請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81861完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 郭大維(Tei-Wei Kuo) | |
| dc.contributor.author | Chun-Feng Wu | en |
| dc.contributor.author | 吳俊峯 | zh_TW |
| dc.date.accessioned | 2022-11-25T03:05:17Z | - |
| dc.date.available | 2025-06-30 | |
| dc.date.copyright | 2021-08-18 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-06-30 | |
| dc.identifier.citation | [1] Spec cpu 2017, https://www.spec.org/cpu2017/. [2] Mart ́ın Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al. Tensorflow: a system for large-scale machine learning. In OSDI, volume 16, pages 265–283, 2016. [3] Remzi H Arpaci-Dusseau and Andrea C Arpaci-Dusseau. Operating systems: Three easy pieces. Arpaci-Dusseau Books LLC, 2018. [4] Anirudh Badam and Vivek S Pai. Ssdalloc: hybrid SSD/RAM memory management made easy. In Proceedings of the 8th USENIX conference on Networked systems design and implementation, pages 211–224. USENIX Association, 2011. [5] Luiz Barroso, Mike Marty, David Patterson, and Parthasarathy Ranganathan. Attack of the killer microseconds. Communications of the ACM, 60(4):48–54, 2017. [6] Arkaprava Basu, Jayneel Gandhi, Jichuan Chang, Mark D Hill, and Michael M Swift. Efficient virtual memory for big memory servers. In ACM SIGARCH Computer Architecture News, volume 41, pages 237–248. ACM, 2013. [7] Ravi Bhargava, Benjamin Serebrin, Francesco Spadini, and Srilatha Manne. Accelerating two-dimensional page walks for virtualized systems. In ACM SIGOPS Operating Systems Review, volume 42, pages 26–35. ACM, 2008. [8] Abhishek Bhattacharjee.Large-reach memory management unit caches. InProceedings of the 46th Annual IEEE/ACM International Symposium on Microarchitecture, pages 383–394. ACM, 2013. [9] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li. The parsec benchmark suite: Characterization and architectural implications. In Proceedings of the 17th international conference on Parallel architectures and compilation techniques, pages 72–81. ACM, 2008. [10] Matias Bjørling. From open-channel ssds to zoned namespaces. In Linux Storage and Filesystems Conference (Vault 19), page 1, 2019. [11] Matias Bjørling, Javier Gonza ́lez, and Philippe Bonnet. Lightnvm: The linux open-channel ssd subsystem. In FAST, pages 359–374, 2017. [12] Philippe Bonnet. What’s up with the Storage Hierarchy? In CIDR, 2017. [13] Jalil Boukhobza, Ste ́phane Rubini, Renhai Chen, and Zili Shao. Emerging nvm: A survey on architectural integration and research challenges. ACM Transactions on Design Automation of Electronic Systems (TODAES), 23(2):14, 2017. [14] Daniel P Bovet and Marco Cesati. Understanding the Linux Kernel: from I/O ports to process management. ” O’Reilly Media, Inc.”, 2005. [15] Hongming Cai, Boyi Xu, Lihong Jiang, and Athanasios V Vasilakos. IoT-based big data storage systems in cloud computing: perspectives and challenges. IEEE Internet of Things Journal, 4(1):75–87, 2016. [16] Bing-Jing Chang, Yuan-Hao Chang, Hung-Sheng Chang, Tei-Wei Kuo, and Hsiang- Pang Li. A pcm translation layer for integrated memory and storage management. In Proceedings of the 2014 International Conference on Hardware/Software Codesign and System Synthesis, page 6. ACM, 2014. [17] Yuan-Hao Chang and Tei-Wei Kuo. A commitment-based management strategy for the performance and reliability enhancement of flash-memory storage systems. In Proceedings of the 46th Annual Design Automation Conference, pages 858–863, 2009. [18] Feng Chen, Binbing Hou, and Rubao Lee. Internal parallelism of flash memory-based solid-state drives. ACM Transactions on Storage (TOS), 12(3):13, 2016. [19] Renhai Chen, Zili Shao, and Tao Li. Bridging the I/O performance gap for big data workloads: A new NVDIMM-based approach. In The 49th Annual IEEE/ACM International Symposium on Microarchitecture, page 9. IEEE Press, 2016. [20] Wooseong Cheong, Chanho Yoon, Seonghoon Woo, Kyuwook Han, Daehyun Kim, Chulseung Lee, Youra Choi, Shine Kim, Dongku Kang, Geunyeong Yu, et al. A flash memory controller for 15μs ultra-low-latency ssd using high-speed 3d nand flash with 3μs read time. In 2018 IEEE International Solid-State Circuits Conference- (ISSCC), pages 338–340. IEEE, 2018. [21] Chia Chen Chou, Aamer Jaleel, and Moinuddin K Qureshi. Cameo: A two-level memory organization with capacity of main memory and flexibility of hardware-managed cache. In 2014 47th Annual IEEE/ACM International Symposium on Microarchitecture, pages 1–12. IEEE, 2014. [22] IntelCorporation.Producitonbrief:Inteloptanessddcp4800x/p4801xseries.2018. [23] YuDu,MiaoZhou,BruceRChilders,DanielMosse ́,andRamiMelhem.Supporting superpages in non-contiguous physical memory. In 2015 IEEE 21st International Symposium on High Performance Computer Architecture (HPCA), pages 223–234. IEEE, 2015. [24] James Dundas and Trevor Mudge. Improving data cache performance by pre- executing instructions under a cache miss. In Proceedings of the 11th international conference on Supercomputing, pages 68–75, 1997. [25] Assaf Eisenman, Darryl Gardner, Islam AbdelRahman, Jens Axboe, Siying Dong, Kim Hazelwood, Chris Petersen, Asaf Cidon, and Sachin Katti. Reducing dram footprint with nvm in facebook. In Proceedings of the Thirteenth EuroSys Conference, page 42. ACM, 2018. [26] FREE SOFTWARE FOUNDATION. Nice. 2010. [27] Congming Gao, Liang Shi, Yejia Di, Qiao Li, Chun Jason Xue, Kaijie Wu, and Edwin Sha. Exploiting chip idleness for minimizing garbage collection induced chip access conflict on ssds. ACM Transactions on Design Automation of Electronic Systems (TODAES), 23(2):1–29, 2017. [28] CongmingGao, LiangShi, MengyingZhao,Chun Jason Xue, KaijieWu,and Edwin H-M Sha. Exploiting parallelism in i/o scheduling for access conflict minimization in flash-based solid state drives. In 2014 30th Symposium on Mass Storage Systems and Technologies (MSST), pages 1–11. IEEE, 2014. [29] Julian Hammer, Jan Eitzinger, Georg Hager, and Gerhard Wellein. Kerncraft: a tool for analytic performance modeling of loop kernels. In Tools for High Performance Computing 2016, pages 1–22. Springer, 2017. [30] John L Henning. Spec CPU2006 benchmark descriptions. ACM SIGARCH Computer Architecture News, 34(4):1–17, 2006. [31] Yang Hu, Hong Jiang, Dan Feng, Lei Tian, Hao Luo, and Chao Ren. Exploring and exploiting the multilevel parallelism inside ssds for improved performance and endurance. IEEE Transactions on Computers, 62(6):1141–1155, 2012. [32] Henry F Huang and Tao Jiang. Design and implementation of flash based nvdimm. In Non-Volatile Memory Systems and Applications Symposium (NVMSA), 2014 IEEE, pages 1–6. IEEE, 2014. [33] YangqingJia, EvanShelhamer, JeffDonahue, SergeyKarayev, JonathanLong, Ross Girshick, Sergio Guadarrama, and Trevor Darrell. Caffe: Convolutional architecture for fast feature embedding. In Proceedings of the 22nd ACM international conference on Multimedia, pages 675–678. ACM, 2014. [34] Myoungsoo Jung. Exploring parallel data access methods in emerging non-volatile memory systems. IEEE Transactions on Parallel and Distributed Systems, 28(3):746–759, 2016. [35] Vasileios Karakostas, Jayneel Gandhi, Furkan Ayar, Adria ́n Cristal, Mark D Hill, Kathryn S McKinley, Mario Nemirovsky, Michael M Swift, and Osman U ̈ nsal. Redundant memory mappings for fast access to large memories. In ACM SIGARCH Computer Architecture News, volume 43, pages 66–78. ACM, 2015. [36] Richard M Karp, Scott Shenker, and Christos H Papadimitriou. A simple algorithm for finding frequent elements in streams and bags. ACM Transactions on Database Systems (TODS), 28(1):51–55, 2003. [37] Apostolos Kokolis, Dimitrios Skarlatos, and Josep Torrellas. Pageseer: Using page walks to trigger page swaps in hybrid memory systems. [38] Aapo Kyrola, Guy Blelloch, and Carlos Guestrin. Graphchi: Large-scale graph computation on just a {PC}. In Presented as part of the 10th {USENIX} Symposium on Operating Systems Design and Implementation ({OSDI} 12), pages 31–46, 2012. [39] Samsung Memory Solution Lab. Technology brief: Ultra-low latency with samsung z-nand ssd. 2017. [40] CharlesLefurgy, KarthickRajamani, FreemanRawson, WesFelter, MichaelKistler, and Tom W Keller. Energy management for commercial servers. Computer, 36(12):39–48, 2003. [41] Lei Liu, Zehan Cui, Mingjie Xing, Yungang Bao, Mingyu Chen, and Chengyong Wu. A software memory partition approach for eliminating bank-level interference in multicore systems. In Proceedings of the 21st international conference on Parallel architectures and compilation techniques, pages 367–376. ACM, 2012. [42] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood. Pin: building customized program analysis tools with dynamic instrumentation. In Acm sigplan notices, volume 40, pages 190–200. ACM, 2005. [43] Jakob Lu ̈ttgau, Michael Kuhn, Kira Duwe, Yevhen Alforov, Eugen Betke, Julian Kunkel, and Thomas Ludwig. Survey of Storage Systems for High-Performance Computing. Supercomputing Frontiers and Innovations, 5(1):31–58, 2018. [44] Cayla McGinnis. Pci-sig® fast tracks evolution to 32gt/s with pci express 5.0 architecture. News Release, June, 7, 2017. [45] Jagan Singh Meena, Simon Min Sze, Umesh Chand, and Tseung-Yuen Tseng. Overview of emerging nonvolatile memory technologies. Nanoscale research letters, 9(1):526, 2014. [46] Micron. Tn-40-07: Calculating memory power for ddr4 sdram. 2017. [47] Jeffrey C Mogul, Eduardo Argollo, Mehul Shah, and Paolo Faraboschi. Operating System Support for NVM Hybrid Main Memory. 2009. [48] RichardCMurphy,KyleBWheeler,BrianWBarrett,andJamesAAng.Introducing the graph 500. Cray Users Group (CUG), 19:45–74, 2010. [49] Onur Mutlu, Hyesoon Kim, and Yale N Patt. Techniques for efficient processing in runahead execution engines. In 32nd International Symposium on Computer Architecture (ISCA’05), pages 370–381. IEEE, 2005. [50] Onur Mutlu, Jared Stark, Chris Wilkerson, and Yale N Patt. Runahead execution: An alternative to very large instruction windows for out-of-order processors. In The Ninth International Symposium on High-Performance Computer Architecture, 2003. HPCA-9 2003. Proceedings., pages 129–140. IEEE, 2003. [51] Maryam M Najafabadi, Flavio Villanustre, Taghi M Khoshgoftaar, Naeem Seliya, Randall Wald, and Edin Muharemagic. Deep learning applications and challenges in big data analytics. Journal of big data, 2(1):1–21, 2015. [52] Juan Navarro, Sitararn Iyer, Peter Druschel, and Alan Cox. Practical, transparent operating system support for superpages. ACM SIGOPS Operating Systems Review, 36(SI):89–104, 2002. [53] Nicholas Nethercote and Julian Seward. Valgrind: a framework for heavyweight dynamic binary instrumentation. In ACM Sigplan notices, volume 42, pages 89– 100. ACM, 2007. [54] Andreas Prodromou, Mitesh Meswani, Nuwan Jayasena, Gabriel Loh, and Dean M Tullsen. Mempod: A clustered architecture for efficient and scalable migration in flat address space multi-level memories. In 2017 IEEE International Symposium on High Performance Computer Architecture (HPCA), pages 433–444. IEEE, 2017. [55] Moinuddin K Qureshi, Vijayalakshmi Srinivasan, and Jude A Rivers. Scalable high performance main memory system using phase-change memory technology. ACM SIGARCH Computer Architecture News, 37(3):24–33, 2009. [56] Luiz E Ramos, Eugene Gorbatov, and Ricardo Bianchini. Page placement in hybrid memory systems. In Proceedings of the international conference on Supercomputing, pages 85–95. ACM, 2011. [57] Seref Sagiroglu and Duygu Sinanc. Big data: A review. In 2013 international conference on collaboration technologies and systems (CTS), pages 42–47. IEEE, 2013. [58] Arthur Sainio. Nvdimm: Changes are Here so What’s next. In-Memory Computing Summit, 2016. [59] Mohit Saxena and Michael M Swift. FlashVM: Virtual Memory Management on Flash. In USENIX Annual Technical Conference, 2010. [60] Abraham Silberschatz,Peter B Galvin,and Greg Gagne.Operating system concepts. John Wiley Sons, 2006. [61] Jaewoong Sim, Alaa R Alameldeen, Zeshan Chishti, Chris Wilkerson, and Hyesoon Kim. Transparent hardware management of stacked dram as part of memory. In Proceedings of the 47th Annual IEEE/ACM International Symposium on Microarchitecture, pages 13–24. IEEE Computer Society, 2014. [62] Arash Tavakkol, Juan Go ́mez-Luna, Mohammad Sadrosadati, Saugata Ghose, and Onur Mutlu. Mqsim: A framework for enabling realistic studies of modern multi- queue {SSD} devices. In 16th {USENIX} Conference on File and Storage Technologies ({FAST} 18), pages 49–66, 2018. [63] Che-Wei Tsao, Yuan-Hao Chang, and Tei-Wei Kuo. Boosting NVDIMM Performance With a Lightweight Caching Algorithm. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2018. [64] Daniel Waddington and Jim Harris. Software challenges for the changing storage landscape. Communications of the ACM, 61(11):136–145, 2018. [65] Vincent M Weaver. Linux perf event features and overhead. In The 2nd International Workshop on Performance Analysis of Workload Optimized Systems, Fast- Path, volume 13, 2013. [66] H-S Philip Wong and Sayeef Salahuddin. Memory leads the way to better computing. Nature nanotechnology, 10(3):191, 2015. [67] Chun-Feng Wu, Yuan-Hao Chang, Ming-Chang Yang, and Tei-Wei Kuo. Joint management of cpu and nvdimm for breaking down the great memory wall. IEEE Transactions on Computers, 2020. [68] Chun-Feng Wu, Yuan-Hao Chang, Ming-Chang Yang, and Tei-Wei Kuo. When storage response time catches up with overall context switch overhead, what is next? IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 39(11):4266–4277, 2020. [69] Chun-Feng Wu, Ming-Chang Yang, Yuan-Hao Chang, and Tei-Wei Kuo. Hot-spot suppression for resource-constrained image recognition devices with nonvolatile memory. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 37(11):2567–2577, 2018. [70] Wm A Wulf and Sally A McKee. Hitting the memory wall: implications of the obvious. ACM SIGARCH computer architecture news, 23(1):20–24, 1995. [71] Jisoo Yang, Dave B Minturn, and Frank Hady. When poll is better than interrupt. In FAST, volume 12, pages 3–3, 2012. [72] Ming-Chang Yang, Yuan-Hao Chang, and Tei-Wei Kuo. Virtual flash chips: Rethinking the layer design of flash devices to improve data recoverability. In Proceedings of the 52nd Annual Design Automation Conference, page 193. ACM, 2015. [73] Ming-ChangYang, Yuan-HaoChang, Che-WeiTsao,andPo-ChunHuang. Newera: New efficient reliability-aware wear leveling for endurance enhancement of flash storage devices. In 2013 50th ACM/EDAC/IEEE Design Automation Conference (DAC), pages 1–6. IEEE, 2013. [74] Ming-Chang Yang, Chun-Feng Wu, Shuo-Han Chen, Yi-Ling Lin, Che-Wei Chang, and Yuan-Hao Chang. On minimizing internal data migrations of flash devices via lifetime-retention harmonization. IEEE Transactions on Computers, 2020. [75] Heechul Yun, Renato Mancuso, Zheng-Pei Wu, and Rodolfo Pellizzoni. Palloc: Dram bank-aware memory allocator for performance isolation on multicore platforms. In 2014 IEEE 19th Real-Time and Embedded Technology and Applications Symposium (RTAS), pages 155–166. IEEE, 2014. [76] Cristian Zambelli, Rino Micheloni, Luca Crippa, Lorenzo Zuolo, and Piero Olivo. Impact of the nand flash power supply on solid state drives reliability and performance. IEEE Transactions on Device and Materials Reliability, 18(2):247–255, 2018. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81861 | - |
| dc.description.abstract | 大數據時代,當DRAM容量無法儲存龐大的資料量時,記憶體與儲存裝置間將產生頻繁的資料搬移。系統運行深度學習或圖論運算這類資料密集型(Data-Intensive)應用時,龐大的資料搬移時間將大幅影響系統效能。儘管購買更大量的DRAM可以減少資料搬移量,然而數據顯示資料的成長速度已經快過單位價格下DRAM容量的成長速度,因此昂貴建置成本漸漸成為消費者的夢魘。非揮發性記憶體的發展逐漸成熟,能以較低的價格提供比DRAM更大的記憶體空間,亦能有效縮短記憶體與儲存裝置間的資料搬移速度,這些優勢使其能以低成本來延伸主記憶體空間。然而,系統中陳舊的記憶體架構以及作業系統設計,使得系統無法直接受惠於非揮發性記憶體快速存取速度的優勢。 在這樣的轉折點,為了能讓系統享受到非揮發性記憶體(NVM)快速的存取速度,本博士論文旨在重新思考以及重新設計整個計算機系統,提供消費者以NVM支援高效大型主記憶體之延伸的解決方案。首先,我們探討使用低價的混合式NVM(亦即在一塊記憶體模組上搭載著高速與低速的記憶體晶片),容易使當今系統架構面臨Great Memory Wall的議題導致系統效能極不穩定。我們提出了一套協同整合設計來管理CPU以及像是NVDIMM這類混合式NVM,主要在橋接CPU與NVDIMM之間的程式訊息落差,並透過資料預搬移避免Great Memory Wall。接著我們觀察到現今作業系統提供的虛擬記憶體管理單元無法有效利用NVM裝置提供的極低延遲存取速度以及極高的平行度。不同於以往頁管理(Page Management)採用固定的大小,我們提出一套動態頁管理的策略,根據不同時間的程式存取行為選擇合適的頁大小有效利用平行度,並針對不同頁大小我們會採取適合的I/O模式(同步或非同步I/O)藉以利用極低延遲存取速度的優勢。最後,我們更發現當NVM裝置的速度來到數個微秒時,傳統I/O管理層龐大且複雜的優化設計(例如上下文交換),不僅無法提供優化的效果,反而逐漸成為整個系統效能的瓶頸。在這樣的趨勢下,我們提出一套輕量化的I/O管理設計,重新設計適合現今裝置的機制並將陳舊的優化設計拔除,藉以能使消費者直接享受到由於NVM裝置不斷變快,使記憶體延伸的效能不斷逼近主記憶體效能的優勢。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-25T03:05:17Z (GMT). No. of bitstreams: 1 U0001-2806202116555800.pdf: 5255241 bytes, checksum: 478e4ee1b20cced0ff768b47625799e4 (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | "Abstract in Chinese vii Abstract ix Acknowledgment xi Contents xiii List of Figures xvii List of Tables xviii 1 Introduction 1 1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Background and Related Work . . . . . . . . . . . . . . . . . . . . . . . 5 1.2.1 Trend of Computer Architecture: NVM Technologies. . . . . . .5 1.2.2 Operating Systems: Virtual Memory Management . . . . . . . . 8 1.3 Objectives and Contributions . . . . . . . . . . . . . . . . . . . . . . . . 9 1.4 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2 Joint Management of CPU and NVDIMM to Break Down the Great Memory wall 13 2.1 Background and Motivation . . . . . . . . . . . . . . . . . . . . . . . . 13 2.1.1 Background and Great Memory Wall . . . . . . . . . . . . . . . . 13 2.1.2 Motivational Experiment and Observations . . . . . . . . . . . . 15 2.1.3 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.2 Joint Management Framework . . . . . . . . . . . . 20 2.2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.2.2 Page Semantic-Aware Strategy . . . . . . . . . . . . . . . . . . . 21 2.2.3 Implementation Remarks: Stall-Aware Process State Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.3 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 2.3.1 Evaluation Metrics and Experiment Setup . . . . . . . . . . . . . 32 2.3.2 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . 34 2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 3 When Storage Response Time Catches Up with Overall Context Switch Overhead, What is Next? 42 3.1 Background, Observation and Motivation . . . . . . . . . . . . 42 3.1.1 Observation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 3.2 Shadow Huge Page Management . . . . . . . . . . . . . . . . . . . . . 48 3.2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 3.2.2 Shadow Page Promotion . . . . . . . . . . . . . . . . . . . . . 49 3.2.3 Variable-Sized Prefetcher . . . . . . . . . . . . . . . . . . . . 52 3.3 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 3.3.1 Performance Metrics and Evaluation Setup . . . . . . . . . . . . 55 3.3.2 Evaluation Results . . . . . . . . . . . . . . . . . . . . . . . . . 58 3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 4 How to Steal CPU Idle Time When Synchronous I/O Mode Becomes Promising 66 4.1 Background, Observation, and Motivation . . . . . . . . . . . . . 66 4.1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 4.1.2 Observation: CPU Idle Time . . . . . . . . . . . . . . . 68 4.1.3 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 4.2 Idle-Time-Stealing (ITS) Design . . . . . . . . . . . . . . . . . . . 71 4.2.1 Design Overview Concept . . . . . . . . . . . . . . . . . . 71 4.2.2 Priority-aware Thread Selection Policy . . . . . . . . . . 74 4.2.3 Self-Sacrificing Kernel Thread . . . . . . . . . . . . . . . . . . 75 4.2.4 Self-Improving Kernel Thread . . . . . . . . . . . . . . . . . . 77 4.3 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . 83 4.3.1 Performance Metrics and Evaluation Setup . . . . . 83 4.3.2 Evaluation Results . . . . . . . . . . . . . . . . . . . . . . . 86 4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 5 Concluding Remarks 93 Bibliography 96 Curriculum Vitae 106 Publication List 107 " | |
| dc.language.iso | en | |
| dc.subject | 資料預取 | zh_TW |
| dc.subject | 極低延遲裝置 | zh_TW |
| dc.subject | 非揮發性記體 | zh_TW |
| dc.subject | 虛擬記憶體技術 | zh_TW |
| dc.subject | 記憶體延伸 | zh_TW |
| dc.subject | 頁調換 | zh_TW |
| dc.subject | 非揮發性雙列直插式記憶體模組 | zh_TW |
| dc.subject | 上下文交換 | zh_TW |
| dc.subject | 頁管理 | zh_TW |
| dc.subject | 大頁管理 | zh_TW |
| dc.subject | 同步I/O模式 | zh_TW |
| dc.subject | 記憶體大牆 | zh_TW |
| dc.subject | Great Memory Wall | en |
| dc.subject | Page Swapping | en |
| dc.subject | Huge Page Management | en |
| dc.subject | Main-Memory Extension | en |
| dc.subject | Virtual Memory Management | en |
| dc.subject | Non-Volatile Memory | en |
| dc.subject | Ultra-Low-Latency Devices | en |
| dc.subject | NVDIMM | en |
| dc.subject | Synchronous I/O Mode | en |
| dc.subject | Page Management | en |
| dc.subject | Context Switch | en |
| dc.subject | Data Prefetching | en |
| dc.title | 以非揮發性記憶體支援大型主記憶體之延伸 | zh_TW |
| dc.title | Support to Huge Main-Memory Extension with Non-Volatile Memory | en |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.author-orcid | 0000-0002-6367-0517 | |
| dc.contributor.advisor-orcid | 郭大維(0000-0003-1974-0394) | |
| dc.contributor.coadvisor | 張原豪(Yuan-Hao Chang) | |
| dc.contributor.coadvisor-orcid | 張原豪(0000-0002-1282-2111) | |
| dc.contributor.oralexamcommittee | 洪士灝(Hsin-Tsai Liu),施吉昇(Chih-Yang Tseng),薛智文,曹昱 | |
| dc.subject.keyword | 記憶體延伸,虛擬記憶體技術,非揮發性記體,極低延遲裝置,非揮發性雙列直插式記憶體模組,記憶體大牆,同步I/O模式,資料預取,上下文交換,頁管理,大頁管理,頁調換, | zh_TW |
| dc.subject.keyword | Main-Memory Extension,Virtual Memory Management,Non-Volatile Memory,Ultra-Low-Latency Devices,NVDIMM,Great Memory Wall,Synchronous I/O Mode,Data Prefetching,Context Switch,Page Management,Huge Page Management,Page Swapping, | en |
| dc.relation.page | 112 | |
| dc.identifier.doi | 10.6342/NTU202101173 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2021-07-01 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 資訊工程學研究所 | zh_TW |
| dc.date.embargo-lift | 2025-06-30 | - |
| 顯示於系所單位: | 資訊工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2806202116555800.pdf | 5.13 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
