and Molecular Mechanisms of Cytokine-Mediated Endocrine Resistance in Human Breast Cancer Cells. Mol Cell, 2017. 65(6): p. 1122-1135.e5. 91. Tulotta, C. and P. Ottewell, The role of IL-1B in breast cancer bone metastasis. Endocr Relat Cancer, 2018. 25(7): p. R421-r434. 92. Hagemann, T., et al., Macrophages induce invasiveness of epithelial cancer cells via NF-kappa B and JNK. J Immunol, 2005. 175(2): p. 1197-205. 93. Johnston, D.A., B. Dong, and C.C. Hughes, TNF induction of jagged-1 in endothelial cells is NFkappaB-dependent. Gene, 2009. 435(1-2): p. 36-44. 94. Ferrara, N., H.P. Gerber, and J. LeCouter, The biology of VEGF and its receptors. Nat Med, 2003. 9(6): p. 669-76. 95. Park, J., et al., VEGF-A-Expressing Adipose Tissue Shows Rapid Beiging and Enhanced Survival After Transplantation and Confers IL-4-Independent Metabolic Improvements. Diabetes, 2017. 66(6): p. 1479-1490. 96. Hong, J.P., et al., VEGF suppresses epithelial-mesenchymal transition by inhibiting the expression of Smad3 and miR‑192, a Smad3-dependent microRNA. Int J Mol Med, 2013. 31(6): p. 1436-42. 97. Andò, S., et al., The Multifaceted Mechanism of Leptin Signaling within Tumor Microenvironment in Driving Breast Cancer Growth and Progression. Front Oncol, 2014. 4: p. 340. 98. Zhou, W., S. Guo, and R.R. Gonzalez-Perez, Leptin pro-angiogenic signature in breast cancer is linked to IL-1 signalling. Br J Cancer, 2011. 104(1): p. 128-37. 99. Ouchi, N. and K. Walsh, Adiponectin as an anti-inflammatory factor. Clin Chim Acta, 2007. 380(1-2): p. 24-30. 100. Ohashi, K., N. Ouchi, and Y. Matsuzawa, Anti-inflammatory and anti-atherogenic properties of adiponectin. Biochimie, 2012. 94(10): p. 2137-42. 101. Gariballa, S., et al., Total adiponectin in overweight and obese subjects and its response to visceral fat loss. BMC Endocr Disord, 2019. 19(1): p. 55. 102. Otvos, L., Jr., et al., Design and development of a peptide-based adiponectin receptor agonist for cancer treatment. BMC Biotechnol, 2011. 11: p. 90. 103. Watanabe, T., et al., Adipose Tissue-Derived Omentin-1 Function and Regulation. Compr Physiol, 2017. 7(3): p. 765-781. 104. Yang, R.Z., et al., Identification of omentin as a novel depot-specific adipokine in human adipose tissue: possible role in modulating insulin action. Am J Physiol Endocrinol Metab, 2006. 290(6): p. E1253-61. 105. de Souza Batista, C.M., et al., Omentin plasma levels and gene expression are decreased in obesity. Diabetes, 2007. 56(6): p. 1655-61. 106. Pan, H.Y., L. Guo, and Q. Li, Changes of serum omentin-1 levels in normal subjects and in patients with impaired glucose regulation and with newly diagnosed and untreated type 2 diabetes. Diabetes Res Clin Pract, 2010. 88(1): p. 29-33. 107. Tahmasebpour, N., et al., Association of Omentin-1 with Oxidative Stress and Clinical Significances in Patients with Breast Cancer. Adv Pharm Bull, 2020. 10(1): p. 106-113. 108. Kawano, Y. and R. Kypta, Secreted antagonists of the Wnt signalling pathway. J Cell Sci, 2003. 116(Pt 13): p. 2627-34. 109. Ouchi, N., et al., Sfrp5 is an anti-inflammatory adipokine that modulates metabolic dysfunction in obesity. Science, 2010. 329(5990): p. 454-7. 110. Su, H.Y., et al., Epigenetic silencing of SFRP5 is related to malignant phenotype and chemoresistance of ovarian cancer through Wnt signaling pathway. Int J Cancer, 2010. 127(3): p. 555-67. 111. Veeck, J., et al., Epigenetic inactivation of the secreted frizzled-related protein-5 (SFRP5) gene in human breast cancer is associated with unfavorable prognosis. Carcinogenesis, 2008. 29(5): p. 991-8. 112. Zhou, W., et al., Adipocyte-derived SFRP5 inhibits breast cancer cells migration and invasion through Wnt and epithelial-mesenchymal transition signaling pathways. Chin J Cancer Res, 2020. 32(3): p. 347-360. 113. Furuhashi, M., et al., Fatty Acid-Binding Protein 4 (FABP4): Pathophysiological Insights and Potent Clinical Biomarker of Metabolic and Cardiovascular Diseases. Clin Med Insights Cardiol, 2014. 8(Suppl 3): p. 23-33. 114. Xu, A., et al., Adipocyte fatty acid-binding protein is a plasma biomarker closely associated with obesity and metabolic syndrome. Clin Chem, 2006. 52(3): p. 405-13. 115. Hotamisligil, G.S., Inflammation and metabolic disorders. Nature, 2006. 444(7121): p. 860-7. 116. Mita, T., et al., FABP4 is secreted from adipocytes by adenyl cyclase-PKA- and guanylyl cyclase-PKG-dependent lipolytic mechanisms. Obesity (Silver Spring), 2015. 23(2): p. 359-67. 117. Guaita-Esteruelas, S., et al., Exogenous FABP4 increases breast cancer cell proliferation and activates the expression of fatty acid transport proteins. Mol Carcinog, 2017. 56(1): p. 208-217. 118. Tsakogiannis, D., et al., Determination of FABP4, RBP4 and the MMP-9/NGAL complex in the serum of women with breast cancer. Oncol Lett, 2021. 21(2): p. 85. 119. Yang, Q., et al., Serum retinol binding protein 4 contributes to insulin resistance in obesity and type 2 diabetes. Nature, 2005. 436(7049): p. 356-62. 120. Broch, M., et al., Macrophages are novel sites of expression and regulation of retinol binding protein-4 (RBP4). Physiol Res, 2010. 59(2): p. 299-303. 121. Graham, T.E., et al., Retinol-binding protein 4 and insulin resistance in lean, obese, and diabetic subjects. N Engl J Med, 2006. 354(24): p. 2552-63. 122. Klöting, N., et al., Serum retinol-binding protein is more highly expressed in visceral than in subcutaneous adipose tissue and is a marker of intra-abdominal fat mass. Cell Metab, 2007. 6(1): p. 79-87. 123. Wang, Y., Y. Wang, and Z. Zhang, Adipokine RBP4 drives ovarian cancer cell migration. J Ovarian Res, 2018. 11(1): p. 29. 124. Karunanithi, S., et al., RBP4-STRA6 Pathway Drives Cancer Stem Cell Maintenance and Mediates High-Fat Diet-Induced Colon Carcinogenesis. Stem Cell Reports, 2017. 9(2): p. 438-450. 125. Jiao, C., et al., Elevated Serum Levels of Retinol-Binding Protein 4 Are Associated with Breast Cancer Risk: A Case-Control Study. PLoS One, 2016. 11(12): p. e0167498. 126. Fisher, F.M., et al., FGF21 regulates PGC-1α and browning of white adipose tissues in adaptive thermogenesis. Genes Dev, 2012. 26(3): p. 271-81. 127. Hondares, E., et al., Thermogenic activation induces FGF21 expression and release in brown adipose tissue. J Biol Chem, 2011. 286(15): p. 12983-90. 128. Chartoumpekis, D.V., et al., Brown adipose tissue responds to cold and adrenergic stimulation by induction of FGF21. Mol Med, 2011. 17(7-8): p. 736-40. 129. Kang, Y.E., et al., Association between Circulating Fibroblast Growth Factor 21 and Aggressiveness in Thyroid Cancer. Cancers (Basel), 2019. 11(8). 130. Dai, H., et al., FGF21 facilitates autophagy in prostate cancer cells by inhibiting the PI3K-Akt-mTOR signaling pathway. Cell Death Dis, 2021. 12(4): p. 303. 131. Marsili, A., et al., Physiological role and regulation of iodothyronine deiodinases: a 2011 update. J Endocrinol Invest, 2011. 34(5): p. 395-407. 132. Zhang, L., et al., Triiodothyronine Promotes Cell Proliferation of Breast Cancer via Modulating miR-204/Amphiregulin. Pathol Oncol Res, 2019. 25(2): p. 653-658. 133. Ovčariček, P.P., et al., Association of Triiodothyronine Levels With Prostate Cancer Histopathological Differentiation and Tumor Stage. Anticancer Res, 2020. 40(4): p. 2323-2329. 134. Murano, I., et al., Noradrenergic parenchymal nerve fiber branching after cold acclimatisation correlates with brown adipocyte density in mouse adipose organ. J Anat, 2009. 214(1): p. 171-8. 135. Molloy, N.H., D.E. Read, and A.M. Gorman, Nerve growth factor in cancer cell death and survival. Cancers (Basel), 2011. 3(1): p. 510-30. 136. Dollé, L., et al., Nerve growth factor overexpression and autocrine loop in breast cancer cells. Oncogene, 2003. 22(36): p. 5592-601. 137. Di Donato, M., et al., Nerve Growth Factor Induces Proliferation and Aggressiveness In Prostate Cancer Cells. Cancers (Basel), 2019. 11(6). 138. Reverchon, M., et al., Adipokines and the female reproductive tract. Int J Endocrinol, 2014. 2014: p. 232454. 139. Steppan, C.M., et al., The hormone resistin links obesity to diabetes. Nature, 2001. 409(6818): p. 307-12. 140. !!! INVALID CITATION !!! [148]. 141. Oike, Y., et al., Angiopoietin-like proteins: potential new targets for metabolic syndrome therapy. Trends Mol Med, 2005. 11(10): p. 473-9. 142. Ge, H., et al., Oligomerization and regulated proteolytic processing of angiopoietin-like protein 4. J Biol Chem, 2004. 279(3): p. 2038-45. 143. Nakayama, T., et al., Expression of angiopoietin-like 4 in human gastric cancer: ANGPTL4 promotes venous invasion. Oncol Rep, 2010. 24(3): p. 599-606. 144. Nakayama, T., et al., Expression of angiopoietin-like 4 (ANGPTL4) in human colorectal cancer: ANGPTL4 promotes venous invasion and distant metastasis. Oncol Rep, 2011. 25(4): p. 929-35. 145. Le Jan, S., et al., Angiopoietin-like 4 is a proangiogenic factor produced during ischemia and in conventional renal cell carcinoma. Am J Pathol, 2003. 162(5): p. 1521-8. 146. Zhang, H., et al., HIF-1-dependent expression of angiopoietin-like 4 and L1CAM mediates vascular metastasis of hypoxic breast cancer cells to the lungs. Oncogene, 2012. 31(14): p. 1757-70. 147. Cai, Y.C., et al., ANGPTL4 overexpression inhibits tumor cell adhesion and migration and predicts favorable prognosis of triple-negative breast cancer. BMC Cancer, 2020. 20(1): p. 878. 148. Okochi-Takada, E., et al., ANGPTL4 is a secreted tumor suppressor that inhibits angiogenesis. Oncogene, 2014. 33(17): p. 2273-8. 149. Gonzalez, D.M. and D. Medici, Signaling mechanisms of the epithelial-mesenchymal transition. Sci Signal, 2014. 7(344): p. re8. 150. Nieto, M.A., et al., EMT: 2016. Cell, 2016. 166(1): p. 21-45. 151. Mani, S.A., et al., The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell, 2008. 133(4): p. 704-15. 152. Tsai, J.H. and J. Yang, Epithelial-mesenchymal plasticity in carcinoma metastasis. Genes Dev, 2013. 27(20): p. 2192-206. 153. Jolly, M.K., et al., Implications of the Hybrid Epithelial/Mesenchymal Phenotype in Metastasis. Front Oncol, 2015. 5: p. 155. 154. Blanpain, C., V. Horsley, and E. Fuchs, Epithelial stem cells: turning over new leaves. Cell, 2007. 128(3): p. 445-58. 155. Lytle, N.K., A.G. Barber, and T. Reya, Stem cell fate in cancer growth, progression and therapy resistance. Nat Rev Cancer, 2018. 18(11): p. 669-680. 156. Lambert, A.W. and R.A. Weinberg, Linking EMT programmes to normal and neoplastic epithelial stem cells. Nat Rev Cancer, 2021. 21(5): p. 325-338. 157. Fedele, M., L. Cerchia, and G. Chiappetta, The Epithelial-to-Mesenchymal Transition in Breast Cancer: Focus on Basal-Like Carcinomas. Cancers (Basel), 2017. 9(10). 158. Lamouille, S., J. Xu, and R. Derynck, Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol, 2014. 15(3): p. 178-96. 159. Shibue, T. and R.A. Weinberg, EMT, CSCs, and drug resistance: the mechanistic link and clinical implications. Nat Rev Clin Oncol, 2017. 14(10): p. 611-629. 160. Ma, J., et al., TGF-β-Induced Endothelial to Mesenchymal Transition in Disease and Tissue Engineering. Front Cell Dev Biol, 2020. 8: p. 260. 161. Ning, J., et al., Opposing roles and potential antagonistic mechanism between TGF-β and BMP pathways: Implications for cancer progression. EBioMedicine, 2019. 41: p. 702-710. 162. Miyazawa, K., et al., Two major Smad pathways in TGF-beta superfamily signalling. Genes Cells, 2002. 7(12): p. 1191-204. 163. Itoh, S. and P. ten Dijke, Negative regulation of TGF-beta receptor/Smad signal transduction. Curr Opin Cell Biol, 2007. 19(2): p. 176-84. 164. Moustakas, A. and C.H. Heldin, Non-Smad TGF-beta signals. J Cell Sci, 2005. 118(Pt 16): p. 3573-84. 165. Akhurst, R.J. and R. Derynck, TGF-beta signaling in cancer--a double-edged sword. Trends Cell Biol, 2001. 11(11): p. S44-51. 166. Camenisch, T.D., et al., Temporal and distinct TGFbeta ligand requirements during mouse and avian endocardial cushion morphogenesis. Dev Biol, 2002. 248(1): p. 170-81. 167. Nawshad, A. and E.D. Hay, TGFbeta3 signaling activates transcription of the LEF1 gene to induce epithelial mesenchymal transformation during mouse palate development. J Cell Biol, 2003. 163(6): p. 1291-301. 168. Urist, M.R., et al., A bovine low molecular weight bone morphogenetic protein (BMP) fraction. Clin Orthop Relat Res, 1982(162): p. 219-32. 169. Langenfeld, E.M., et al., The mature bone morphogenetic protein-2 is aberrantly expressed in non-small cell lung carcinomas and stimulates tumor growth of A549 cells. Carcinogenesis, 2003. 24(9): p. 1445-54. 170. Kang, M.H., et al., Inhibition of PI3 kinase/Akt pathway is required for BMP2-induced EMT and invasion. Oncol Rep, 2009. 22(3): p. 525-34. 171. McCulley, D.J., et al., BMP4 is required in the anterior heart field and its derivatives for endocardial cushion remodeling, outflow tract septation, and semilunar valve development. Dev Dyn, 2008. 237(11): p. 3200-9. 172. Buijs, J.T., et al., Bone morphogenetic protein 7 in the development and treatment of bone metastases from breast cancer. Cancer Res, 2007. 67(18): p. 8742-51. 173. Kalluri, R. and E.G. Neilson, Epithelial-mesenchymal transition and its implications for fibrosis. J Clin Invest, 2003. 112(12): p. 1776-84. 174. Bramlage, C.P., et al., The role of bone morphogenetic protein-5 (BMP-5) in human nephrosclerosis. J Nephrol, 2011. 24(5): p. 647-55. 175. Liu, J., et al., Targeting Notch degradation system provides promise for breast cancer therapeutics. Crit Rev Oncol Hematol, 2016. 104: p. 21-9. 176. Kar, R., et al., A 'NOTCH' Deeper into the Epithelial-To-Mesenchymal Transition (EMT) Program in Breast Cancer. Genes (Basel), 2019. 10(12). 177. Baker, A.T., A. Zlobin, and C. Osipo, Notch-EGFR/HER2 Bidirectional Crosstalk in Breast Cancer. Front Oncol, 2014. 4: p. 360. 178. Wang, Z., et al., The role of Notch signaling pathway in epithelial-mesenchymal transition (EMT) during development and tumor aggressiveness. Curr Drug Targets, 2010. 11(6): p. 745-51. 179. Li, L., et al., Notch-1 signaling activates NF-κB in human breast carcinoma MDA-MB-231 cells via PP2A-dependent AKT pathway. Med Oncol, 2016. 33(4): p. 33. 180. Li, L., et al., Notch-1 signaling promotes the malignant features of human breast cancer through NF-κB activation. PLoS One, 2014. 9(4): p. e95912. 181. Kim, R.K., et al., Radiation driven epithelial-mesenchymal transition is mediated by Notch signaling in breast cancer. Oncotarget, 2016. 7(33): p. 53430-53442. 182. Katoh, Y. and M. Katoh, Comparative genomics on Sonic hedgehog orthologs. Oncol Rep, 2005. 14(4): p. 1087-90. 183. Taipale, J. and P.A. Beachy, The Hedgehog and Wnt signalling pathways in cancer. Nature, 2001. 411(6835): p. 349-54. 184. Li, X., et al., Snail induction is an early response to Gli1 that determines the efficiency of epithelial transformation. Oncogene, 2006. 25(4): p. 609-21. 185. Yoo, Y.A., et al., Sonic hedgehog signaling promotes motility and invasiveness of gastric cancer cells through TGF-beta-mediated activation of the ALK5-Smad 3 pathway. Carcinogenesis, 2008. 29(3): p. 480-90. 186. Sahlgren, C., et al., Notch signaling mediates hypoxia-induced tumor cell migration and invasion. Proc Natl Acad Sci U S A, 2008. 105(17): p. 6392-7. 187. Pasca di Magliano, M. and M. Hebrok, Hedgehog signalling in cancer formation and maintenance. Nat Rev Cancer, 2003. 3(12): p. 903-11. 188. Kramer, N., et al., In vitro cell migration and invasion assays. Mutation Research/Reviews in Mutation Research, 2013. 752(1): p. 10-24. 189. Menyhárt, O., et al., Guidelines for the selection of functional assays to evaluate the hallmarks of cancer. Biochim Biophys Acta, 2016. 1866(2): p. 300-319. 190. Gough, W., et al., A quantitative, facile, and high-throughput image-based cell migration method is a robust alternative to the scratch assay. J Biomol Screen, 2011. 16(2): p. 155-63. 191. Pratt, B.M., et al., Mechanisms of cytoskeletal regulation. Modulation of aortic endothelial cell spectrin by the extracellular matrix. Am J Pathol, 1984. 117(3): p. 349-54. 192. Rosen, E.M., et al., Quantitation of cytokine-stimulated migration of endothelium and epithelium by a new assay using microcarrier beads. Exp Cell Res, 1990. 186(1): p. 22-31. 193. Konduri, S.D., et al., Overexpression of tissue factor pathway inhibitor-2 (TFPI-2), decreases the invasiveness of prostate cancer cells in vitro. Int J Oncol, 2001. 18(1): p. 127-31. 194. Naber, H.P., et al., Spheroid assay to measure TGF-β-induced invasion. J Vis Exp, 2011(57). 195. Chaubey, S., A.J. Ridley, and C.M. Wells, Using the Dunn chemotaxis chamber to analyze primary cell migration in real time. Methods Mol Biol, 2011. 769: p. 41-51. 196. Schor, S.L., T.D. Allen, and B. Winn, Lymphocyte migration into three-dimensional collagen matrices: a quantitative study. J Cell Biol, 1983. 96(4): p. 1089-96. 197. Timpson, P., et al., Organotypic collagen I assay: a malleable platform to assess cell behaviour in a 3-dimensional context. J Vis Exp, 2011(56): p. e3089. 198. Nyström, M.L., et al., Development of a quantitative method to analyse tumour cell invasion in organotypic culture. J Pathol, 2005. 205(4): p. 468-75. 199. Brekhman, V. and G. Neufeld, A novel asymmetric 3D in-vitro assay for the study of tumor cell invasion. BMC Cancer, 2009. 9: p. 415. 200. Cross, S.E., et al., Nanomechanical analysis of cells from cancer patients. Nature Nanotechnology, 2007. 2(12): p. 780-783. 201. Swaminathan, V., et al., Mechanical stiffness grades metastatic potential in patient tumor cells and in cancer cell lines. Cancer Res, 2011. 71(15): p. 5075-80. 202. Fernández-Galilea, M., et al., Omega-3 fatty acids as regulators of brown/beige adipose tissue: from mechanisms to therapeutic potential. Journal of Physiology and Biochemistry, 2020. 76(2): p. 251-267. 203. Cholewski, M., M. Tomczykowa, and M. Tomczyk, A Comprehensive Review of Chemistry, Sources and Bioavailability of Omega-3 Fatty Acids. Nutrients, 2018. 10(11). 204. Liu, H., et al., Butyrate: A Double-Edged Sword for Health? Adv Nutr, 2018. 9(1): p. 21-29. 205. Wang, T.Y., ………
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81931-
dc.description.abstract乳癌在女性中為發生率及死亡率皆高的疾病,多加了解腫瘤周圍組織對於乳癌治療至關重要。脂肪細胞與癌細胞的交互作用已知可促進乳癌發展,且在人類腫瘤中也多次被觀察到存在較高表現量的第一型解偶聯蛋白和褐化相關指標,但其詳細影響尚未被廣泛了解。在此研究中使用人類脂肪間質幹細胞(hMSC)和小鼠3T3L-1細胞株分化為成熟白色或米色型態的脂肪細胞,收取白色或米色脂肪細胞條件培養液(WCM及BCM)處理人類乳癌細胞株MDA-MB-231和MCF-7。結果顯示hMSC-WCM和BCM相比控制組更加促進MDA-MB-231細胞遷移能力,但對MCF-7並無影響,且hMSC-BCM比起hMSC-WCM促進MDA-MB-231細胞轉移能力的效果更甚。分析已發表人類白色與米色脂肪細胞RNA Seq資料庫發現相比於白色脂肪細胞,BMP4在米色脂肪細胞中表現量較高,並在本實驗分化之人類脂肪細胞也觀察到相同趨勢。以BMP4抑制劑noggin添加於hMSC-WCM和BCM中處理MDA-MB-231細胞,發現可以減弱hMSC-BCM促進MDA-MB-231細胞遷移能力的效果,顯示BMP4可能是影響米色相較白色脂肪細胞更促進癌細胞轉移能力的因子之一。在進一步探討不飽和脂肪酸調節脂肪細胞對癌細胞影響的研究中,觀察到與BSA處理相比,經油酸處理後的白色脂肪細胞以及經二十二碳六烯酸或油酸處理後的米色脂肪細胞,在特定時間下都有顯著促進癌細胞遷移能力的現象。以上研究顯示在乳癌細胞微環境中,相比白色,米色脂肪細胞有使乳癌細胞更惡化病程的傾向,且脂肪細胞-癌細胞的交互作用也會受到脂肪酸種類的影響。zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-25T03:06:53Z (GMT). No. of bitstreams: 1
U0001-1209202123002800.pdf: 4135590 bytes, checksum: 06e625dfc138071488eac8b6959dc394 (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents謝辭 III 摘要 I ABSTRACT II 總目錄 III 圖目錄 VII 表目錄 VIII 第一章 緒論 1 第一節 前言 1 第二節 文獻回顧 2 一、乳癌 2 二、脂肪組織與脂肪細胞 3 三、脂肪細胞與癌細胞的交互作用 6 四、脂肪因子與癌症 9 五、EMT (epithelial–mesenchymal transition)與訊息傳遞路徑 15 六、EMT相關檢測試驗 18 七、脂肪酸對脂肪細胞的調節 20 八、脂肪酸與癌症中的脂質代謝 22 第三節 研究假說 22 第二章 實驗設計與材料方法 23 第一節 前言 23 第二節 實驗設計 23 第三節 材料與方法 23 一、細胞株及細胞培養 23 二、N-3多元不飽和脂肪酸製備 27 三、試劑配置 27 四、MTT染色法-細胞存活率分析 28 五、Wound healing assay-細胞遷移能力試驗 28 六、Transwell migration assay-細胞遷移能力試驗 29 七、Cell adhesion assay-細胞貼附能力試驗 29 八、細胞免疫螢光染色 (Immunofluorescence staining) 29 九、動物實驗 30 十、動物脂肪細胞分離實驗 30 十一、成熟脂肪細胞與乳癌細胞共培養 30 十二、RNA抽取及反轉錄cDNA 31 十三、Quantitative Real-time PCR (qPCR) 32 十四、西方墨點法 (Western blotting) 32 十五、ELISA (Enzyme-linked immunosorbent assay) 35 十六、RNA Seq及IPA分析 36 十七、統計分析 36 第三章 實驗結果 41 第一節 人類與小鼠來源白色與米色脂肪細胞 41 第二節 人類白色與米色條件培養液對乳癌細胞遷移及增殖能力影響 41 一、刮痕癒合實驗 Wound healing assay 41 二、細胞貼附實驗 Cell adhesion assay 42 三、細胞存活實驗 Cell viability assay 43 第三節 小鼠成熟脂肪細胞對乳癌細胞影響 43 第四節 潛在米色脂肪細胞釋出上調因子 44 第五節 抑制BMP4影響脂肪細胞培養液促進乳癌遷移能力效果 44 一、刮痕癒合實驗 wound healing assay 44 二、Transwell 遷移實驗 45 三、Western blot 結果 45 第六節 脂肪酸處理人類脂肪細胞對乳癌遷移能力影響 46 一、脂肪酸直接處理對乳癌細胞移動能力之影響 46 二、脂肪酸處理後的人類脂肪細胞對乳癌細胞遷移能力影響 47 三、脂肪酸處理後的小鼠脂肪細胞對乳癌細胞遷移能力影響 48 四、脂肪酸處理對人類脂肪細胞基因影響 48 五、脂肪酸處理對小鼠脂肪細胞基因影響 49 第四章 討論與結論 68 第一節 討論 68 一、白色或米色脂肪細胞與癌細胞交互作用 68 二、癌細胞惡化檢測指標比較 68 三、白色與米色脂肪細胞分化 69 四、成熟脂肪細胞與乳癌細胞共培養基因表現 72 五、成熟脂肪細胞與乳癌細胞共培養實驗設計 72 六、潛在米色脂肪細胞釋出上調因子 74 七、BMP4對脂肪細胞和脂肪細胞-乳癌細胞交互作用影響 79 八、脂肪酸生理濃度可行性 80 九、脂肪酸對脂肪細胞的影響 81 十、脂肪酸參與脂肪細胞與乳癌細胞交互作用 83 十一、實驗結果在體內模式的設計及應用 84 第二節 結論 85 第五章 附錄 87 第六章 參考文獻 88
dc.language.isozh-TW
dc.subjectBMP4zh_TW
dc.subject多元不飽和脂肪酸zh_TW
dc.subject腫瘤微環境zh_TW
dc.subject米色脂肪細胞zh_TW
dc.subject乳癌zh_TW
dc.subjectPUFAen
dc.subjectBMP4en
dc.subjectbreast canceren
dc.subjectbeige adipocyteen
dc.subjecttumor microenvironmenten
dc.title探討白色及米色脂肪細胞在人類乳癌細胞腫瘤微環境之角色zh_TW
dc.titleThe Effects of White and Beige Adipocytes on the Breast Cancer Progression in the Tumor Microenvironmenten
dc.date.schoolyear109-2
dc.description.degree碩士
dc.contributor.author-orcid0000-0003-2386-359X
dc.contributor.oralexamcommittee黃青真(Hsin-Tsai Liu),蘇慧敏(Chih-Yang Tseng),趙蓓敏,張美鈴
dc.subject.keyword乳癌,米色脂肪細胞,腫瘤微環境,BMP4,多元不飽和脂肪酸,zh_TW
dc.subject.keywordbreast cancer,beige adipocyte,tumor microenvironment,BMP4,PUFA,en
dc.relation.page101
dc.identifier.doi10.6342/NTU202103136
dc.rights.note同意授權(全球公開)
dc.date.accepted2021-09-13
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生化科技學系zh_TW
dc.date.embargo-lift2024-09-27-
顯示於系所單位:生化科技學系

文件中的檔案:
檔案 大小格式 
U0001-1209202123002800.pdf4.04 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved