Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81832
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor梁文傑(Man-kit Leung)
dc.contributor.authorChun-Han Hsiehen
dc.contributor.author謝鈞瀚zh_TW
dc.date.accessioned2022-11-25T03:04:37Z-
dc.date.available2026-10-25
dc.date.copyright2021-11-02
dc.date.issued2021
dc.date.submitted2021-10-27
dc.identifier.citation1. Round, H. J., A note on carborundum. Electrical World 1907, 19, 309. 2. Holonyak Jr, N.; Bevacqua, S. F., Coherent (visible) light emission from Ga (As1− xPx) junctions. Applied Physics Letters 1962, 1 (4), 82-83. 3. Bernanose, A.; Comte, M.; Vouaux, P., A new method of emission of light by certain organic compounds. Journal de Chimie Physique 1953, 50, 64-68. 4. Pope, M.; Kallmann, H. P.; Magnante, P. J., Electroluminescence in organic crystals. The Journal of Chemical Physics 1963, 38 (8), 2042-2043. 5. Helfrich, W.; Schneider, W. G., Recombination radiation in anthracene crystals. Physical Review Letters 1965, 14 (7), 229. 6. Partridge R. H. Radiation Sources. U.S. Patent 3,995,299, 1976. 7. Vincett, P. S.; Barlow, W. A.; Hann, R. A.; Roberts, G. G., Electrical conduction and low voltage blue electroluminescence in vacuum-deposited organic films. Thin Solid Films 1982, 94 (2), 171-183. 8. Tang, C. W.; VanSlyke S. A., Organic electroluminescent diodes. Applied Physics Letters 1987, 51 (12), 913. 9. Burroughes, J. H.; Bradley, D. D. C.; Brown, A. R.; Marks, R. N.; Mackay, K.; Friend, R. H.; Burns, P. L.; Holmes, A. B., Light-emitting diodes based on conjugated polymers. Nature 1990, 347 (6293), 539-541. 10. Kido, J.; Kimura, M.; Nagai, K., Multilayer white light-emitting organic electroluminescent device. Science 1995, 267 (5202), 1332-1334. 11. Di, D.; Yang, L.; Richter, J. M.; Meraldi, L.; Altamimi, R. M.; Alyamani, A. Y.; Credgington, D.; Musselman, K. P.; MacManus‐Driscoll, J. L.; Friend, R. H., Efficient triplet exciton fusion in molecularly doped polymer light‐emitting diodes. Advanced Materials 2017, 29 (13), 1605987. 12. Baldo, M. A.; O'Brien, D. F.; You, Y.; Shoustikov, A.; Sibley, S.; Thompson, M. E.; Forrest, S. R., Highly efficient phosphorescent emission from organic electroluminescent devices. Nature 1998, 395 (6698), 151-154. 13. Baldo, M. A.; Adachi, C.; Forrest, S. R., Transient analysis of organic electrophosphorescence. II. Transient analysis of triplet-triplet annihilation. Physical Review B 2000, 62 (16), 10967. 14. Baluschev, S.; Yakutkin, V.; Miteva, T.; Avlasevich, Y.; Chernov, S.; Aleshchenkov, S.; Nelles, G.; Cheprakov, A.; Yasuda, A.; Müllen, K., Blue‐green up‐conversion: noncoherent excitation by NIR light. Angewandte Chemie International Edition 2007, 46 (40), 7693-7696. 15. Terenin, A.; Ermolaev, V., Sensitized phosphorescence in organic solutions at low temperature. Energy transfer between triplet states. Transactions of the Faraday Society 1956, 52, 1042-1052. 16. Mahato, P.; Monguzzi, A.; Yanai, N.; Yamada, T.; Kimizuka, N., Fast and long-range triplet exciton diffusion in metal–organic frameworks for photon upconversion at ultralow excitation power. Nature Materials 2015, 14 (9), 924-930. 17. Gray, V.; Dzebo, D.; Abrahamsson, M.; Albinsson, B.; Moth-Poulsen, K., Triplet–triplet annihilation photon-upconversion: towards solar energy applications. Physical Chemistry Chemical Physics 2014, 16 (22), 10345-10352. 18. D, P. I., Carrier tunneling and device characteristics in polymer light‐emitting diodes. Journal of Applied Physics 1994, 75 (3), 1656-1666. 19. Balasubramanian, N.; Subrahmanyam, A., Studies on evaporated indium tin oxide (ITO)/silicon junctions and an estimation of ITO work function. Journal of The Electrochemical Society 1991, 138 (1), 322. 20. Kim, J. S.; Granström, M.; Friend, R. H.; Johansson, N.; Salaneck, W. R.; Daik, R.; Feast, W. J.; Cacialli, F., Indium–tin oxide treatments for single-and double-layer polymeric light-emitting diodes: The relation between the anode physical, chemical, and morphological properties and the device performance. Journal of Applied Physics 1998, 84 (12), 6859-6870. 21. Mason, M. G.; Hung, L. S.; Tang, C. W.; Lee, S. T.; Wong, K. W.; Wang, M., Characterization of treated indium–tin–oxide surfaces used in electroluminescent devices. Journal of Applied Physics 1999, 86 (3), 1688-1692. 22. Van Slyke, S. A.; Chen, C. H.; Tang, C. W., Organic electroluminescent devices with improved stability. Applied Physics Letters 1996, 69 (15), 2160-2162. 23. Yu, W. L.; Pei, J.; Cao, Y.; Huang, W., Hole-injection enhancement by copper phthalocyanine (CuPc) in blue polymer light-emitting diodes. Journal of Applied Physics 2001, 89 (4), 2343-2350. 24. Heithecker, D.; Kammoun, A.; Dobbertin, T.; Riedl, T.; Becker, E.; Metzdorf, D.; Schneider, D.; Johannes, H.; Kowalsky, W., Low-voltage organic electroluminescence device with an ultrathin, hybrid structure. Applied Physics Letters 2003, 82 (23), 4178-4180. 25. Shirota, Y.; Kuwabara, Y.; Inada, H.; Wakimoto, T.; Nakada, H.; Yonemoto, Y.; Kawami, S.; Imai, K., Multilayered organic electroluminescent device using a novel starburst molecule, 4, 4’, 4 ‘‐tris (3‐methylphenylphenylamino) triphenylamine, as a hole transport material. Applied Physics Letters 1994, 65 (7), 807-809. 26. Maglione, M. G.; Minarini, C.; Miscioscia, R.; Nenna, G.; Romanelli, E.; Tassini, P. In Efficiency and aging comparison between N, N′‐Bis (3‐methylphenyl)‐N, N′‐diphenylbenzidine (TPD) and N, N′‐Di‐[(1‐naphthalenyl)‐N, N′‐diphenyl]‐1, 1′‐biphenyl‐4, 4′‐diamine (NPD) based OLED devices, Macromolecular Symposia, Wiley Online Library: 2007; pp 311-317. 27. Okumoto, K.; Shirota, Y., Development of high-performance blue–violet-emitting organic electroluminescent devices. Applied Physics Letters 2001, 79 (9), 1231-1233. 28. Lüssem, G.; Wendorff, J. H., Liquid crystalline materials for light‐emitting diodes. Polymers for Advanced Technologies 1998, 9 (7), 443-460. 29. Shirota, Y.; Noda, T.; Ogawa, H. In Organic light-emitting diodes using novel emitting amorphous molecular materials, Organic Light-Emitting Materials and Devices III, International Society for Optics and Photonics: 1999; pp 158-169. 30. Baldo, M. A.; Forrest, S. R., Transient analysis of organic electrophosphorescence: I. Transient analysis of triplet energy transfer. Physical Review B 2000, 62 (16), 10958. 31. Shirota, Y., Organic materials for electronic and optoelectronic devicesBasis of a presentation given at Materials Chemistry Discussion No. 2, 13–15 September 1999, University of Nottingham, UK. Journal of Materials Chemistry 2000, 10 (1), 1-25. 32. Adachi, C.; Tsutsui, T.; Saito, S., Organic electroluminescent device having a hole conductor as an emitting layer. Applied Physics Letters 1989, 55 (15), 1489-1491. 33. Kido, J.; Ohtaki, C.; Hongawa, K.; Okuyama, K.; Nagai, K., 1, 2, 4-Triazole derivative as an electron transport layer in organic electroluminescent devices. Japanese Journal of Applied Physics 1993, 32 (7A), L917. 34. Anthopoulos, T. D.; Markham, J. P. J.; Namdas, E. B.; Samuel, I. D. W.; Lo, S. C.; Burn, P. L., Highly efficient single-layer dendrimer light-emitting diodes with balanced charge transport. Applied Physics Letters 2003, 82 (26), 4824-4826. 35. Adachi, C.; Kwong, R. C.; Djurovich, P.; Baldo, M. A.; Adamovich, V.; Baldo, M. A.; Thompson, M. E.; Forrest, S. R., Endothermic energy transfer: A mechanism for generating very efficient high-energy phosphorescent emission in organic materials. Applied Physics Letters 2001, 79 (13), 2082-2084. 36. Lee, J.; Huang, C. L.; Hsiao, C. H.; Leung, M. K.; Yang, C. C.; Chao, C. C., Blue phosphorescent organic light-emitting device with double emitting layer. Applied Physics Letters 2009, 94 (22), 223301. 37. Ashton, T. D.; Jolliffe, K. A.; Pfeffer, F. M., Luminescent probes for the bioimaging of small anionic species in vitro and in vivo. Chemical Society Reviews 2015, 44 (14), 4547-4595. 38. Deng, B.; Feng, J.; Meng, J., Speciation of inorganic selenium using capillary electrophoresis–inductively coupled plasma-atomic emission spectrometry with on-line hydride generation. Analytica Chimica Acta 2007, 583 (1), 92-97. 39. Guo, C. H.; Huang, C. J.; Chen, S. T.; Hsu, G. S. W., Serum and testicular testosterone and nitric oxide products in aluminum-treated mice. Environmental Toxicology and Pharmacology 2001, 10 (1-2), 53-60. 40. Olmedo, P.; Pla, A.; Hernández, A. F.; López-Guarnido, O.; Rodrigo, L.; Gil, F., Validation of a method to quantify chromium, cadmium, manganese, nickel and lead in human whole blood, urine, saliva and hair samples by electrothermal atomic absorption spectrometry. Analytica Chimica Acta 2010, 659 (1-2), 60-67. 41. Ravichandiran, P.; Subramaniyan, S. A.; Bella, A. P.; Johnson, P. M.; Kim, A. R.; Shim, K. S.; Yoo, D. J., Simple fluorescence turn-on chemosensor for selective detection of Ba2+ ion and its live cell imaging. Analytical Chemistry 2019, 91 (15), 10095-10101. 42. Czarnik, A. W., Supramolecular chemistry, fluorescence, and sensing. In Fluorescent Chemosensors for Ion and Molecule Recognition, American Chemical Society: 1993; Vol. 538, pp 1-9. 43. Wu, D.; Sedgwick, A. C.; Gunnlaugsson, T.; Akkaya, E. U.; Yoon, J.; James, T. D., Fluorescent chemosensors: the past, present and future. Chemical Society Reviews 2017, 46 (23), 7105-7123. 44. Van Arman, S. A.; Czarnik, A. W., A general fluorescence assay for enzyme catalyzed polyanion hydrolysis based on template directed excimer formation. Application to heparin and polyglutamate. Journal of the American Chemical Society 1990, 112 (13), 5376-5377. 45. Pazos, E.; Vázquez, O.; Mascareñas, J. L.; Eugenio Vázquez, M., Peptide-based fluorescent biosensors. Chemical Society Reviews 2009, 38 (12), 3348-3359. 46. de Silva, A. P.; Gunaratne, H. Q. N.; Gunnlaugsson, T.; Huxley, A. J. M.; McCoy, C. P.; Rademacher, J. T.; Rice, T. E., Signaling recognition events with fluorescent sensors and switches. Chemical Reviews 1997, 97 (5), 1515-1566. 47. Valeur, B.; Berberan-Santos, M. N., Chemical sensing via fluorescence. In Molecular Fluorescence, 2012; pp 409-478. 48. Liu, Z. P.; He, W. J.; Guo, Z. J., Metal coordination in photoluminescent sensing. Chemical Society Reviews 2013, 42 (4), 1568-1600. 49. Afaneh, A. T.; Schreckenbach, G., Fluorescence enhancement/quenching based on metal orbital control: computational studies of a 6-thienyllumazine-based mercury sensor. The Journal of Physical Chemistry A 2015, 119 (29), 8106-8116. 50. Daly, B.; Ling, J.; de Silva, A. P., Current developments in fluorescent PET (photoinduced electron transfer) sensors and switches. Chemical Society Reviews 2015, 44 (13), 4203-4211. 51. Miyaura, N.; Yamada, K.; Suginome, H.; Suzuki, A., Novel and convenient method for the stereo- and regiospecific synthesis of conjugated alkadienes and alkenynes via the palladium-catalyzed cross-coupling reaction of 1-alkenylboranes with bromoalkenes and bromoalkynes. Journal of the American Chemical Society 1985, 107 (4), 972-980. 52. Campbell, P. G.; Marwitz, A. J. V.; Liu, S. Y., Recent advances in azaborine chemistry. Angewandte Chemie International Edition 2012, 51 (25), 6074-6092. 53. Stock, A.; Friederici, K.; Priess, O., Borwasserstoffe. III. Feste Borwasserstoffe; zur Kenntnis des B2H6. Berichte der Deutschen Chemischen Gesellschaft 1913, 46 (3), 3353-3365. 54. Islas, R.; Chamorro, E.; Robles, J.; Heine, T.; Santos, J. C.; Merino, G., Borazine: to be or not to be aromatic. Structural Chemistry 2007, 18 (6), 833-839. 55. Davies, K. M.; Dewar, M. J.; Rona, P., New heteroaromatic compounds. XXVI. synthesis of borazarenes. Journal of the American Chemical Society 1967, 89 (24), 6294-6297. 56. Liu, X.; Wu, P.; Li, J.; Cui, C., Synthesis of 1,2-borazaronaphthalenes from imines by base-promoted borylation of C–H bond. The Journal of Organic Chemistry 2015, 80 (8), 3737-3744. 57. Lamm, A. N.; Garner III, E. B.; Dixon, D. A.; Liu, S. Y., Nucleophilic aromatic substitution reactions of 1,2-dihydro-1,2-azaborine. Angewandte Chemie International Edition 2011, 50 (35), 8157-8160. 58. Neue, B.; Araneda, J. F.; Piers, W. E.; Parvez, M., BN-dibenzo[a,o]picenes: analogues of an unknown polycyclic aromatic hydrocarbon. Angewandte Chemie International Edition 2013, 52 (38), 9966-9969. 59. Agou, T.; Kobayashi, J.; Kawashima, T., Development of a general route to periphery-functionalized azaborines and ladder-type azaborines by using common intermediates. Chemical Communications 2007, (30), 3204-3206. 60. Braunschweig, H.; Damme, A.; Jimenez-Halla, J. O. C.; Pfaffinger, B.; Radacki, K.; Wolf, J., Metal-mediated synthesis of 1,4-di-tert-butyl-1,4-azaborine. Angewandte Chemie International Edition 2012, 51 (40), 10034-10037. 61. McDonald, S. M.; Mellerup, S. K.; Peng, J.; Yang, D.; Li, Q. S.; Wang, S., Thermal and photolytic transformation of NHC–B,N-heterocycles: controlled generation of blue fluorescent 1,3-azaborinine derivatives and 1H-imidazo[1,2-a]indoles by external stimuli. Chemistry – A European Journal 2015, 21 (40), 13961-13970. 62. Li, J.; Daniliuc, C. G.; Mück-Lichtenfeld, C.; Kehr, G.; Erker, G., Multi-component synthesis of rare 1,3-dihydro-1,3-azaborinine derivatives: application of a bora-nazarov type reaction. Angewandte Chemie International Edition 2019, 58 (43), 15377-15380. 63. Li, J.; Daniliuc, C. G.; Matern, J.; Fernández, G.; Kehr, G.; Erker, G., Multi-component synthesis of dihydro-1,3-azaborinine derived oxindole isosteres. Chem Commun (Camb) 2021. 64. Xu, S.; Zakharov, L. N.; Liu, S. Y., A 1,3-dihydro-1,3-azaborine debuts. Journal of the American Chemical Society 2011, 133 (50), 20152-20155. 65. Dewar, M. J. S.; Dietz, R., 546. New heteroaromatic compounds. Part III. 2,1-Borazaro-naphthalene (1,2-dihydro-1-aza-2-boranaphthalene). Journal of the Chemical Society (Resumed) 1959, (0), 2728-2730. 66. Velinova, M.; Georgiev, V.; Todorova, T.; Madjarova, G.; Ivanova, A.; Tadjer, A., Boron–nitrogen- and boron-substituted anthracenes and -phenanthrenes as models for doped carbon-based materials. Journal of Molecular Structure: THEOCHEM 2010, 955 (1), 97-108. 67. Wang, S.; Yang, D. T.; Lu, J.; Shimogawa, H.; Gong, S.; Wang, X.; Mellerup, S. K.; Wakamiya, A.; Chang, Y. L.; Yang, C.; Lu, Z. H., In situ solid-state generation of (BN)2-pyrenes and electroluminescent devices. Angewandte Chemie International Edition 2015, 54 (50), 15074-15078. 68. Dewar, M. J. S.; Poesche, W. H., New Heteroaromatic Compounds. XXI.1 Some Tetracyclic Systems2. The Journal of Organic Chemistry 1964, 29 (7), 1757-1762. 69. Bosdet, M. J.; Piers, W. E., BN as a CC substitute in aromatic systems. Canadian Journal of Chemistry 2009, 87 (1), 8-29. 70. Ulmschneider, D.; Goubeau, J., Reaktionen des Trimethylbors. Chemische Berichte 1957, 90 (12), 2733-2738. 71. Abbey, E. R.; Zakharov, L. N.; Liu, S. Y., Electrophilic aromatic substitution of a BN Indole. Journal of the American Chemical Society 2010, 132 (46), 16340-16342. 72. Maruyama, S.; Kawanishi, Y., Syntheses and emission properties of novel violet-blue emissive aromatic bis(diazaborole)s. Journal of Materials Chemistry 2002, 12 (8), 2245-2249. 73. Weber, L.; Werner, V.; Fox, M. A.; Marder, T. B.; Schwedler, S.; Brockhinke, A.; Stammler, H. G.; Neumann, B., Synthetic, structural, photophysical and computational studies of π-conjugated bis- and tris-1,3,2-benzodiazaboroles and related bis(boryl) dithiophenes. Dalton Transactions 2009, (8), 1339-1351. 74. Weber, L.; Halama, J.; Böhling, L.; Brockhinke, A.; Chrostowska, A.; Darrigan, C.; Dargelos, A.; Stammler, H. G.; Neumann, B., 1,3,2-Benzodiazaboroles with 1,3-Pentafluorophenyl and Tetrafluoropyridyl Substituents as Building Blocks in Luminescent Compounds. European Journal of Inorganic Chemistry 2013, 2013 (24), 4268-4279. 75. Li, G.; Zhao, Y.; Li, J.; Cao, J.; Zhu, J.; Sun, X. W.; Zhang, Q., Synthesis, characterization, physical properties, and OLED application of single BN-fused perylene diimide. The Journal of Organic Chemistry 2015, 80 (1), 196-203. 76. Hashimoto, S.; Ikuta, T.; Shiren, K.; Nakatsuka, S.; Ni, J.; Nakamura, M.; Hatakeyama, T., Triplet-energy control of polycyclic aromatic hydrocarbons by BN replacement: development of ambipolar host materials for phosphorescent organic light-emitting diodes. Chemistry of Materials 2014, 26 (21), 6265-6271. 77. Zhang, W.; Zhang, F.; Tang, R.; Fu, Y.; Wang, X.; Zhuang, X.; He, G.; Feng, X., Angular BN-Heteroacenes with syn-Structure-Induced Promising Properties as Host Materials of Blue Organic Light-Emitting Diodes. Organic Letters 2016, 18 (15), 3618-3621. 78. Qiang, P.; Sun, Z.; Wan, M.; Wang, X.; Thiruvengadam, P.; Bingi, C.; Wei, W.; Zhu, W.; Wu, D.; Zhang, F., Successive annulation to fully zigzag-edged polycyclic heteroaromatic hydrocarbons with strong blue–green electroluminescence. Organic Letters 2019, 21 (12), 4575-4579. 79. Sun, Z.; Yi, C.; Liang, Q.; Bingi, C.; Zhu, W.; Qiang, P.; Wu, D.; Zhang, F., π-extended C2-symmetric double NBN-heterohelicenes with exceptional luminescent properties. Organic Letters 2020, 22 (1), 209-213. 80. Han, Y.; Yuan, W.; Wang, H.; Li, M.; Zhang, W.; Chen, Y., Dual-responsive BN-embedded phenacenes featuring mechanochromic luminescence and ratiometric sensing of fluoride ions. Journal of Materials Chemistry C 2018, 6 (39), 10456-10463. 81. Huang, H.; Chen, D.; Li, F.; Xing, Z.; Zhao, J.; Wu, D.; Liang, G.; Xia, J., BN-embedded eleven-ring fused heteroaromatics: Synthesis, optoelectronic properties and fluoride susceptibility. Dyes and Pigments 2020, 177, 108271. 82. Zhang, Q.; Sun, Z.; Zhang, L.; Li, M.; Zi, L.; Liu, Z.; Zhen, B.; Sun, W.; Liu, X., Synthesis, structures, and properties of BN-dinaphthothiophenes: influence of B and N placement on photophysical properties and aromaticity. The Journal of Organic Chemistry 2020, 85 (12), 7877-7883. 83. Parker, C.; Hatchard, C., Delayed fluorescence from solutions of anthracene and phenanthrene. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences 1962, 269 (1339), 574-584. 84. Kepler, R.; Caris, J.; Avakian, P.; Abramson, E., Triplet excitons and delayed fluorescence in anthracene crystals. Physical Review Letters 1963, 10 (9), 400. 85. Kido, J.; Iizumi, Y., Fabrication of highly efficient organic electroluminescent devices. Applied Physics Letters 1998, 73 (19), 2721-2723. 86. Shi, J.; T, C. W., Anthracene derivatives for stable blue-emitting organic electroluminescence devices. Applied Physics Letters 2002, 80 (17), 3201-3203. 87. Suzuki, T.; Nonaka, Y.; Watabe, T.; Nakashima, H.; Seo, S.; Shitagaki, S.; Yamazaki, S., Highly efficient long-life blue fluorescent organic light-emitting diode exhibiting triplet–triplet annihilation effects enhanced by a novel hole-transporting material. Japanese Journal of Applied Physics 2014, 53 (5), 052102. 88. Wu, C. L.; Chang, C. H.; Chang, Y. T.; Chen, C. T.; Chen, C. T.; Su, C. J., High efficiency non-dopant blue organic light-emitting diodes based on anthracene-based fluorophores with molecular design of charge transport and red-shifted emission proof. Journal of Materials Chemistry C 2014, 2 (35), 7188-7200. 89. Wang, Z.; Liu, W.; Xu, C.; Ji, B.; Zheng, C.; Zhang, X., Excellent deep-blue emitting materials based on anthracene derivatives for non-doped organic light-emitting diodes. Optical Materials 2016, 58, 260-267. 90. Wang, Y.; Liu, W.; Ye, S.; Zhang, Q.; Duan, Y.; Guo, R.; Wang, L., Molecular engineering of anthracene-based emitters for highly efficient nondoped deep-blue fluorescent OLEDs. Journal of Materials Chemistry C 2020, 8 (28), 9678-9687. 91. Liu, W.; Ying, S.; Guo, R.; Qiao, X.; Leng, P.; Zhang, Q.; Wang, Y.; Ma, D.; Wang, L., Nondoped blue fluorescent organic light-emitting diodes based on benzonitrile-anthracene derivative with 10.06% external quantum efficiency and low efficiency roll-off. Journal of Materials Chemistry C 2019, 7 (4), 1014-1021. 92. Xing, L.; Zhu, Z. L.; He, J.; Qiu, Z.; Yang, Z.; Lin, D.; Chen, W. C.; Yang, Q.; Ji, S.; Huo, Y.; Lee, C. S., Anthracene-based fluorescent emitters toward superior-efficiency nondoped TTA-OLEDs with deep blue emission and low efficiency roll-off. Chemical Engineering Journal 2021, 421, 127748. 93. Endo, A.; Sato, K.; Yoshimura, K.; Kai, T.; Kawada, A.; Miyazaki, H.; Adachi, C., Efficient up-conversion of triplet excitons into a singlet state and its application for organic light emitting diodes. Applied Physics Letters 2011, 98 (8), 42. 94. Liu, S.; Zhu, S.; Wu, Y.; Gao, J.; Qian, P.; Hu, Y.; Shi, L.; Chen, S.; Zhang, S.; Zhang, Y., One-pot synthesis of N-aryl-nicotinamides and diarylamines based on a tunable smiles rearrangement. European Journal of Organic Chemistry 2015, 2015 (14), 3048-3052. 95. Moorthy, J. N.; Venkatakrishnan, P.; Natarajan, P.; Huang, D.-F.; Chow, T. J., De novo design for functional amorphous materials: synthesis and thermal and light-emitting properties of twisted anthracene-functionalized bimesitylenes. Journal of the American Chemical Society 2008, 130 (51), 17320-17333. 96. Galanin, M. D.; Kutyonkov, A. A.; Smorchkov, V. N.; Timofeev, Y. P.; Chizhikova, Z. A., Measurement of photoluminescence quantum yield of dye solutions by the Vavilov and integrating-sphere methods. Optics and Spectroscopy 1982, 53 (4), 405-409. 97. Singh-Rachford, T. N.; Castellano, F. N., Photon upconversion based on sensitized triplet–triplet annihilation. Coordination Chemistry Reviews 2010, 254 (21-22), 2560-2573.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81832-
dc.description.abstract"藉由等電子體的概念,我們將硼、氮原子引入吲哚結構,硼原子的低電負度特性去調整有機分子的電性質,並整合成10個π電子共軛系統的1,3,2-苯並二氮雜硼分子,並將其作為研究之主架構。硼原子的空pz軌域同時可做為陰離子的受體,因此可產生化合物螢光性質的改變。因此,我們在主架構中不同的位置上引入有高量子產率、具TTA-UC特性的藍光基團10-苯蒽,以利運用於藍光材料中,並同時探討其和離子間的反應與變化,運用於離子辨識材料上。 透過光物理分析,可知這系列化合物之螢光落在藍光至藍綠光範圍;在熱性質分析中,所合成之化合物的熱裂解溫度皆高於元件蒸鍍所需溫度 (200 ℃),且玻璃轉移溫度皆高於110 ℃,符合元件所需的熱性質要求。本系列化合物皆可於以Pd(OEP)作為敏料的Xylene溶液中,以低能量的綠光激發並產生高能量的藍光,而此現象可以和光物理分析圖譜的結果相呼應。 於元件表現部分,我們將五個化合物作為主發光層之非摻混材料,其中以材料NAn與dmBA表現最佳,最大亮度達1418 cd/m2與780 cd/m2,最大電流效率分別為3.78 cd/A與1.60 cd/A,外部量子效率達2.06%與2.79%。此外,材料BdpA與dmBA製作元件後具有深藍色螢光表現,也同具有穩定的放光波長。其中以TrEL光譜可以發現材料pABIZ具有良好的TTA-UC現象。 於離子辨識實驗部分中,我們發現化合物在不同離子的溶液中,會改變其光物理性質。此系列化合物對於F-與OH-的顏色變化最為快速且明顯,化合物的吸收紅移,使溶液顏色由透明轉到可見光區;螢光強度也會大幅減弱,這些變化此皆能以肉眼辨識。此外,化合物也會在加入H2PO4-與H2P2O72-後隨時間改變常溫螢光光譜曲線的現象,而這些化合物對陰離子的顏色變化顯示了此系列硼氮化合物具有作為多陰離子辨識的應用潛力。 "zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-25T03:04:37Z (GMT). No. of bitstreams: 1
U0001-2207202103102600.pdf: 14189938 bytes, checksum: 80f503f9d237e4a228e7dfbc612ae683 (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents目錄 I 化合物結構與編號命名 III 摘要 VI Abstract VII 致謝 IX 圖目錄 X 表目錄 XVII 流程目錄 XIX 第一章 緒論 1 1.1 有機發光二極體之發展歷史 1 1.2 有機分子發光機制 4 1.3 有機發光二極體之工作原理 6 1.4 有機發光二極體各層材料之介紹 10 1.5 離子辨識材料介紹 15 第二章 研究動機 19 2.1 文獻回顧 19 2.1.1 有機硼化學 19 2.1.2 分子間TTA-UC之特性 31 2.2 分子設計 38 2.3 合成策略與方法 42 第三章 結果與討論 50 3.1 熱性質分析 50 3.2 晶體結構分析 53 3.3 光物理性質分析 62 3.4 電化學分析 69 3.5 有機電致發光元件表現 76 3.6 陰離子偵測實驗 84 3.6.1 多重陰離子偵測 84 3.6.2 氟離子滴定實驗 92 3.6.3 陰離子時間追蹤 97 3.7 摩擦變色現象 (Mechanochromic luminescence) 105 第四章 結論 106 第五章 實驗部分 107 5.1 實驗儀器及試劑 107 5.2 合成步驟 109 第六章 參考資料 138 第七章 附錄 147 7.1 化合物之1H與13C核磁共振光譜 147 7.2 化合物TGA與DSC圖 195 7.3 化合物薄膜態之UV-Vis、FL光譜、ACII圖譜與參考物之電化學分析 198 7.4 陰離子時間追蹤詳細數據 201 7.5 化合物X-ray晶體參數表、鍵長與鍵角數據 207
dc.language.isozh-TW
dc.subject陰離子偵測zh_TW
dc.subject硼氮吲哚zh_TW
dc.subject有機含硼化合物zh_TW
dc.subject2-苯並二氮雜硼zh_TW
dc.subject蒽zh_TW
dc.subject藍色螢光有機發光二極體zh_TW
dc.subject三重態-三重態湮滅光子上轉換zh_TW
dc.subjectB-N indolesen
dc.subjectAnion detectionen
dc.subjectAnthraceneen
dc.subjectTTA-UCen
dc.subjectBlue fluorescent OLEDen
dc.subject2-benzodiazaboroleen
dc.subjectOrganoboronen
dc.title"1,3,2-苯並二氮雜硼引入蒽之合成、性質探討及其在藍色有機發光二極體與陰離子偵測之應用"zh_TW
dc.title"Synthesis and Characterization of 1,3,2-Benzodiazaboroles Substituted 10-phenylanthracene and Their Applications in Blue Fluorescent Organic Light Emitting Diodes and Anion Detection"en
dc.date.schoolyear109-2
dc.description.degree碩士
dc.contributor.oralexamcommittee李君浩(Hsin-Tsai Liu),邱天隆(Chih-Yang Tseng)
dc.subject.keyword硼氮吲哚,有機含硼化合物,1,3,2-苯並二氮雜硼,蒽,藍色螢光有機發光二極體,三重態-三重態湮滅光子上轉換,陰離子偵測,zh_TW
dc.subject.keywordB-N indoles,Organoboron,1,3,2-benzodiazaborole,Blue fluorescent OLED,TTA-UC,Anthracene,Anion detection,en
dc.relation.page261
dc.identifier.doi10.6342/NTU202101652
dc.rights.note同意授權(全球公開)
dc.date.accepted2021-10-28
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept化學研究所zh_TW
dc.date.embargo-lift2026-10-25-
顯示於系所單位:化學系

文件中的檔案:
檔案 大小格式 
U0001-2207202103102600.pdf
  此日期後於網路公開 2026-10-25
13.86 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved