Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 牙醫專業學院
  4. 臨床牙醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81826
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor章浩宏(Hao-Hueng Chang)
dc.contributor.authorYi-Cheng Chenen
dc.contributor.author陳奕誠zh_TW
dc.date.accessioned2022-11-25T03:04:29Z-
dc.date.available2024-08-01
dc.date.copyright2021-08-19
dc.date.issued2021
dc.date.submitted2021-07-28
dc.identifier.citation1. Mezger U, Jendrewski C, Bartels M. Navigation in surgery. Langenbecks Arch Surg. 2013 Apr;398(4):501-14. doi: 10.1007/s00423-013-1059-4. Epub 2013 Feb 22. PMID: 23430289; PMCID: PMC3627858. 2. Paleologos TS, Wadley JP, Kitchen ND, Thomas DG. Clinical utility and cost-effectiveness of interactive image-guided craniotomy: clinical comparison between conventional and image-guided meningioma surgery. Neurosurgery. 2000 Jul;47(1):40-7; discussion 47-8. doi: 10.1097/00006123-200007000-00010. PMID: 10917345. 3. Mason JB, Fehring TK, Estok R, Banel D, Fahrbach K. Meta-analysis of alignment outcomes in computer-assisted total knee arthroplasty surgery. J Arthroplasty. 2007 Dec;22(8):1097-106. doi: 10.1016/j.arth.2007.08.001. PMID: 18078876. 4. Jaesung Hong, Nozomu Matsumoto, Riichi Ouchida, Shizuo Komune. 3-D Real-Time Navigation System for Ear-Nose-Throat Surgery. October 2008 IEEJ Transactions on Sensors and Micromachines 128(10):383-388 DOI:10.1541/ieejsmas.128.383 5. Iman Azarmehr, DDS, Resident, Kasper Stokbro, DDS, R Bryan Bell, MD, DDS, Torben Thygesen, DDS, PhD Surgical navigation in oral and maxillofacial surgery – a systematic review of the literature for five useful indications. Journal of Oral and Maxillofacial Surgery. DOI: 10.1016/j.joms.2017.01.004 6. Yu H, Wang X, Zhang S, Zhang L, Xin P, Shen SG. Navigation-guided en bloc resection and defect reconstruction of craniomaxillary bony tumours. Int J Oral Maxillofac Surg. 2013 Nov;42(11):1409-13. doi: 10.1016/j.ijom.2013.05.011. Epub 2013 Jul 1. PMID: 23827882. 7. He Y, Zhang Y, Yu GY, Guo CB, Shen GF, Peng X, Liu XJ, Wang J, Zhang WB, Liu YP, Gu XM, Tian WD, Lu L, Li ZB, Zhang SL, Society Of Oral And Maxillofacial Surgery, Chinese Stomatological Association. Expert Consensus on Navigation-guided Unilateral Delayed Zygomatic Fracture Reconstruction Techniques. Chin J Dent Res. 2020;23(1):45-50. doi: 10.3290/j.cjdr.a44335. PMID: 32232228. 8. Zhang X, Ye L, Li H, Wang Y, Dilxat D, Liu W, Chen Y, Liu L. Surgical navigation improves reductions accuracy of unilateral complicated zygomaticomaxillary complex fractures: a randomized controlled trial. Sci Rep. 2018 May 2;8(1):6890. doi: 10.1038/s41598-018-25053-z. PMID: 29720719; PMCID: PMC5932064. 9. Brian T. Andrews MD, MA, Christopher C. Surek DO, Neil Tanna MD, MBA, James P. Bradley MD. Utilization of computed tomography image-guided navigation in orbit fracture repair. Laryngoscope. 2013 Jun 123, 6. doi: 10.1002/lary.23729 10. Cai EZ, Koh YP, Hing EC, Low JR, Shen JY, Wong HC, Sundar G, Lim TC. Computer-assisted navigational surgery improves outcomes in orbital reconstructive surgery. J Craniofac Surg. 2012 Sep;23(5):1567-73. doi: 10.1097/SCS.0b013e318260ef33. PMID: 22976663. 11. Li Z, Yang RT, Li ZB. Applications of Computer-Assisted Navigation for the Minimally Invasive Reduction of Isolated Zygomatic Arch Fractures. J Oral Maxillofac Surg. 2015 Sep;73(9):1778-89. doi: 10.1016/j.joms.2015.03.033. Epub 2015 Mar 19. PMID: 25869981. 12. Sun Y, Luebbers HT, Agbaje JO, Lambrichts I, Politis C. The accuracy of image-guided navigation for maxillary positioning in bimaxillary surgery. J Craniofac Surg. 2014 May;25(3):1095-9. doi: 10.1097/SCS.0000000000000633. PMID: 24717316. 13. Badiali G, Roncari A, Bianchi A, Taddei F, Marchetti C, Schileo E. Navigation in Orthognathic Surgery: 3D accuracy. Facial Plast Surg. 2015 Oct;31(5):463-73. doi: 10.1055/s-0035-1564716. Epub 2015 Nov 18. PMID: 26579862. 14. Mazzoni S, Badiali G, Lancellotti L, Babbi L, Bianchi A, Marchetti C. Simulation-guided navigation: a new approach to improve intraoperative three-dimensional reproducibility during orthognathic surgery. J Craniofac Surg. 2010 Nov;21(6):1698-705. doi: 10.1097/SCS.0b013e3181f3c6a8. PMID: 21119403. 15. Bobek SL. Applications of navigation for orthognathic surgery. Oral Maxillofac Surg Clin North Am. 2014 Nov;26(4):587-98. doi: 10.1016/j.coms.2014.08.003. Epub 2014 Sep 16. PMID: 25239214. 16. Kaduk WM, Podmelle F, Louis PJ. Surgical navigation in reconstruction. Oral Maxillofac Surg Clin North Am. 2013 May;25(2):313-33. doi: 10.1016/j.coms.2013.01.003. PMID: 23642674. 17. Zhang WB, Mao C, Liu XJ, Guo CB, Yu GY, Peng X. Outcomes of Orbital Floor Reconstruction After Extensive Maxillectomy Using the Computer-Assisted Fabricated Individual Titanium Mesh Technique. J Oral Maxillofac Surg. 2015 Oct;73(10):2065.e1-15. doi: 10.1016/j.joms.2015.06.171. Epub 2015 Jul 2. PMID: 26188101. 18. Guo YX, Sun ZP, Liu XJ, Bhandari K, Guo CB. Surgical safety distances in the infratemporal fossa: three-dimensional measurement study. Int J Oral Maxillofac Surg. 2015 May;44(5):555-61. doi: 10.1016/j.ijom.2014.06.004. Epub 2014 Nov 11. PMID: 25441861. 19. Paleologos TS, Wadley JP, Kitchen ND, Thomas DG. Clinical utility and cost-effectiveness of interactive image-guided craniotomy: clinical comparison between conventional and image-guided meningioma surgery. Neurosurgery. 2000 Jul;47(1):40-7; discussion 47-8. doi: 10.1097/00006123-200007000-00010. PMID: 10917345. 20. Sun TM, Lee HE, Lan TH. The influence of dental experience on a dental implant navigation system. BMC Oral Health. 2019 Oct 17;19(1):222. doi: 10.1186/s12903-019-0914-2. PMID: 31623636; PMCID: PMC6798373. 21. Hoffmann J, Westendorff C, Schneider M, Reinert S. Accuracy assessment of image-guided implant surgery: an experimental study. Int J Oral Maxillofac Implants. 2005 May-Jun;20(3):382-6. PMID: 15973949. 22. Chen CK, Yuh DY, Huang RY, Fu E, Tsai CF, Chiang CY. Accuracy of Implant Placement with a Navigation System, a Laboratory Guide, and Freehand Drilling. Int J Oral Maxillofac Implants. 2018 Nov/Dec;33(6):1213-1218. doi: 10.11607/jomi.6585. PMID: 30427951. 23. Miller RJ, Bier J. Surgical navigation in oral implantology. Implant Dent. 2006 Mar;15(1):41-7. doi: 10.1097/01.id.0000202637.61180.2b. PMID: 16569960. 24. Sun TM, Lan TH, Pan CY, Lee HE. Dental implant navigation system guide the surgery future. Kaohsiung J Med Sci. 2018 Jan;34(1):56-64. doi: 10.1016/j.kjms.2017.08.011. Epub 2017 Dec 8. PMID: 29310817. 25. Stefanelli LV, DeGroot BS, Lipton DI, Mandelaris GA. Accuracy of a Dynamic Dental Implant Navigation System in a Private Practice. Int J Oral Maxillofac Implants. 2019 January/February;34(1):205–213. doi: 10.11607/jomi.6966. Epub 2018 Dec 5. PMID: 30521660. 26. Aydemir CA, Arısan V. Accuracy of dental implant placement via dynamic navigation or the freehand method: A split-mouth randomized controlled clinical trial. Clin Oral Implants Res. 2020 Mar;31(3):255-263. doi: 10.1111/clr.13563. Epub 2019 Dec 29. PMID: 31829457. 27. Schnutenhaus S, Edelmann C, Rudolph H. Does the macro design of an implant affect the accuracy of template-guided implantation? A prospective clinical study. Int J Implant Dent. 2021 Apr 26;7(1):42. doi: 10.1186/s40729-021-00320-3. PMID: 33899126; PMCID: PMC8071785. 28. Mediavilla Guzmán A, Riad Deglow E, Zubizarreta-Macho Á, Agustín-Panadero R, Hernández Montero S. Accuracy of Computer-Aided Dynamic Navigation Compared to Computer-Aided Static Navigation for Dental Implant Placement: An In Vitro Study. J Clin Med. 2019 Dec 2;8(12):2123. doi: 10.3390/jcm8122123. PMID: 31810351; PMCID: PMC6947513. 29. Waleed M. Abd Alkader, Magued H. Fahmy, Adham A. ElAshwah. ACCURACY OF GUIDED IMPLANT INSERTION IN MANDIBULAR FREE-END SADDLE AREAS USING STEREOLITHOGRAPHIC SURGICAL STENT. Alexandria Dental Journal. Article 20, Volume 45, Issue 1, Spring 2020, Page 117-122. DOI: 10.21608/ADJALEXU.2020.79975. 30. Di Giacomo GA, Cury PR, de Araujo NS, Sendyk WR, Sendyk CL. Clinical application of stereolithographic surgical guides for implant placement: preliminary results. J Periodontol. 2005 Apr;76(4):503-7. doi: 10.1902/jop.2005.76.4.503. PMID: 15857088. 31. El Kholy K, Lazarin R, Janner SFM, Faerber K, Buser R, Buser D. Influence of surgical guide support and implant site location on accuracy of static Computer-Assisted Implant Surgery. Clin Oral Implants Res. 2019 Nov;30(11):1067-1075. doi: 10.1111/clr.13520. Epub 2019 Aug 20. PMID: 31381178. 32. Tjellström A, Yontchev E, Lindström J, Brånemark PI. Five years' experience with bone-anchored auricular prostheses. Otolaryngol Head Neck Surg. 1985 Jun;93(3):366-72. doi: 10.1177/019459988509300315. PMID: 3927232. 33. Wennerberg A, Albrektsson T. Effects of titanium surface topography on bone integration: a systematic review. Clin Oral Implants Res. 2009 Sep;20 Suppl 4:172-84. doi: 10.1111/j.1600-0501.2009.01775.x. PMID: 19663964. 34. ORAL AND MAXILLOFACIAL SURGERY 3RD, Chapter 23, Raymond J. Fonseca 35. Choi J-H , Park C-H , Yi S-W , Lim H-J , Hwang H-S 2009 Bone density measurement in interdental areas with simulated placement of orthodontic miniscrew implants. American Journal of Orthodontics and Dentofacial Orthopedics 136 : 766.e1 – e12 36. Misch CE. Density of bone: effect on treatment plans, surgical approach, healing, and progressive boen loading. Int J Oral Implantol. 1990;6(2):23-31. PMID: 2073394. 37. Gantous A, Phillips JH. The effects of varying pilot hole size on the holding power of miniscrews and microscrews. Plast Reconstr Surg. 1995 Jun;95(7):1165-9. doi: 10.1097/00006534-199506000-00004. PMID: 7761502. 38. Kravitz ND, Kusnoto B. Placement of mini-implants with topical anesthetic. J Clin Orthod. 2006 Oct;40(10):602-4; quiz 599. PMID: 17062912. 39. Mine, K., Kanno, Z., Muramoto, T. Soma, K. (2005) Occlusal forces promote periodontal healing of transplanted teeth and prevent dentoalveolar ankylosis: an experimental study in rats. Angle Orthodontics 75: 637–644. 40. Kyung HM, Park HS, Bae SM, Sung JH, Kim IB. Development of orthodontic micro-implants for intraoral anchorage. J Clin Orthod. 2003 Jun;37(6):321-8; quiz 314. PMID: 12866214. 41. Asscherickx K, Vannet BV, Wehrbein H, Sabzevar MM. Root repair after injury from mini-screw. Clin Oral Implants Res. 2005 Oct;16(5):575-8. doi: 10.1111/j.1600-0501.2005.01146.x. PMID: 16164464. 42. Consolaro A, Romano FL. Reasons for mini-implants failure: choosing installation site should be valued! Dental Press J Orthod. 2014 Mar-Apr;19(2):18-24. doi: 10.1590/2176-9451.19.2.018-024.oin. PMID: 24945511; PMCID: PMC4296612. 43. Kravitz ND, Kusnoto B. Risks and complications of orthodontic miniscrews. Am J Orthod Dentofacial Orthop. 2007 Apr;131(4 Suppl):S43-51. doi: 10.1016/j.ajodo.2006.04.027. PMID: 17448385. 44. Melsen B. Mini-implants: Where are we? J Clin Orthod. 2005 Sep;39(9):539-47; quiz 531-2. PMID: 16244412. 45. Singh K, Kumar D, Jaiswal RK, Bansal A. Temporary anchorage devices - Mini-implants. Natl J Maxillofac Surg. 2010 Jan;1(1):30-4. doi: 10.4103/0975-5950.69160. PMID: 22442547; PMCID: PMC3304189. 46. Alves M Jr, Baratieri C, Araújo MT, Souza MM, Maia LC. Root damage associated with intermaxillary screws: a systematic review. Int J Oral Maxillofac Surg. 2012 Nov;41(11):1445-50. doi: 10.1016/j.ijom.2012.05.019. Epub 2012 Jun 27. PMID: 22742943. 47. Shingo Kuroda, Eiji Tanaka. Risks and complications of miniscrew anchorage in clinical orthodontics. Japanese Dental Science Review Volume 50, Issue 4, November 2014, Pages 79-85. doi: 10.1016/j.jdsr.2014.05.001 48. Ozen T, Orhan K, Gorur I, Ozturk A. Efficacy of low level laser therapy on neurosensory recovery after injury to the inferior alveolar nerve. Head Face Med. 2006 Feb 15;2:3. doi: 10.1186/1746-160X-2-3. PMID: 16480503; PMCID: PMC1386654. 49. Schulte-Geers M, Kater W, Seeberger R. Root trauma and tooth loss through the application of pre-drilled transgingival fixation screws. J Craniomaxillofac Surg. 2012 Oct;40(7):e214-7. doi: 10.1016/j.jcms.2011.10.022. Epub 2011 Nov 17. PMID: 22099624. 50. Chen YW, Hanak BW, Yang TC, Wilson TA, Hsia JM, Walsh HE, Shih HC, Nagatomo KJ. Computer-assisted surgery in medical and dental applications. Expert Rev Med Devices. 2021 Jul 6:1-28. doi: 10.1080/17434440.2021.1886075. Epub ahead of print. PMID: 33539198. 51. AO foundation 52. Landaeta-Quinones CG, Hernandez N, Zarroug NK. Computer-Assisted Surgery: Applications in Dentistry and Oral and Maxillofacial Surgery. Dent Clin North Am. 2018 Jul;62(3):403-420. doi: 10.1016/j.cden.2018.03.009. PMID: 29903558. 53. Kochanski RB, Lombardi JM, Laratta JL, Lehman RA, O'Toole JE. Image-Guided Navigation and Robotics in Spine Surgery. Neurosurgery. 2019 Jun 1;84(6):1179-1189. doi: 10.1093/neuros/nyy630. PMID: 30615160. 54. Neocis Inc. 55. Pellegrino G, Taraschi V, Andrea Z, Ferri A, Marchetti C. Dynamic navigation: a prospective clinical trial to evaluate the accuracy of implant placement. Int J Comput Dent. 2019;22(2):139-147. PMID: 31134220.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81826-
dc.description.abstract"導航系統是現代生活中不可或缺的技術,隨著科技的發展已應用在醫學中。在牙科,導航系統使用於植體植入手術及根管治療等領域。利用導航系統可以協助進行治療計畫擬定、調整、決定植體位置、導引手術進行及術中即時修正。 牙科植體目前廣泛運用在人工植牙、顏面重建及矯正治療過程中。迷你骨釘為暫時性牙科植體,其為矯正治療中常用之暫時錨定裝置 (Temporary anchorage devices, TADs)。暫時錨定裝置置入必須依照矯正原理,並且手術過程中要避免傷及鄰牙牙根及下顎管等解剖構造。傳統上依據手術醫師經驗徒手放置,偶有傷及鄰牙牙根,以致鄰牙需進行根管治療或拔除之併發症。回顧至今文獻,尚無將即時導航系統運用在暫時錨定裝置之研究,為瞭解即時導航系統是否可以應用於臨床上矯正用暫時錨定裝置的置入,我們將以臨床試驗,針對導引手術應用於暫時錨定裝置置入之準確性及安全性進行評估及探討。 其方法為以患者之電腦斷層做術前規劃及術後分析。在導航軟體及手術導板軟體上設計植體,完成術前規劃。術後再次以電腦斷層確認植體之位置。資料分析方面,將以術前及術後之影像進行重疊,分析植體平台中心差距 (platform center deviation)、植體角度差距 (angular deviation)、併發症 (傷害鄰牙、牙根、下顎管或其他解剖構造) 比例。將即時導航系統輔助、手術導板輔助及徒手方法進行比較,即時導航系統輔助之植體平台中心差距平均值為2.99 ± 1.75毫米,角度差距平均值為12.49 ± 4.48度;手術導板輔助之植體平台中心差距平均值為1.17 ± 0.77毫米,度差距平均值為12.43 ± 8.32度;徒手方法之植體平台中心差距平均值為3.10 ± 1.91毫米,角度差距平均值為15.64 ± 5.94度。即時導航系統輔助在植體平台中心控制及植體角度控制,統計上沒有出現較另外兩者精確之表現 (p>0.05)。徒手方法造成牙根傷害的比例約10%,而即時導航系統輔助及手術導板輔助無出現術後立即併發症。 本研究為首篇將即時導航系統運用於暫時錨定裝置置入手術的臨床研究,並藉由合併導航系統及手術導板的特點,探討合併導航系統及手術導板的操作模式,發現其於植體平台中心差距平均值為1.75 ± 1.05毫米,植體角度差距平均值為5.5 ± 1.83度,有較理想表現的趨勢。藉由本研究之結果,我們對於導航系統的臨床應用及暫時錨定裝置植入手術提出改善指引,並探討合併方法的可能性。"zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-25T03:04:29Z (GMT). No. of bitstreams: 1
U0001-2707202114330700.pdf: 7732748 bytes, checksum: 2a60b0e72d71bcb24772da05cc33b6f4 (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents口試委員會審定書 i 誌謝 ii 中文摘要 iii Abstract v 目錄 vii 圖目錄 x 表目錄 xiv 第一章 序論 1 1.1 前言 1 1.2 研究動機 2 1.3 論文架構 2 第二章 文獻回顧 4 2.1 即時導航系統 4 2.1.1 即時導航系統於醫學之發展與應用 4 2.1.2 即時導航系統於口腔醫學之發展與應用 7 2.1.3 即時導航系統於牙科之發展與應用 13 2.1.4 即時導航系統輔助人工牙根植入之準確度 16 2.2 手術導板 18 2.2.1 手術導板於口腔醫學之應用 18 2.2.2 手術導板輔助人工牙根植入之準確性 19 2.3 牙科植體 20 2.3.1 牙科植體概論 20 2.3.2 暫時錨定裝置概論 21 2.4 暫時錨定裝置植入手術 25 2.4.1 現行暫時錨定裝置放置方法 25 2.4.2 現行暫時錨定裝置置入手術之併發症 27 第三章 實驗設計與方法 33 3.1 實驗設計 33 3.2 受試者 35 3.3 暫時錨定裝置植入位置 35 3.4 控制組 37 3.4.1 手術導板製作 37 3.4.2 手術導板輔助之暫時錨定裝置植入手術 41 3.5 實驗組 43 3.5.1 植體即時影像系統IRIS® (Implant Real-time Imaging System) 43 3.5.2 IRIS®使用流程 44 3.5.3 導航系統準確性驗證 50 3.5.4 即時導航系統輔助暫時錨定裝置植入手術 53 3.6 負控制組 57 3.7 數據蒐集 58 3.7.1 流程 58 3.7.2 分析方法 60 3.7.3 資料收集紀錄 62 3.8 實驗統計方法 62 第四章 實驗結果 64 4.1 受試者分析 64 4.2 控制組 65 4.2.1 控制組資料整理 65 4.3 實驗組 66 4.3.1 實驗組資料整理 66 4.4 負控制組 67 4.4.1 負控制資料整理 67 4.5 統計 68 4.5.1 控制組分析 68 4.5.2 實驗組分析 70 4.5.3 負控制組分析 72 4.5.4 樣本常態分佈檢測 74 4.5.5 控制組與實驗組之比較 76 4.5.6 控制組與負控制組之比較 78 4.5.7 實驗組與負控制組之比較 80 第五章 討論 82 5.1 徒手方法之暫時錨定裝置植入回溯性探討 82 5.2 即時導航系統輔助暫時錨定裝置置入及手術導板輔助暫時錨定裝置置入之比較 84 5.3 導引裝置輔助暫時錨定裝置植入與徒手方法之比較 89 5.4 即時導航系統輔助暫時錨定裝置置入之安全性及準確性評估 91 5.5 實驗設計探討 92 第六章 即時導航系統合併手術導板輔助暫時錨定裝置植入 93 6.1 流程 93 6.2 合併組資料整理 94 6.3 統計 95 6.3.1 合併組分析 95 6.3.2 合併組與控制組之比較 95 6.3.3 合併組與實驗組之比較 95 6.3.4 合併組與負控制組之比較 96 6.4 合併組之結論 96 第七章 結論 97 第八章 未來展望 98 8.1 暫時錨定裝置置入手術之臨床指引 98 8.2 即時導航系統於臨床應用之優化 98 8.3 電腦輔助手術的發展 99 第九章 參考文獻 102
dc.language.isozh-TW
dc.subject暫時錨定裝置zh_TW
dc.subject植體角度差距zh_TW
dc.subject植體平台中心差距zh_TW
dc.subject合併方法zh_TW
dc.subject手術導板zh_TW
dc.subject即時導航系統zh_TW
dc.subject迷你骨釘zh_TW
dc.subjecttemporary anchorage devicesen
dc.subjectangular deviationen
dc.subjectplatform center deviationen
dc.subjectcombined techniqueen
dc.subjectsurgical stenten
dc.subjectreal-time navigationen
dc.subjectmini-screwsen
dc.title即時導航系統輔助暫時錨定裝置置入手術之準確性及安全性評估zh_TW
dc.titleEvaluation of accuracy and safety of real-time navigation in TAD insertion surgeryen
dc.date.schoolyear109-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林俊彬(Hsin-Tsai Liu),謝明發(Chih-Yang Tseng)
dc.subject.keyword暫時錨定裝置,迷你骨釘,即時導航系統,手術導板,合併方法,植體平台中心差距,植體角度差距,zh_TW
dc.subject.keywordtemporary anchorage devices,mini-screws,real-time navigation,surgical stent,combined technique,platform center deviation,angular deviation,en
dc.relation.page107
dc.identifier.doi10.6342/NTU202101801
dc.rights.note同意授權(全球公開)
dc.date.accepted2021-07-29
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept臨床牙醫學研究所zh_TW
dc.date.embargo-lift2024-08-01-
顯示於系所單位:臨床牙醫學研究所

文件中的檔案:
檔案 大小格式 
U0001-2707202114330700.pdf7.55 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved