Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 藥學專業學院
  4. 臨床藥學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81896
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林淑文(Shu-Wen Lin)
dc.contributor.authorPei-Jiun Chuangen
dc.contributor.author莊珮君zh_TW
dc.date.accessioned2022-11-25T03:06:04Z-
dc.date.available2026-10-26
dc.date.copyright2021-11-09
dc.date.issued2021
dc.date.submitted2021-10-26
dc.identifier.citation1. Product Information: VENCLEXTA® (venetoclax tablets) for oral use. AbbVie Inc. North Chicago, IL, 2019. 2. National Comprehensive Cancer Network. Acute Myeloid Leukemia. (Version 3.2021). [cited 2021 June 07]; available from: https://www.nccn.org/professionals/physician_gls/pdf/aml.pdf. 3. Jones AK, Freise KJ, Agarwal SK, et al. Clinical Predictors of Venetoclax Pharmacokinetics in Chronic Lymphocytic Leukemia and Non-Hodgkin's Lymphoma Patients: a Pooled Population Pharmacokinetic Analysis. AAPS J. 2016;18(5):1192-1202. 4. Deng R, Gibiansky L, Lu T, et al. Bayesian Population Model of the Pharmacokinetics of Venetoclax in Combination with Rituximab in Patients with Relapsed/Refractory Chronic Lymphocytic Leukemia: Results from the Phase III MURANO Study. Clin Pharmacokinet. 2019;58(12):1621-34. 5. Dave N, Gopalakrishnan S, Mensing S, et al. Model-Informed Dosing of Venetoclax in Healthy Subjects: An Exposure-Response Analysis. Clin Transl Sci. 2019;12(6):625-32. 6. Cheung TT, Salem AH, Menon RM, et al. Pharmacokinetics of the BCL-2 Inhibitor Venetoclax in Healthy Chinese Subjects. Clin Pharmacol Drug Dev. 2018;7(4):435-40. 7. Deschler B, Lübbert M. Acute Myeloid Leukemia: Epidemiology and Etiology. Acute Leukemias. 2008;47-56. 8. 臺灣衛生福利部國民健康署. 2018年癌症登記報告. [cited 2021 June 07]; available from: https://www.hpa.gov.tw/Pages/Detail.aspx?nodeid=269 pid=13498. 9. 臺灣衛生福利部國民健康署. 2010年癌症登記報告. [cited 2021 June 07]; available from: https://www.hpa.gov.tw/Pages/Detail.aspx?nodeid=269 pid=6519. 10. Bennett JM, Catovsky D, Daniel MT, et al. Proposals for the classification of the acute leukaemias. French-American-British (FAB) co-operative group. British Journal of Haematology. 1976;33(4):451-8. 11. Arber DA, Orazi A, Hasserjian R, et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 2016;127(20):2391-405. 12. Döhner H, Estey E, Grimwade D, et al. Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel. Blood. 2017;129(4):424-47. 13. Heuser M, ESMO Guidelines Committee, et al. Acute myeloid leukaemia in adult patients: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2020;31(6):697-712. 14. John A. Liu Yin, Michelle A. O'Brien, et al. Minimal residual disease monitoring by quantitative RT-PCR in core binding factor AML allows risk stratification and predicts relapse: results of the United Kingdom MRC AML-15 trial. Blood. 2012;120(14):2826-35. 15. Buccisano F, Maurillo L, Spagnoli A, et al. Cytogenetic and molecular diagnostic characterization combined to postconsolidation minimal residual disease assessment by flow cytometry improves risk stratification in adult acute myeloid leukemia. Blood. 2010;116(13):2295-303. 16. Bose P, Gandhi V, Konopleva M. Pathways and mechanisms of venetoclax resistance. Leuk Lymphoma. 2017;58(9):1-17. 17. Mihalyova J, Jelinek T, Growkova K, et al. Venetoclax: A new wave in hematooncology. Exp Hematol. 2018;61:10-25. 18. Agarwal S, Gopalakrishnan S, Mensing S, et al. Optimizing venetoclax dose in combination with low intensive therapies in elderly patients with newly diagnosed acute myeloid leukemia: An exposure-response analysis. Hematol Oncol. 2019;37(4):464-73. 19. Micromedex® (electronic version). IBM Watson Health, Greenwood Village, Colorado, USA. (Available at: https://www.micromedexsolutions.com/) 20. Liu H, Michmerhuizen MJ, Lao Y, et al. Metabolism and Disposition of a Novel B-Cell Lymphoma-2 Inhibitor Venetoclax in Humans and Characterization of Its Unusual Metabolites. Drug Metab Dispos. 2017;45(3):294-305. 21. Salem AH, Agarwal SK, Dunbar M, et al. Effect of Low- and High-Fat Meals on the Pharmacokinetics of Venetoclax, a Selective First-in-Class BCL-2 Inhibitor. J Clin Pharmacol. 2016;56(11):1355-61. 22. Assessment report: Venclyxto®. European Medicines Agency (EMA). Committee for Medicinal Products for Human Use (CHMP). October 13, 2016. (Available at: https://www.ema.europa.eu/en/documents/assessment-report/venclyxto-epar-public-assessment-report_en.pdf) 23. Guidance for Industry: Safety Testing of Drug Metabolites. U.S. Department of Health and Human Services Food and Drug Administration Center for Drug Evaluation and Research (CDER). (Available at: https://www.fda.gov/media/72279/download) 24. Salem AH, Dave N, Marbury T, et al. Pharmacokinetics of the BCL-2 Inhibitor Venetoclax in Subjects with Hepatic Impairment. Clin Pharmacokinet. 2019;58(8):1091-100. 25. National Cancer Institute. Common Terminology Criteria for Adverse Events (Version 5.0) [cited 2021 June 07]; available from: https://ctep.cancer.gov/protocoldevelopment/electronic_applications/docs/CTCAE_v5_Quick_Reference_8.5x11.pdf. 26. DiNardo CD, Jonas BA, Pullarkat V, et al. Azacitidine and venetoclax in previously untreated acute myeloid leukemia. N Engl J Med. 2020;383:617-29. 27. Wei AH, Montesinos P, Ivanov V, et al. Venetoclax plus LDAC for newly diagnosed AML ineligible for intensive chemotherapy: a phase 3 randomized placebo-controlled trial. Blood. 2020;135(24):2137-45. 28. Coiffier B, Altman A, Pui CH, et al. Guidelines for the management of pediatric and adult tumor lysis syndrome: an evidence-based review. J Clin Oncol. 2008;26(16):2767-78. 29. Tambaro FP, Wierda WG. Tumour lysis syndrome in patients with chronic lymphocytic leukaemia treated with BCL-2 inhibitors: risk factors, prophylaxis, and treatment recommendations. Lancet Haematol. 2020;7(2):e168-e176. 30. Agarwal SK, DiNardo CD, Potluri J, et al. Management of Venetoclax-Posaconazole Interaction in Acute Myeloid Leukemia Patients: Evaluation of Dose Adjustments. Clin Ther. 2017;39(2):359-67. 31. Freise KJ, Hu B, Salem AH. Impact of ritonavir dose and schedule on CYP3A inhibition and venetoclax clinical pharmacokinetics. Eur J Clin Pharmacol. 2018;74(4):413-21. 32. Agarwal SK, Hu B, Chien D, et al. Evaluation of Rifampin's Transporter Inhibitory and CYP3A Inductive Effects on the Pharmacokinetics of Venetoclax, a BCL-2 Inhibitor: Results of a Single- and Multiple-Dose Study. J Clin Pharmacol. 2016;56(11):1335-43. 33. Venetoclax New Drug Application: clinical pharmacology and biopharmaceutics review(s). Center for Drug Evaluation and Research. [cited 2021 June 07]; available from: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2016/208573Orig1s000ClinPharmR.pdf. 34. Kiang TK, Sherwin CM, Spigarelli MG, et al. Fundamentals of population pharmacokinetic modelling: modelling and software. Clin Pharmacokinet. 2012;51(8):515-25. 35. Monolix version 2020R1, France: Lixoft SAS, 2020. [cited 2021 June 07]; available from: https://lixoft.com/products/monolix/. 36. Population Pharmacokinetics Guidance for Industry. Food and Drug Administration. [cited 2021 June 07]; available from: https://www.fda.gov/media/128793/download. 37. Li Xiao-Xian, Liu Ren-Shuai, Fang Hao. Bcl-2: research progress from target to launched drug. Acta Pharmaceutica Sinica. 2018;53(4):509-17. 38. Minocha M, Zeng J, Medema JK, et al. Pharmacokinetics of the B-Cell Lymphoma 2 (Bcl-2) Inhibitor Venetoclax in Female Subjects with Systemic Lupus Erythematosus. Clin Pharmacokinet. 2018;57(9):1185-98. 39. Alaarg A, Rizzo D, Liu Y, et al. M1430-13-85: Microdosing Strategy for Absolute Bioavailability Studies: A Case Study on 13C-Venetoclax, from Development to the Clinic. 2019 AAPS PharmSci 360. [cited 2021 June 07]; available from: https://www.eventscribe.com/2019/PharmSci360/fsPopup.asp?efp=SUlFUEhHSFQ4MDkx PosterID=232966 rnd=0.78907 mode=posterinfo. 40. Wei AH, Strickland SA Jr, Hou JZ, et al. Venetoclax Combined with Low-Dose Cytarabine for Previously Untreated Patients With Acute Myeloid Leukemia: Results From a Phase Ib/II Study. J Clin Oncol. 2019;37(15):1277-84. 41. DiNardo CD, Pratz K, Pullarkat V, et al. Venetoclax combined with decitabine or azacitidine in treatment-naive, elderly patients with acute myeloid leukemia. Blood. 2019;133(1):7-17. 42. Konopleva M, Pollyea DA, Potluri J, et al. Efficacy and Biological Correlates of Response in a Phase II Study of Venetoclax Monotherapy in Patients with Acute Myelogenous Leukemia. Cancer Discov. 2016;6(10):1106-17. 43. Hande KR, Garrow GC. Acute tumor lysis syndrome in patients with high¬grade non¬Hodgkin’s lymphoma. Am J Med. 1993;94:133-39. 44. Cairo MS, Bishop M. Tumour lysis syndrome: new therapeutic strategies and classification. Br J Haematol. 2004;127:3-11. 45. Howard SC, Jones DP, Pui CH. The tumor lysis syndrome. N Engl J Med. 2011;364:1844-54. 46. Tosi P, Barosi G, Lazzaro C, et al. Consensus conference on the management of tumor lysis syndrome. Haematologica. 2008;93:1877-85. 47. 郭益宏碩士論文. Voriconazole在血液科病人之群體藥動學研究. 2017:1-91. 48. Petitcollin A, Boglione-Kerrien C, Tron C, et al. Population Pharmacokinetics of Posaconazole Tablets and Monte Carlo Simulations to Determine whether All Patients Should Receive the Same Dose. Antimicrob Agents Chemother. 2017;61(11):e01166-17. 49. Van Iersel MLPS, Rossenu S, de Greef R, Waskin H. A Population Pharmacokinetic Model for a Solid Oral Tablet Formulation of Posaconazole. Antimicrob Agents Chemother. 2018;62(7):e02465-17. 50. Cockcroft DW, Gault MH. Prediction of creatinine clearance from serum creatinine. Nephron. 1976;16(1):31-41. 51. Levey AS, Stevens LA, Schmid CH, et al. A new equation to estimate glomerular filtration rate. Ann Intern Med. 2009;150(9):604-12. 52. Chen LI, Guh JY, Wu KD, et al. Modification of diet in renal disease (MDRD) study and CKD epidemiology collaboration (CKD-EPI) equations for Taiwanese adults. PLoS One. 2014;9(6):e99645. 53. Levey AS, Bosch JP, Lewis JB, et al. A more accurate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation. Modification of Diet in Renal Disease Study Group. Ann Intern Med. 1999;130(6):461-70. 54. 臺灣衛生福利部國民健康署. 食物代換表(2019年版本). [cited 2021 June 07]; available from: https://www.hpa.gov.tw/Pages/Detail.aspx?nodeid=485 pid=8380. 55. Nguyen TH, Mouksassi MS, Holford N, Model Evaluation Group of the International Society of Pharmacometrics (ISoP) Best Practice Committee, et al. Model Evaluation of Continuous Data Pharmacometric Models: Metrics and Graphics. CPT Pharmacometrics Syst Pharmacol. 2017;6(2):87-109. 56. Wählby U, Jonsson EN, Karlsson MO. Comparison of stepwise covariate model building strategies in population pharmacokinetic-pharmacodynamic analysis. AAPS PharmSci. 2002;4(4):e27. 57. Retlich S, Duval V, Graefe-Mody U, et al. Population Pharmacokinetics and Pharmacodynamics of Linagliptin in Patients with Type 2 Diabetes Mellitus. Clin Pharmacokinet. 2015;54(7):737-50. 58. Naik B N, Mathew PJ, Pattanaik S, et al. Pharmacokinetic modeling of propofol in Indian children. J Pharmacol Pharmacother 2019;10:22-32. 59. Soldin OP, Chung SH, Mattison DR. Sex differences in drug disposition. J Biomed Biotechnol. 2011;2011:187103. 60. Soldin OP, Mattison DR. Sex differences in pharmacokinetics and pharmacodynamics. Clin Pharmacokinet. 2009;48(3):143-57. 61. Schwartz JB. The influence of sex on pharmacokinetics. Clin Pharmacokinet. 2003;42(2):107-21. Erratum in: Clin Pharmacokinet. 2004;43(11):732. 62. Urien S, Brée F, Testa B, et al. pH-dependency of basic ligand binding to α1-acid glycoprotein (orosomucoid). Biochem J. 1991;280(1):277-80. 63. Meijer DK, Van der Sluijs P. The influence of binding to albumin and alpha 1-acid glycoprotein on the clearance of drugs by the liver. Pharm Weekbl Sci. 1987;9(2):65-74. 64. Harrold MW, Zavod RM. Answers to Chapter Questions. In Basic Concepts in Medicinal Chemistry, 2nd ed. ASHP; Bethesda: Rockville, MD, USA, 2018;477-591. 65. Shah S, Barton G, Fischer A. Pharmacokinetic considerations and dosing strategies of antibiotics in the critically ill patient. J Intensive Care Soc. 2015;16(2):147-53. 66. De Paepe P, Belpaire FM, Buylaert WA. Pharmacokinetic and pharmacodynamic considerations when treating patients with sepsis and septic shock. Clin Pharmacokinet. 2002;41(14):1135-51. 67. Krishna G, Ma L, Prasad P, et al. Effect of posaconazole on the pharmacokinetics of simvastatin and midazolam in healthy volunteers. Expert Opin Drug Metab Toxicol. 2012;8(1):1-10. 68. Hohmann N, Kocheise F, Carls A, et al. Dose-Dependent Bioavailability and CYP3A Inhibition Contribute to Non-Linear Pharmacokinetics of Voriconazole. Clin Pharmacokinet. 2016;55(12):1535-45. 69. Miceli MH, Perissinotti AJ, Kauffman CA, et al. Serum posaconazole levels among haematological cancer patients taking extended release tablets is affected by body weight and diarrhoea: single centre retrospective analysis. Mycoses. 2015;58(7):432-6. 70. Chen L, Krekels EHJ, Verweij PE, et al. Pharmacokinetics and Pharmacodynamics of Posaconazole. Drugs. 2020;80(7):671-95. 71. Yeung CK, Shen DD, Thummel KE, et al. Effects of chronic kidney disease and uremia on hepatic drug metabolism and transport. Kidney Int. 2014;85(3):522-8. 72. Ladda MA, Goralski KB. The Effects of CKD on Cytochrome P450-Mediated Drug Metabolism. Adv Chronic Kidney Dis. 2016;23(2):67-75. 73. Deng R, Gibiansky L, Lu T, et al. Exposure-response analysis of venetoclax in combination with rituximab in patients with relapsed or refractory chronic lymphocytic leukemia: pooled results from a phase 1b study and the phase 3 MURANO study. Leuk Lymphoma. 2020;61(1):56-65. 74. Apel A, Moshe Y, Ofran Y, et al. Venetoclax combinations induce high response rates in newly diagnosed acute myeloid leukemia patients ineligible for intensive chemotherapy in routine practice. Am J Hematol. 2021;96(7):790-5. 75. Appelbaum FR, Gundacker H, Head DR, et al. Age and acute myeloid leukemia. Blood. 2006;107(9):3481-5. 76. Acharya UH, Halpern AB, Wu QV, et al. Impact of region of diagnosis, ethnicity, age, and gender on survival in acute myeloid leukemia (AML). J Drug Assess. 2018;7(1):51-3. 77. Hellesøy M, Engen C, Grob T, et al. Sex disparity in acute myeloid leukaemia with FLT3 internal tandem duplication mutations: implications for prognosis. Mol Oncol. 2021;15(9):2285-99. 78. Kimchi-Sarfaty C, Marple AH, Shinar S, et al. Ethnicity-related polymorphisms and haplotypes in the human ABCB1 gene. Pharmacogenomics. 2007;8(1):29-39. 79. General background text Pharmacogenetics-Organic Anion Transporter 1B1 (SLCO1B1, OATP1B1, OATP-C). The Royal Dutch Pharmacists Association (Koninklijke Nederlandse Maatschappij ter bevordering der Pharmacie, KNMP). [cited 2021 Oct 09]; available from: https://www.knmp.nl/downloads/g-standaard/farmacogenetica/english-background-information/slco1b1-english-2020.pdf. 80. Xiang X, Han Y, Neuvonen M, et al. Effect of SLCO1B1 polymorphism on the plasma concentrations of bile acids and bile acid synthesis marker in humans. Pharmacogenet Genomics. 2009;19(6):447-57. 81. Salem AH, Agarwal SK, Dunbar M, et al. Pharmacokinetics of Venetoclax, a Novel BCL-2 Inhibitor, in Patients with Relapsed or Refractory Chronic Lymphocytic Leukemia or Non-Hodgkin Lymphoma. J Clin Pharmacol. 2017;57(4):484-92.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81896-
dc.description.abstract"背景與研究目的 Venetoclax於2018年被核准併用低甲基化劑(hypomethylating agent, HMA)或低劑量cytarabine(low dose cytarabine, LDAC)治療75歲以上、或是無法接受高強度化學治療之初診斷急性骨髓性白血病(acute myeloid leukemia, AML)的病人。Venetoclax在體內主要經由肝臟CYP3A4酵素代謝,與CYP3A抑制劑存在明顯交互作用,然而進行治療AML時,常需使用posaconazole或voriconazole等CYP3A強效抑制劑以預防或治療侵入性黴菌感染,但現有研究中CYP3A強效抑制劑類別、使用情形等和臨床需求不盡相同,且目前亦缺乏大型venetoclax用於AML病人的藥動學研究。此外,於小型藥動學研究結果也發現在相似研究條件下,漢人族群的venetoclax血中濃度較歐美族群高,因此本研究旨在建立臺灣AML病人之venetoclax族群藥動學模型,藉以釐清顯著影響藥物血中濃度變化和個體間藥動參數差異的因子。 研究方法 本研究屬於多中心、前瞻、觀察性研究,研究對象為2020年8月1日至2021年7月31日期間正在使用或預計開始使用venetoclax的AML病人,venetoclax血中濃度採用超高效液相層析串連質譜法分析,也會同時檢測CYP3A抑制劑voriconazole及posaconazole的濃度。族群藥動學模型部分,以Monolix(version 2020R1)軟體來建立模型,參考現有族群藥動文獻來選擇適當的模型架構和藥動參數起始值,再針對分佈體積和清除率分別尋找可能會影響藥動參數的共變項。共變項的選擇過程是藉由逐步選取法(stepwise selection)進行,並以適配性圖(goodness-of-fit plot)和殘差分佈圖(residual scatterplot)評估最終模型是否較基礎模型改善。此外,將使用venetoclax族群藥動模型得出之最低血中濃度(Cmin)、最高血中濃度(Cmax)及AUC0-24和療效、重要血液學不良事件以單變項線性迴歸或羅吉斯迴歸分別分析其關聯性。 研究結果 總共納入36位病人、168筆venetoclax濃度資料進行族群藥動模型建立,平均約8小時左右達到血中濃度高峰。CYP3A強效抑制劑部分,有12位併用posaconazole、16位併用voriconazole。現有文獻中venetoclax族群藥動模型皆以二室模型、一級吸收速率和一級排除速率來模擬其藥動學變化,然而考慮本研究服藥頻率和抽血時間點分佈,及venetoclax之排除半衰期長達26小時的情形下,若採用二室模型可能缺乏足夠的抽血點來描述此族群排除相的血中濃度變化,故採用一室模型、一級吸收速率和一級排除速率為基礎架構,當個體內變異為比例型(proportional)、分佈體積和清除率的個體間差異為指數型(exponential)時,最符合本研究的濃度分佈。經逐步選取法完成共變項篩選後,最終模型的族群分佈體積為47.28 L,且給予的IV輸液體積顯著影響個體分佈體積,當給予0.5 L不限種類的輸液時,該個體的分佈體積會上升84.1%到87.03 L。族群清除率為5.44 L/hr,對於同時併用posaconazole或voriconazole者,其Cmin對於個體清除率具不同程度的影響,當posaconazole Cmin為1 mcg/mL時,該個體的venetoclax清除率會下降67.6%到1.76 L/hr;若voriconazole Cmin為1 mcg/mL時,則venetoclax清除率會下降58.3%變為2.27 L/hr。本研究預測個體分佈體積和清除率之平均值分別為62.81 ± 28.15 L和3.88 ± 2.99 L/hr。針對模型篩選出的顯著共變項進行venetoclax曝露量的比較,顯示有給予及沒有給予IV輸液的病人,venetoclax濃度和AUC沒有顯著差異。併用fluconazole時,venetoclax的平均濃度和AUC上升1.5倍,而併用voriconazole和posaconazole時的dose-normalized Cmin、Cmax和AUC則分別上升6倍、3倍和4倍。 療效方面,有12位(37.5%)病人達到ELN response criteria中定義的完全緩解;血液學不良事件部分,分別有33位(86.8%)、34位(89.5%)、29位(76.3%)和19位(50%)於治療過程中曾發生CTCAE grade 3以上的neutropenia、thrombocytopenia、anemia和febrile neutropenia,僅一位病人於治療過程中發生輕微的tumor lysis syndrome,之後也成功地重新開始venetoclax治療。單變項迴歸分析結果顯示,venetoclax血中濃度或曝露量跟達到完全緩解的機率或發生CTCAE grade 3以上血液學不良事件的機率沒有明顯關聯。經多變項迴歸分析後,性別與達到完全緩解的機率有顯著關聯;此外,本研究中secondary AML病人發生grade 3以上anemia的風險也較高,且當病人開始療程前的absolute neutrophil count較高,發生grade 3以上neutropenia的機率顯著較低。 結論 本研究收納36位AML病人建立之venetoclax族群藥動學模型指出,給予大量IV輸液可能使病人分佈體積顯著上升,然而有給予輸液與未給予者之藥品血中濃度和曝露量沒有顯著差異;而併用posaconazole或voriconazole時,其Cmin越高、個體清除率越低,本研究中併用posaconazole和voriconazole病人族群的venetoclax曝露量也顯著較未併用者高。進一步分析療效、血液學不良事件與venetoclax曝露量之間並無顯著關聯性。本研究除了建立臺灣AML病人族群藥動模型,也提供未來venetoclax在臨床使用上的藥動參考資料。"zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-25T03:06:04Z (GMT). No. of bitstreams: 1
U0001-2510202114042800.pdf: 22003336 bytes, checksum: 42a0b4f772573698e3676a532696f1d1 (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents論文口試委員審定書 i 誌謝 ii 中文摘要 iii Abstract vi 目錄 ix 表目錄 xii 圖目錄 xiv 縮寫表 xvii 第一章 緒論 1 第二章 文獻回顧與探討 2 2.1 急性骨髓性白血病 2 2.1.1 疾病特性與分類 2 2.1.2 治療方式與療效評估 3 2.2 Venetoclax介紹 9 2.2.1 藥理學與藥效學作用 9 2.2.2 臨床用途和使用劑量 9 2.2.3 藥品動態學特性 10 2.2.3.1 基本性質 10 2.2.3.2 特殊族群之藥品動態學特性 12 2.2.4 不良事件與注意事項 13 2.2.5 藥品交互作用 14 2.3 Venetoclax族群藥動學研究 23 2.3.1 族群藥動學介紹 23 2.3.2 Venetoclax族群藥動學文獻回顧 24 第三章 研究目的 28 第四章 研究方法 29 4.1 研究架構 29 4.2 研究對象、地點、收案流程 29 4.2.1 納入條件 29 4.2.2 排除條件 29 4.3 資料收集 29 4.3.1 受試者資料 29 4.3.1.1 基本資料及臨床用藥 29 4.3.1.2 檢驗報告及實驗室檢查數據 30 4.3.2 Venetoclax給藥劑量與血中濃度 32 4.4 實驗室分析 33 4.5 族群藥動學模型建立與分析 38 4.5.1 藥動學參數分析 38 4.5.2 基礎模型建立與評估 38 4.5.3 共變項分析與最終模型建立 40 4.6 統計分析方法 45 第五章 研究結果 46 5.1 收案情形 46 5.2 受試者基本特性 47 5.3 Venetoclax藥動學資料及模型建立 54 5.3.1 藥物血中濃度 54 5.3.1.1 Venetoclax血中濃度 54 5.3.1.2 Posaconazole和voriconazole血中濃度 54 5.3.2 Venetoclax基礎模型 54 5.3.3 影響venetoclax藥動學的共變項分析 55 5.3.3.1 與分佈體積V相關的共變項 55 5.3.3.2 與清除率CL相關的共變項 56 5.3.3.3 與生體可用率F相關的共變項 57 5.3.4 Venetoclax最終模型 58 5.3.5 Venetoclax Cmin、Cmax與AUC分佈 59 5.4 Venetoclax藥動學與療效、不良事件分析 130 5.4.1 療效及不良事件 130 5.4.2 Venetoclax濃度或AUC與療效分析 130 5.4.3 Venetoclax濃度或AUC與血液學不良事件分析 131 第六章 討論 142 6.1 病人族群與資料特性 142 6.2 Venetoclax族群藥動模型與文獻比較 142 6.2.1 分佈體積V最終模型討論 142 6.2.2 清除率CL最終模型討論 144 6.2.3 與過去亞洲族群之venetoclax藥動性質比較 145 6.2.4 Venetoclax Cmin、Cmax和AUC分佈之討論 146 6.3 療效及血液學不良事件 147 6.4 研究優勢、限制與未來展望 149 第七章 結論 151 參考文獻 152
dc.language.isozh-TW
dc.subject血液學不良事件zh_TW
dc.subjectVenetoclaxzh_TW
dc.subject急性骨髓性白血病zh_TW
dc.subject血中濃度zh_TW
dc.subject族群藥動學zh_TW
dc.subject藥品交互作用zh_TW
dc.subject完全緩解zh_TW
dc.subjectVenetoclaxen
dc.subjecthematological adverse eventsen
dc.subjectcomplete remissionen
dc.subjectdrug interactionsen
dc.subjectpopulation pharmacokineticsen
dc.subjectplasma concentrationen
dc.subjectacute myeloid leukemiaen
dc.titleVenetoclax用於急性骨髓性白血病之藥品動態學研究zh_TW
dc.titlePharmacokinetics of Venetoclax in Patients with Acute Myeloid Leukemiaen
dc.date.schoolyear109-2
dc.description.degree碩士
dc.contributor.oralexamcommittee王妤文(Hsin-Tsai Liu),郭錦樺(Chih-Yang Tseng),林君榮,侯信安
dc.subject.keywordVenetoclax,急性骨髓性白血病,血中濃度,族群藥動學,藥品交互作用,完全緩解,血液學不良事件,zh_TW
dc.subject.keywordVenetoclax,acute myeloid leukemia,plasma concentration,population pharmacokinetics,drug interactions,complete remission,hematological adverse events,en
dc.relation.page158
dc.identifier.doi10.6342/NTU202104138
dc.rights.note同意授權(全球公開)
dc.date.accepted2021-10-26
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept臨床藥學研究所zh_TW
dc.date.embargo-lift2026-10-26-
顯示於系所單位:臨床藥學研究所

文件中的檔案:
檔案 大小格式 
U0001-2510202114042800.pdf
  此日期後於網路公開 2026-10-26
21.49 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved