請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81882完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 洪挺軒(Ting-Hsuan Hung) | |
| dc.contributor.author | Ting-Hsuan Wu | en |
| dc.contributor.author | 吳庭萱 | zh_TW |
| dc.date.accessioned | 2022-11-25T03:05:43Z | - |
| dc.date.available | 2027-02-11 | |
| dc.date.copyright | 2022-02-21 | |
| dc.date.issued | 2022 | |
| dc.date.submitted | 2022-02-11 | |
| dc.identifier.citation | 吳文川。1989。柑橘潰瘍病的現況。農業試驗所特刊 27。 李永安。2002。Xanthomonas屬病原菌及甘蔗流膠病之診斷鑑定技術。植物重要防檢疫疫病診斷鑑定技術研習會專刊 135-159。 李永安。2006。由Xanthomonas屬細菌引起的作物病害之臨床診斷。植物重要防疫檢疫病害診斷鑑定技術研習會 21-28。 邱安隆、陳哲民。2004。降低栽植田水位及應用農業藥劑或土壤添加物防治蕹菜青枯病。花蓮區農業改良場研究彙報 22:57-66。 翁秀蕙、吳文川。1977。台灣之桃細菌性穿孔病。植保會刊 19: 299。 許秀惠、徐世典。1991。台灣茄科細菌性斑點病菌對銅劑及其他藥劑之感受性。植物保護學會會刊 33:410-419。 許秀惠、黃秋雄。1991。火鶴花之細菌性葉枯病。植保會刊 33: 421。 陳宇謙。2009。柑桔潰瘍病之非農藥防治。臺灣大學植物病理與微生物學研究所學位論文。79頁。 陳俊任。2018。運用奈米級碳酸鈣促進番茄生長及對生物性與非生物性逆境的抵抗能力。國立台東大學生命科學研究所學位論文:1-166。 黃秀珍、張治安、林元春、朱木貴、林信成、徐世典。1997。利用聚合酵素連鎖反應鑑定檬果黑斑病菌。植物病理學會刊 6: 1-9。 葉士財、郭建志、廖君達、白桂芳。2010。潰瘍病在不同柑橘品種之發生及其防治藥劑篩選。臺中區農業改良場研究彙報 106: 45-53。 葛玲伶。2016。聖誕紅細菌性葉斑病之診斷及防治。臺灣大學植物病理與微生物學研究所學位論文。86頁。 劉名旂、楊雅淨、黃國棟。2021。109年聖誕紅產地觀摩紀實。種苗科技專訊113: 21-23。 賴巧娟、張立、鄭淮嶸、楊雅淨、傅仰人、洪挺軒。2013。聖誕紅葉斑病病原生態研究。102聖誕紅產銷檢討座談會。 蘇鴻基。2003。柑橘潰瘍病。植物保護圖鑑系列9-柑桔保護。頁244-248。行政院農業委員會動植物防疫檢疫局。台北。 Adisa, I. O., Pullagurala, V. L. R., Peralta-Videa, J. R., Dimkpa, C. O., Elmer, W. H., Gardea-Torresdey J. L., and White J. C. 2019. Recent advances in nano-enabled fertilizers and pesticides: a critical review of mechanisms of action. Environ. Sci-Nano 6:2002-2030. Benson, D. M., Hall, J. L., Moorman, G. W., Daughtrey, M. L., Chase, A. R., and Lamour, K. H. 2002. The history and diseases of poinsettia, the Christmas flower. Plant Health Prog. 3:18. Boatemaa, M. A., Ragunathan, R., and Naskar, J. 2019. Nanogold for in vitro inhibition of Salmonella strains. J. Nanomater. :1-11. Bock, C. H., Graham, J. H., Gottwald, T. R., Cook, A. Z., and Parker, P. E. 2010. Wind speed and wind-associated leaf injury affect severity of citrus canker on Swingle citrumelo. Eur. J. Plant Pathol. 128:21-38. Bock, C. H., Parker, P. E. and Gottwald, T. R. 2005. Effect of simulated wind-driven rain on duration and distance of dispersal of Xanthomonas axonopodis pv. citri from canker-infected citrus trees. Plant Dis. 89:71-80. Christiano, R. S. C., Dalla Pria, M., Jesus, W. C., Parra, J. R. P., Amorim, L. and Bergamin, A. 2007. Effect of citrus leaf-miner damage, mechanical damage and inoculum concentration on severity of symptoms of asiatic citrus canker in Tahiti lime. Crop Prot. 26:59-65. Coletta-Filho, H. D., Takita, M. A., Souza, A. A., Neto, J. R., Destéfano, S. A., Hartung, J. S., and Machado, M. A. 2006. Primers based on the rpf gene region provide improved detection of Xanthomonas axonopodis pv. citri in naturally and artificially infected citrus plants. J. Appl. Microbiol. 100:279‐285. Divya, B. L., Gowda, K. T. P., and Chandrashekar, S. C. 2013. Evaluation of antibiotics, bactericides and nano particles for management of bacterial blight of pomegranate caused by Xanthomonas axonopodis pv. punicae under lab and field conditions. Mysore J. Agric. Sci. 47:765-772. Erkan, A., Bakir, U., and Karakas, G. 2006. Photocatalytic microbial inactivation over Pd doped SnO2 and TiO2 thin films. J. Photochem. Photobiol. 184:313-321. Fawcett, H. S. and Jenkins, A. E. 1933. Records of citrus canker from herbarium specimens of the genus citrus in England and the United States. Phytopathology, 23:820-824. Foster, H. A., Ditta, I. B., Varghese, S., and Steele, A. 2011. Photocatalytic disinfection using titanium dioxide: spectrum and mechanism of antimicrobial activity. Appl. Microbiol. Biotechnol. 90:1847-1868. Giannantonio, D. J., Kurth, J. C., Kurtis, K. E., and Sobecky, P. A. 2009. Effects of concrete properties and nutrients on fungal colonization and fouling. Int. Biodeterior. Biodegradation 63:252-259. Gogos, A., Knauer, K., and Bucheli, T. D. Nanomaterials in plant protection and fertilization: current state, foreseen applications, and research priorities. J. Agric. Food Chem. 2012:9781-9792. Gottwald, T. R., Graham, J. H., Civerolo, E. L., Barrett, H. C., and Hearn, C. J. 1993. Differential host range reaction of citrus and citrus relatives to citrus canker and citrus bacterial spot determinated by leaf mesophyll susceptiblity. Plant Dis. 77:1004-1009. Graham, J. H., Johnson, E. G., Myers, M. E., Young, M., Rajasekaran, P., Das, S., and Santra, S. 2016. Potential of nano-formulated zinc oxide for control of citrus canker on grapefruit trees. Plant Dis. 100:2442-2447. Hayward, A. C. 1993. The host of Xanthomonas. In Xanthomonas (Swings, J. G., and Civerolo, E. L. eds). pp. 1-120. Chapman Hall Inc. Boundary Row, London. Hsu, S. T., and Tzeng, K. C. 1979. Occurrence of bacterial blight of bean in Taiwan. Plant Prot. Bull. 21:244-246. Kah, M., and Hofmann, T. Nanopesticide research: Current trends and future priorities. Environ. Int. 2014:224-235. Kim, D.Y., Kadam, A., Shinde, S., Saratale, R.G., Patra, J., and Ghodake, G. Recent developments in nanotechnology transforming the agricultural sector: A transition replete with opportunities. J. Sci. Food Agric. 2018:849-864. Krishnaraj, C., Ramachandran, R., Mohan, K., and Kalaichelvan, P. T. 2012. Optimization for rapid synthesis of silver nanoparticles and its effect on phytopathogenic fungi. Spectrochimica. Acta. 93:95-99. Lee, H. A. 1918. Further data on the susceptiblity of rutaceous plants to citrus canker. J. Agr. Res. 15:661-665. Lee, Y. A., Chen, K. P., and Chang, Y. C. 2005. First report of bacterial leaf blight of white flowered calla lily caused by Xanthomonas campestris pv. zantedeschiae in Taiwan. Plant Pathol. 54:239. Lee, Y. A., Hildebrand, D. C., and Schroth, M. N. 1992. Use of quinate metabolism as a phenotypic property to identify members of Xanthomonas campestris DNA homology group 6. Phytopathology 82:971-3. Lee, Y. A., Liu, Y. H., and Liu, H. L. 2004. First report of bacterial leaf blight of coriander caused by Xanthomonas campestris pv. coriandri in Taiwan. Plant Dis. 88:910. Lee, Y. A., Sung, A. N., Liu, T. F., and Lee, Y. S. 2009. Combination of chromogenic differential medium and estA-specific PCR for isolation and detection of phytopathogenic Xanthomonas spp. Appl. Environ. Microbiol. 75:6831-6838. Lee, Y. A., Wu, P. C., and Liu, H. L. 2006. First report of bacterial leaf spot of poinsettia caused by Xanthomonas axonopodis pv. poinsettiicola in Taiwan. Plant Pathol. 55:823-823. Leyns, F., De Cleene, M., Swings, J. G., and De Ley, J. 1984. The host range of the genus Xanthomonas. Bot. Rev. 50:308-356. Li, B., Zhang, Y., Yang, Y., Qiu, W., Wang, X., Liu, B., and Sun, G. 2016. Synthesis, characterization, and antibacterial activity of chitosan/TiO2 nanocomposite against Xanthomonas oryzae pv. oryzae. Carbohydr. Polym. 152:825-831. Liao, Y. Y., Strayer-Scherer, A., White, J. C., De La Torre-Roche, R., Ritchie, L., Colee, J., Vallad, G. E., Freeman, J., Jones, J. B., and Paret, M. L. 2019. Particle-size dependent bactericidal activity of magnesium oxide against Xanthomonas perforans and bacterial spot of tomato. Sci. Rep. 9:18530. Lipson, D. A., and Schmidt, S. K. 2004. Seasonal changes in an alpine soil bacterial community in the Colorado Rocky Mountains. Appl. Environ. Microbiol. 70:2867-2879. Mahdian, S., and Khaksari, M. 2016. Control effect of some metal nanoparticle on boxwood blight fungus agent (Calonectria pseudonaviculata). Proceedings of 22nd Iranian Plant Protection Congress :27-30. Murata, M. M., Omar, A. A., Mou, Z., Chase, C. D., Grosser, J. W., and Graham, J. H. 2019. Novel plastid-nuclear genome combinations enhance resistance to citrus canker in cybrid grapefruit. Front. plant sci. 9:1858. Muszkat, L., Feigelson, L., Bir, L., Muszkat, K. A., Teitel, M., Dornay, I., and Kirtzman, G. 2005. Solar photo-inactivation of phytopathogens by trace level hydrogen peroxide and titanium dioxide photocatalysis. Phytoparasitica 33:267-274. Norman, D. J., and Chen, J. 2011. Effect of foliar application of titanium dioxide on bacterial blight of geranium and Xanthomonas leaf spot of poinsettia. HortScience 46:426-428. Ocsoy, I., Paret, M. L., Ocsoy, M. A., Kunwar, S., Chen, T., You, M., and Tan, W. 2013. Nanotechnology in plant disease management: DNA-directed silver nanoparticles on graphene oxide as an antibacterial against Xanthomonas perforans. Acs. Nano. 7:8972-8980. Paret, M. L., Vallad, G. E., Averett, D. R., Jones, J. B., and Olson, S. M. 2013. Photocatalysis: effect of light-activated nanoscale formulations of TiO2 on Xanthomonas perforans and control of bacterial spot of tomato. Phytopathology 103:228-236. Park, S., Lee, S., Kim, B., Lee, S., Lee, J., Sim, S., Gu, M., Yi, J., and Lee, J. 2012. Toxic effects of titanium dioxide nanoparticles on microbial activity and metabolic flux. Biotechnol. Bioproc. E. 17:276-282. Parkinson, N., Aritua, V., Heeney, J., Cowie, C., Bew, J. and Stead, D. 2007. Phylogenetic analysis of Xanthomonas species by comparison of partial gyrase B gene sequences. Int. J. Syst. Evol. Microbiol. 57:2881-2887. Patel, M. K. , Bhatt, V. V., and Kulkarni, Y. S., 1951. Three new bacterial diseases of plants from Bombay. Curr. Sci. (Bangalore) 20:326-327. Pernezny, K., Nagata, R., Havranek, K., and Sanchez, J. 2008. Comparison of two culture media for determination of the copper resistance of Xanthomonas strains and their usefulness for prediction of control with copper bactericides. Crop Prot. 27:256-262. Pullagurala, V. L., Adisa, I. O., Rawat, S., Kim, B., Barrios, A. C., Medina-Velo, I. A., Hernandez-Viezcas, J. A, Peralta-Videa, J. R., and Gardea-Torresdey J. L. 2018. Finding the conditions for the beneficial use of ZnO nanoparticles towards plants-a review. Environ. Pollut. 241:1175-1181. Qian, K., Shi, T., Tang, T., Zhang, S., Liu, X., and Cao, Y. 2011. Preparation and characterization of nano-sized calcium carbonate as controlled release pesticide carrier for validamycin against Rhizoctonia solani. Microchimica. Acta. 173:51-57. Ritchie, D. F., and Dittapongpitch, V. A. N. L. A. 1991. Copper-and streptomycin-resistant strains and host differentiated races of Xanthomonas campestris pv. vesicatoria in North Carolina. Plant Dis. 75:733-736. Saddler, G. S., and Bradbury, J. F. 2005. Genus Xanthomonas. In Bergey's Manual of Systematic Bacteriology (Brenner, D. J. Krieg, N. R., and Staley, J. T. eds.) 2nd ed. vol. 2 pp. 63-90. Springer Science+Business Media, Inc. New York, . Schaad, N. W., Jones, J. B., and Chun, W. 2001. Laboratory Guide for Identification of Plant Pathogenic Bacteria. 3rd ed. St. Paul, MN, USA: APS Press. Schubert, T. S. and Miller J. W. 2000. Bacterial citrus canker. Gainesville, Florida, FDACS, Division of plant industry, 6 fold. Timilsina, S., Potnis, N., Newberry, E. A., Liyanapathiranage, P., Iruegas-Bocardo, F., White, F. F., and Jones, J. B. 2020. Xanthomonas diversity, virulence and plant-pathogen interactions. Nat. Rev. Microbiol. 18(8):415-427. Tsuyumu, S. H. I. N. J. I. and Tsuyumu, S. H. I. N. Y. A. 2013. Molecular biological and nano-technological studies on postharvest disease. Acta. Hortic. 973:31-34. Vauterin, L., Hoste, B., Kersters, K., and Swings, J. 1995. Reclassification of Xanthomonas. Int. J. Syst. Bacteriol. 45:472-489. Wang, L., Liu, Z., He, S., He, S., and Wang, Y. 2021. Fighting against drug-resistant tumors by the inhibition of γ-glutamyl transferase with supramolecular platinum prodrug nano-assemblies. J. Mater. Chem. B 9:4587-4595. Worrall, E. A., Hamid, A., Mody, K. T., Mitter, N., and Pappu, H. R. 2018. Nanotechnology for plant disease management. Agronomy 8:285. Yang, Y., Zhu, D., Liu, Y., Jiang, B., Jiang, W., Yan, X., and Fan, K. 2020. Platinum-carbon-integrated nanozymes for enhanced tumor photodynamic and photothermal therapy. Nanoscale 12:13548-13557. Yin, Y., Hu, B., Yuan, X., Cai, L., Gao, H., and Yang, Q. 2020. Nanogel: A versatile nano-delivery system for biomedical applications. Pharmaceutics 12:290. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81882 | - |
| dc.description.abstract | 近年來奈米科技廣泛應用於農業,國內外研究指出多種奈米化資材對於抑制植物病原菌及病害防治頗具潛力。本研究針對Xanthomonas屬病原細菌引起之聖誕紅細菌性葉斑病及柑橘潰瘍病透過培養基抑菌試驗及植株溫室試驗評估,開發具潛力的奈米化防治資材。聖誕紅是台灣第二大盆花作物,僅次於蘭花。而細菌性葉斑病是聖誕紅栽培上最棘手的病害之一,好發於營養生長期,病斑易癒合壞疽,嚴重時植株落葉,影響商品價值及聖誕紅生長勢。柑橘在台灣是栽種面積及產量最大的果樹種類,柑橘潰瘍病之病徵在葉片、莖部及果實皆會產生,造成葉片光合作用能力下降,生長勢不佳,果實產量減少、外觀不佳、品質低落等。上述病害目前多使用銅劑及抗生素類藥劑進行防治,然而銅劑及抗生素類藥劑的使用已經面臨抗藥性產生、易引發蟎類、藥害等問題,勢必需要更多的藥劑選擇與現行的藥劑搭配使用。本論文透過培養基抑菌試驗,從12種奈米金屬或金屬氧化物中挑選出抑菌效果良好的奈米二氧化鈦及奈米銀10 nm、奈米銀50 nm進行後續試驗。透過六個不同抗感病性聖誕紅品種進行防治效力評估,其中感病品種之防治成效較佳,可降低病害嚴重度30~40%,控制發病情形在40%以下。中感病品種因原本發病嚴重度較低,處理藥劑後大多沒有顯著差異。二氧化鈦以預防性施用效果較穩定,建議施用濃度為500 ppm,可將濃度調高至1000 ppm以進行治療,但效果因品種而異。奈米銀則可以選擇10 nm/200 ppm或50 nm/200 ppm作為預防,奈米銀50 nm/200 ppm對感病品種四季桃喜也有治療效果,其餘品種治療性施藥需將濃度提升至1000 ppm效果較佳。奈米銀10 nm或50 nm以50 ppm與農藥混用,可以增加鏈土黴素的防治效力。針對柑橘潰瘍病選用感病品種四季檸檬進行實驗,二氧化鈦1000 ppm、奈米銀10 nm/200 ppm或奈米銀50 nm/1000 ppm在預防上能顯著降低病斑數量,防治效果與嘉賜銅相當可以作為輪替用藥的選擇。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-25T03:05:43Z (GMT). No. of bitstreams: 1 U0001-1102202200460500.pdf: 3741978 bytes, checksum: 52f1c7ba9b48a7656c9e1c8032e971e9 (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | 口試委員會審定書 i 中文摘要 ii Abstract iii 目錄 iv 前言 6 前人研究 8 一、 Xanthomonas屬細菌特性及其引起之重要病害 8 二、 聖誕紅細菌性葉斑病 9 三、 柑橘潰瘍病 9 四、 現行防治策略及其限制 10 五、 奈米化資材特性及抑菌機制 11 六、 國內外奈米化資材防治植物病害相關研究 11 材料方法 14 一、 菌種分離及鑑定 14 二、 奈米化資材種類及來源 15 三、 供試植物材料 15 四、 培養基抑菌測試 16 1. 奈米化資材抑菌效果比較 16 2. 不同濃度奈米化二氧化鈦之抑菌效果比較 16 五、 不同品種聖誕紅對細菌性葉斑病抗感病測試 16 六、 奈米化資材對於聖誕紅細菌性葉斑病防治效力試驗 17 1. 奈米二氧化鈦及奈米銀對於聖誕紅細菌性葉斑病防治成效 17 2. 不同抗感病性聖誕紅品種植株藥劑試驗 17 3. 農藥添加奈米化資材藥效測試 18 七、 柑橘潰瘍病藥劑試驗 18 八、 統計分析 19 結果 20 一、 菌種分離及鑑定 20 二、 培養基抑菌測試 20 1. 奈米化資材抑菌效果比較 20 2. 不同濃度奈米化二氧化鈦之抑菌效果比較 21 三、 不同品種聖誕紅對細菌性葉斑病抗感病測試 21 四、 奈米化資材對聖誕紅細菌性葉斑病防治效力試驗 21 1. 奈米二氧化鈦及奈米銀對於聖誕紅細菌性葉斑病防治成效 21 2. 不同抗感病性聖誕紅品種植株藥劑試驗 22 3. 農藥添加奈米化資材藥效測試 23 五、 奈米化資材對於柑橘潰瘍病防治效力試驗 23 討論 24 參考文獻 29 表 34 圖 37 | |
| dc.language.iso | zh-TW | |
| dc.subject | 奈米二氧化鈦 | zh_TW |
| dc.subject | 柑橘潰瘍病 | zh_TW |
| dc.subject | 聖誕紅細菌性葉斑病 | zh_TW |
| dc.subject | 奈米銀 | zh_TW |
| dc.subject | titanium dioxide nanoparticles | en |
| dc.subject | citrus canker | en |
| dc.subject | silver nanoparticles | en |
| dc.subject | poinsettia leaf spot | en |
| dc.title | 奈米化資材應用於聖誕紅細菌性葉斑病及柑橘潰瘍病之防治評估 | zh_TW |
| dc.title | Evaluation of nano-formulated materials for controlling poinsettia bacterial leaf spot and citrus canker | en |
| dc.date.schoolyear | 110-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林乃君(Chung-Kwei Wang),呂依儒(Tsui-Shan Li),黃健瑞(Chih-Wen WU),(Yung-Jong Shiah),(Yih-Lan Liu),(Yih-Lan Liu),(Yih-Lan Liu) | |
| dc.subject.keyword | 柑橘潰瘍病,聖誕紅細菌性葉斑病,奈米二氧化鈦,奈米銀, | zh_TW |
| dc.subject.keyword | citrus canker,poinsettia leaf spot,titanium dioxide nanoparticles,silver nanoparticles, | en |
| dc.relation.page | 52 | |
| dc.identifier.doi | 10.6342/NTU202200553 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2022-02-13 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 植物醫學碩士學位學程 | zh_TW |
| dc.date.embargo-lift | 2027-02-11 | - |
| 顯示於系所單位: | 植物醫學碩士學位學程 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1102202200460500.pdf 此日期後於網路公開 2027-02-11 | 3.65 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
