請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81905完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 謝宏昀(Hung-Yun Hsieh) | |
| dc.contributor.author | Guo-Liang Hung | en |
| dc.contributor.author | 洪國喨 | zh_TW |
| dc.date.accessioned | 2022-11-25T03:06:17Z | - |
| dc.date.available | 2022-12-31 | |
| dc.date.copyright | 2021-11-01 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-10-29 | |
| dc.identifier.citation | 'Applied consumer center glonass.' Online Available at: https://www.glonass-iac.ru/index.php 'Introduction to global navigation satellite system (gnss).' Online Available at: https://www.unoosa.org/documents/pdf/icg/2018/ait-gnss/09_M1.pdf 'Gnss frequencies.' Online Available at: https://www.tallysman.com/gnss-constellations-radio-frequencies-and-signals/ 'Software-defined radio.' Online Available at: https://en.wikipedia.org/wiki/Software-defined_radio J. Allingham, 'Latex-tikz-diagrams,' https://github.com/JamesAllingham/LaTeX-TikZ-Diagrams, 2019. C.-B. Zhang, P.-T. Jiang, Q. Hou, Y. Wei, Q. Han, Z. Li, and M.-M. Cheng, 'Delving deep into label smoothing,' IEEE Transactions on Image Processing, vol. 30, pp. 5984–5996, 2021. C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, 'Rethinking the inception architecture for computer vision,' in Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 2818–2826. 'Airport geo zones.' Online Available at: https://www.dji.com/flysafe/introduction Y. Hu, S. Bian, B. Li, and L. Zhou, 'A novel array-based spoofing and jamming suppression method for gnss receiver,' IEEE Sensors Journal, vol. 18, no. 7, pp. 2952–2958, 2018. S. BIAN, Y. HU, and B. JI, 'Research status and prospect of gnss anti-spoofing technology,' Scientia Sinica Informationis, vol. 47, no. 3, pp. 275– 287, 2017. G. Blewitt, 'Basics of the gps technique: Observation equations.' Online Available at: http://www.nbmg.unr.edu/staff/pdfs/Blewitt%20Basics%20of%20gps.pdf G. Strang and K. Borre, 'Linear algebra, geodesy, and GPS.' Siam, 1997. S. Bancroft, 'An algebraic solution of the gps equations,' IEEE Transactions on Aerospace and Electronic Systems, vol. AES-21, no. 1, pp. 56–59, 1985. R. B. Langley, P. J. Teunissen, and O. Montenbruck, 'Introduction to gnss,' in Springer handbook of global navigation satellite systems. Springer, 2017, pp. 3–23. 'Resiliency in pnt: Gps/gnss jamming and spoofing.' Online Available at: https://www.orolia.com/resiliency-in-pnt-gps-gnss-jamming-and-spoofing/ 'Gnss jamming.' Online Available at: https://www.spirent.com/assets/wp_gnss-jamming-how-to-test-the-risks-to-safety-critical-and-liability-critical-systems 'Gnss signal spoofing.' Online Available at: https://www.spirent.com/assets/white-paper-gnss-signal-spoofing M. Dillinger, K. Madani, and N. Alonistioti, Software defined radio: Architectures, systems and functions. John Wiley Sons, 2005. V. S. Dave and K. Dutta, 'Neural network based models for software effort estimation: a review,' Artificial Intelligence Review, vol. 42, no. 2, pp. 295– 307, 2014. O. I. Abiodun, A. Jantan, A. E. Omolara, K. V. Dada, N. A. Mohamed, and H. Arshad, 'State-of-the-art in artificial neural network applications: A survey,' Heliyon, vol. 4, no. 11, p. e00938, 2018. K. Cho, B. Van Merri¨enboer, C. Gulcehre, D. Bahdanau, F. Bougares,H. Schwenk, and Y. Bengio, 'Learning phrase representations using rnn encoder-decoder for statistical machine translation,' arXiv preprint arXiv:1406.1078, 2014. H. He and E. A. Garcia, 'Learning from imbalanced data,' IEEE Transactions on knowledge and data engineering, vol. 21, no. 9, pp. 1263–1284, 2009. A. Mozaffari, M. Emami, and A. Fathi, 'A comprehensive investigation into the performance, robustness, scalability and convergence of chaos-enhanced evolutionary algorithms with boundary constraints,' Artificial Intelligence Review, vol. 52, no. 4, pp. 2319–2380, 2019. D. Wang, H. He, and D. Liu, 'Intelligent optimal control with critic learning for a nonlinear overhead crane system,' IEEE Transactions on Industrial Informatics, vol. 14, no. 7, pp. 2932–2940, 2017. K. Hundman, V. Constantinou, C. Laporte, I. Colwell, and T. Soderstrom, 'Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding,' in Proceedings of the 24th ACM SIGKDD international conference on knowledge discovery data mining, 2018, pp. 387–395. Y. Bengio, P. Simard, and P. Frasconi, 'Learning long-term dependencies with gradient descent is difficult,' IEEE Transactions on Neural Networks, vol. 5, no. 2, pp. 157–166, 1994. Y. Bengio, N. Boulanger-Lewandowski, and R. Pascanu, 'Advances in optimizing recurrent networks,' in 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, 2013, pp. 8624–8628. R. Pascanu, T. Mikolov, and Y. Bengio, 'On the difficulty of training recurrent neural networks,' in International conference on machine learning. PMLR, 2013, pp. 1310–1318. J. Martens and I. Sutskever, 'Learning recurrent neural networks with hessian-free optimization,' in ICML, 2011. S. Hochreiter and J. Schmidhuber, 'Long short-term memory,' Neural Computation, vol. 9, no. 8, pp. 1735–1780, 1997. D. Bahdanau, K. Cho, and Y. Bengio, 'Neural machine translation by jointly learning to align and translate,' arXiv preprint arXiv:1409.0473, 2014. A. Graves, A.-r. Mohamed, and G. Hinton, 'Speech recognition with deep recurrent neural networks,' in 2013 IEEE international conference on acoustics, speech and signal processing. Ieee, 2013, pp. 6645–6649. I. Sutskever, O. Vinyals, and Q. V. Le, 'Sequence to sequence learning with neural networks,' in Advances in neural information processing systems, 2014, pp. 3104–3112. A. Graves, 'Generating sequences with recurrent neural networks,' arXiv preprint arXiv:1308.0850, 2013. K. Cho, B. Van Merri¨enboer, D. Bahdanau, and Y. Bengio, 'On the properties of neural machine translation: Encoder-decoder approaches,' arXiv preprint arXiv:1409.1259, 2014. J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, 'Empirical evaluation of gated recurrent neural networks on sequence modeling,' arXiv preprint arXiv:1412.3555, 2014. 'Binary classification.' Online Available at: https://en.wikipedia.org/wiki/Binary_classification I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016, http://www.deeplearningbook.org. I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,S. Ozair, A. Courville, and Y. Bengio, 'Generative adversarial nets,' Advances in neural information processing systems, vol. 27, 2014. 'Generative adversarial networks.' Online Available at: https://developers.google.com/machine-learning/gan M. Mirza and S. Osindero, 'Conditional generative adversarial nets,' arXiv preprint arXiv:1411.1784, 2014. P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros, 'Image-to-image translation with conditional adversarial networks,' in Proceedings of the IEEE conference on computer vision and pattern recognition, 2017, pp. 1125–1134. G. Pereyra, G. Tucker, J. Chorowski, L. Kaiser, and G. Hinton, 'Regularizing neural networks by penalizing confident output distributions,' arXiv preprint arXiv:1701.06548, 2017. C. Guo, G. Pleiss, Y. Sun, and K. Q. Weinberger, 'On calibration of modern neural networks,' in International Conference on Machine Learning. PMLR, 2017, pp. 1321–1330. R. Mu¨ller, S. Kornblith, and G. Hinton, 'When does label smoothing help?'arXiv preprint arXiv:1906.02629, 2019. A. C. Watts, V. G. Ambrosia, and E. A. Hinkley, 'Unmanned aircraft systems in remote sensing and scientific research: Classification and considerations of use,' Remote Sensing, vol. 4, no. 6, pp. 1671–1692, 2012. Online Available at: https://www.mdpi.com/2072-4292/4/6/1671 R. G. Lakshmi Narayanan and O. C. Ibe, '6 - joint network for disaster relief and search and rescue network operations,' in Wireless Public Safety Networks 1, D. Camara and N. Nikaein, Eds. Elsevier, 2015, pp. 163–193. Online Available at: https://www.sciencedirect.com/science/article/pii/B9781785480225500066 A. T. Azar, F. E. Serrano, A. Koubaa, N. A. Mohamed, N. A. Kamal, I. K. Ibraheem, and A. J. Humaidi, 'Chapter 19 - sliding mode controller design for unmanned aerial vehicles with unmodeled polytopic dynamics,' in Unmanned Aerial Systems, ser. Advances in Nonlinear Dynamics and Chaos (ANDC), A. Koubaa and A. T. Azar, Eds. Academic Press, 2021, pp. 495–519. Online Available at: https://www.sciencedirect.com/science/article/pii/B9780128202760000261 M. S. Mahmoud, M. O. Oyedeji, and Y. Xia, 'Chapter 10 - path planning in autonomous aerial vehicles,' in Advanced Distributed Consensus for Multiagent Systems, M. S. Mahmoud, M. O. Oyedeji, andY. Xia, Eds. Academic Press, 2021, pp. 331–362. Online Available at: https://www.sciencedirect.com/science/article/pii/B9780128211861000180 F. Kendoul, 'Survey of advances in guidance, navigation, and control of unmanned rotorcraft systems,' Journal of Field Robotics, vol. 29, no. 2, pp. 315–378, 2012. M. Bloesch, S. Omari, M. Hutter, and R. Siegwart, 'Robust visual inertial odometry using a direct ekf-based approach,' in 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2015, pp. 298–304. R. Guo, B. Wang, and J. Weng, 'Vulnerabilities and attacks of uav cyber physical systems,' in Proceedings of the 2020 International Conference on Computing, Networks and Internet of Things, ser. CNIOT2020. New York, NY, USA: Association for Computing Machinery, 2020, p. 8–12. Online Available at: https://doi.org/10.1145/3398329.3398331 X.-C. Zheng and H.-M. Sun, 'Hijacking unmanned aerial vehicle by exploiting civil gps vulnerabilities using software-defined radio,' in Sensors and Materials, vol. 32, no. 8, 2020, pp. 2729–2743. 'Global market share of consumer and commercial drone manufacturers in march 2021, based on sales volume.' Online Available at: https://www.statista.com/statistics/1254982/global-market-share-of-drone-manufacturers/ 'Mavic air 2.' Online Available at: https://www.dji.com/mavic-air-2 DatCon Introduction. Online Available at: https://datfile.net/DatCon/intro.html 'Datcon version 4.' Online Available at: https://datfile.net/Doc/DatCon4.pdf M. L. Psiaki and T. E. Humphreys, 'Gnss spoofing and detection,' Proceedings of the IEEE, vol. 104, no. 6, pp. 1258–1270, 2016. K. Wesson, M. Rothlisberger, and T. Humphreys, 'Practical cryptographic civil gps signal authentication,' NAVIGATION, Journal of the Institute of Navigation, vol. 59, no. 3, pp. 177–193, 2012. B. W. O’Hanlon, M. L. Psiaki, J. A. Bhatti, D. P. Shepard, and T. E. Humphreys, 'Real-time gps spoofing detection via correlation of encrypted signals,' NAVIGATION, Journal of the Institute of Navigation, vol. 60, no. 4, pp. 267–278, 2013. A. J. Kerns, K. D. Wesson, and T. E. Humphreys, 'A blueprint for civil gps navigation message authentication,' in 2014 IEEE/ION Position, Location and Navigation Symposium-PLANS 2014. IEEE, 2014, pp. 262–269. A. Ranganathan, H. O´lafsdottir, and S. Capkun, 'Spree: A spoofing resistant gps receiver,' in Proceedings of the 22nd Annual International Conference on Mobile Computing and Networking, 2016, pp. 348–360. J. Magiera and R. Katulski, 'Detection and mitigation of gps spoofing based on antenna array processing,' Journal of applied research and technology, vol. 13, no. 1, pp. 45–57, 2015. G. Oligeri, S. Sciancalepore, O. A. Ibrahim, and R. Di Pietro, 'Drive me not: Gps spoofing detection via cellular network: (architectures, models, and experiments),' in Proceedings of the 12th Conference on Security and Privacy in Wireless and Mobile Networks, 2019, pp. 12–22. G. Panice, S. Luongo, G. Gigante, D. Pascarella, C. Di Benedetto,A. Vozella, and A. Pescap`e, 'A svm-based detection approach for gps spoofing attacks to uav,' in 2017 23rd International Conference on Automation and Computing (ICAC). IEEE, 2017, pp. 1–11. K. Jansen, M. Sch¨afer, D. Moser, V. Lenders, C. P¨opper, and J. Schmitt, 'Crowd-gps-sec: Leveraging crowdsourcing to detect and localize gps spoofing attacks,' in 2018 IEEE Symposium on Security and Privacy (SP). IEEE, 2018, pp. 1018–1031. M. R. Manesh, J. Kenney, W. C. Hu, V. K. Devabhaktuni, and N. Kaabouch, 'Detection of gps spoofing attacks on unmanned aerial systems,' in 2019 16th IEEE Annual Consumer Communications Networking Conference (CCNC). IEEE, 2019, pp. 1–6. 'Dji fly.' Online Available at: https://www.dji.com/tw/downloads/djiapp/dji-fly 'The newest tutorial for dji mavic air 2, just read this one!' Online Available at: https://www.esentra.com.tw/2020/07/dji%E5%A4%A7%E7%96%86%E5%BE%A1air-2-%E6%9C%80%E5%85%A8%E6%96%B0%E6%89%8B%E6%95%99%E7%A8%8B%EF%BC%8C%E7%9C%8B%E9%80%99%E4%B8%80%E7%AF%87%E5%B0%B1%E5%A4%A0%E4%BA%86%EF%BC%81/ 'Limesdr.' Online Available at: https://limemicro.com/products/boards/limesdr/ 'Lime suite driver architecture.' Online Available at: https://myriadrf. org/news/limesuite-driver-architecture/ 'Gps-sdr-sim.' Online Available at: https://github.com/osqzss/gps-sdr-sim 'Broadcast ephemeris data.' Online Available at: https://cddis.nasa.gov/Data_and_Derived_Products/GNSS/broadcast_ephemeris_data.html M. Lenhart, M. Spanghero, and P. Papadimitratos, 'Relay/replay attacks on gnss signals,' in Proceedings of the 14th ACM Conference on Security and Privacy in Wireless and Mobile Networks, ser. WiSec ’21. New York, NY, USA: Association for Computing Machinery, 2021, p. 380–382. Online Available at: https://doi.org/10.1145/3448300.3468256 'Glonass overview.' Online Available at: https://www.naic.edu/∼phil/rfi/sat/glonass/GLONASSOverview.pdf 'Glonass support?' Online Available at: https://github.com/osqzss/gps-sdr-sim/issues/67 'Skydel gnss simulation software.' Online Available at: https://www.orolia.com/product/skydel-simulation-engine/ 'Positioning, navigation, and timing testing.' Online Available at: https://www.spirent.com/products/positioning-navigation-timing-testing 'Gnss simulator.' Online Available at: https://syntony-gnss.com/products/gnss-simulator/ 'Gnss test instruments.' Online Available at: http://accord-soft.com/GNSS_test_instruments.html 'V3 .csv column descriptions.' Online Available at: https://datfile.net/DatCon/fieldsV3.html 'Simplernn layer.' Online Available at: https://keras.io/api/layers/recurrent_layers/simple_rnn/ 'Lstm layer.' Online Available at: https://keras.io/api/layers/recurrent_layers/lstm/ 'Gru layer.' Online Available at: https://keras.io/api/layers/recurrent_layers/gru/ 'About keras.' Online Available at: https://keras.io/about/ G. Hinton, N. Srivastava, and K. Swersky, 'Neural networks for machine learning lecture 6a overview of mini-batch gradient descent,' Cited on, vol. 14, no. 8, p. 2, 2012. 'Optimizers.' Online Available at: https://keras.io/zh/optimizers/ 'Reducelronplateau.' Online Available at: https://keras.io/api/callbacks/reduce_lr_on_plateau/ J. Han and C. Moraga, 'The influence of the sigmoid function parameters on the speed of backpropagation learning,' in International workshop on artificial neural networks. Springer, 1995, pp. 195–201. N. Passalis, A. Tefas, J. Kanniainen, M. Gabbouj, and A. Iosifidis, 'Deep adaptive input normalization for time series forecasting,' IEEE Transactions on Neural Networks and Learning Systems, vol. 31, no. 9, pp. 3760–3765, 2020. A. Briola and J. D. Turiel, 'AntoBr96/Keras Deep Adaptive Input Normalization: Keras Deep Adaptive Input Normalization,' Oct. 2020. Online Available at: https://doi.org/10.5281/zenodo.4103284 M. Schuster and K. Paliwal, 'Bidirectional recurrent neural networks,' IEEE Transactions on Signal Processing, vol. 45, no. 11, pp. 2673–2681, 1997. A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and I. Polosukhin, 'Attention is all you need,' in Advances in neural information processing systems, 2017, pp. 5998–6008. A. Borji, 'Pros and cons of gan evaluation measures,' Computer Vision and Image Understanding, vol. 179, pp. 41–65, 2019. T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, andX. Chen, 'Improved techniques for training gans,' Advances in neural information processing systems, vol. 29, pp. 2234–2242, 2016. M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S. Hochreiter, 'Gans trained by a two time-scale update rule converge to a local nash equilibrium,' Advances in neural information processing systems, vol. 30, 2017. 'Dji agriculture.' Online Available at: https://ag.dji.com/ 'Dji enterprise.' Online Available at: https://enterprise.dji.com/ 'amazon prime air.' Online Available at: https://www.amazon.com/Amazon-Prime-Air/b?ie=UTF8 node=8037720011 'Wing.' Online Available at: https://wing.com/ 'Vive tracker 3.0.' Online Available at: https://www.vive.com/us/accessory/tracker3/ | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81905 | - |
| dc.description.abstract | 近年來,無人機 (UAV) 的技術、應用和數量蓬勃發展與增加。隨著無人機執行的任務越來越重要和複雜,無人機執行的任務或無人機本身逐漸成為攻擊者感興趣的目標。儘管大多數無人機十分仰賴全球衛星導航系統 (GNSS) 來獲得正確的座標、導航和時間 (PNT) 訊息,大多數民用 GNSS 訊號並未加密。這種公開性和可預測性使得 GNSS 訊號非常容易偽造。除了討論針對無人機的低成本 GNSS 欺騙與偽造攻擊之外,本文還提出了針對這些攻擊的低成本但有效的偵測和緩解方案。在攻擊方面,我們利用軟體定義無線電 (SDR) 對民用無人機進行 GNSS 欺騙與偽造攻擊,實作了一種低成本但有效的 GNSS 訊號重送攻擊技術。在防禦方面,民用無人機不僅受到 GNSS 天線尺寸、設備結構、訊號處理能力等限制,而且無人機本身的處理器運算能力也極差。因此,我們提出了一種基於機器學習 (ML) 的偵測和緩解方案,本解決方案使用純軟體,並使用各種設計來降低運算複雜度。此機器學習模型通過生成對抗網路 (GAN) 訓練過程,捕捉實際的無人機飛行數據特徵。這個專門設計的模型可以實現實時偵測無人機本身是否受到欺騙與偽造攻擊,並在受到此類攻擊時預測合理的 GNSS 位置資訊,大幅提高了無人機的可靠性。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-25T03:06:17Z (GMT). No. of bitstreams: 1 U0001-1810202121565700.pdf: 8221970 bytes, checksum: 4de0bc55f8dd8c608c42cf968b02a2ce (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | ABSTRACT ii LIST OF TABLES vi LIST OF FIGURES vii CHAPTER 1 INTRODUCTION 1 CHAPTER 2 BACKGROUND AND RELATED WORK 4 2.1 Global Navigation Satellite Systems (GNSS) 4 2.1.1 Principle of Operation 5 2.1.2 Systems 7 2.1.3 GNSS Jamming 11 2.1.4 GNSS Spoofing 13 2.2 Software-Defined Radio 14 2.3 Machine Learning Techniques 15 2.3.1 Canonical Recurrent Neural Network (RNN) 16 2.3.2 Long Short-Term Memory (LSTM) 17 2.3.3 Gated Recurrent Unit (GRU) 19 2.3.4 Binary Classification 20 2.3.5 AutoEncoder 21 2.3.6 Conditional Generative Adversarial Network (cGAN) 23 2.3.7 Label Smoothing 28 2.3.8 Deep Adaptive Input Normalization 30 2.4 UAVs 32 2.4.1 Characteristics of UAVs 34 2.4.2 DJI Mavic Air 2 35 2.4.3 DatCon 36 2.5 Related Work 38 2.5.1 General Scenario 38 2.5.2 Target on UAV 40 CHAPTER 3 ATTACK IMPLEMENTATION 42 3.1 Setup 42 3.1.1 Software-Defined Radio 43 3.1.2 GNSS Signal Relay 46 3.2 Approaches 47 3.2.1 Forced Landing 47 3.2.2 Transmitting GNSS signal with fixed coordinate 49 3.2.3 Transmitting GNSS signal with shifting coordinate 51 3.3 Observation and Discussion 51 CHAPTER 4 DETECTION AND MITIGATION 59 4.1 Log File Processing 61 4.1.1 Data Fetching 61 4.1.2 Data Parsing and Cleaning 62 4.1.3 Data Analyzing 63 4.1.4 Features 63 4.1.5 Downsampling and Result 68 4.2 Detection 68 4.2.1 RNNs 69 4.2.2 Details of training RNNs 70 4.2.3 Label Smoothing 74 4.2.4 Deep Adaptive Input Normalization 77 4.3 BC-AE-GAN 78 4.3.1 Architecture 79 4.3.2 Scheme 83 CHAPTER 5 PERFORMANCE EVALUATION 90 5.1 Detection 90 5.1.1 RNN Neuron Type 93 5.1.2 Model Size 96 5.1.3 Label Smoothing 99 5.1.4 Deep Adaptive Input Normalization 101 5.2 BC-AE-GAN 104 5.2.1 Skipping AutoEncoder Training Phase 106 5.2.2 Streamlining Output 106 5.2.3 Summary 112 CHAPTER 6 CONCLUSION AND FUTURE WORK 117 REFERENCES 120 | |
| dc.language.iso | en | |
| dc.subject | 生成對抗網路 | zh_TW |
| dc.subject | 全球衛星導航 | zh_TW |
| dc.subject | 無人機 | zh_TW |
| dc.subject | 欺騙 | zh_TW |
| dc.subject | 欺偽 | zh_TW |
| dc.subject | 欺騙偵測 | zh_TW |
| dc.subject | 欺騙緩解 | zh_TW |
| dc.subject | spoofing mitigation | en |
| dc.subject | GAN | en |
| dc.subject | GNSS | en |
| dc.subject | UAV | en |
| dc.subject | spoofing | en |
| dc.subject | spoofing detection | en |
| dc.title | 偵測與緩解針對民用無人機之衛星導航欺偽攻擊 | zh_TW |
| dc.title | Detection and Mitigation of GNSS Spoofing Attack against Civilian UAVs | en |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 魏宏宇(Hsin-Tsai Liu),李宏毅(Chih-Yang Tseng),高榮鴻 | |
| dc.subject.keyword | 全球衛星導航,無人機,欺騙,欺偽,欺騙偵測,欺騙緩解,生成對抗網路, | zh_TW |
| dc.subject.keyword | GNSS,UAV,spoofing,spoofing detection,spoofing mitigation,GAN, | en |
| dc.relation.page | 127 | |
| dc.identifier.doi | 10.6342/NTU202103848 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2021-10-31 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電機工程學研究所 | zh_TW |
| dc.date.embargo-lift | 2022-12-31 | - |
| 顯示於系所單位: | 電機工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1810202121565700.pdf | 8.03 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
