Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 動物科學技術學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81816
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor邱智賢(Chh-Hsien Chiu)
dc.contributor.authorChien Huangen
dc.contributor.author黃謙zh_TW
dc.date.accessioned2022-11-25T03:04:16Z-
dc.date.available2023-07-31
dc.date.copyright2021-11-15
dc.date.issued2021
dc.date.submitted2021-07-30
dc.identifier.citationBecirovic-Agic, M., Chalise, U., Daseke, M. J., 2nd, Konfrst, S., Salomon, J. D., Mishra, P. K., Lindsey, M. L. (2021). Infarct in the Heart: What's MMP-9 Got to Do with It?. Biomolecules, 11(4), 491. Bonnema, D. D., Webb, C. S., Pennington, W. R., Stroud, R. E., Leonardi, A. E., Clark, L. L., McClure, C. D., Finklea, L., Spinale, F. G., Zile, M. R. (2007). Effects of age on plasma matrix metalloproteinases (MMPs) and tissue inhibitor of metalloproteinases (TIMPs). Journal of cardiac failure, 13(7), 530–540. Cai, H., Ma, Y., Jiang, L., Mu, Z., Jiang, Z., Chen, X., Wang, Y., Yang, G. Y., Zhang, Z. (2017). Hypoxia Response Element-Regulated MMP-9 Promotes Neurological Recovery via Glial Scar Degradation and Angiogenesis in Delayed Stroke. Molecular therapy, 25(6), 1448–1459. Calzadilla Bertot, L., Adams, L. A. (2016). The Natural Course of Non-Alcoholic Fatty Liver Disease. International journal of molecular sciences, 17(5), 774. Charzewski, Ł., Krzyśko, K. A., Lesyng, B. (2021). Structural characterisation of inhibitory and non-inhibitory MMP-9-TIMP-1 complexes and implications for regulatory mechanisms of MMP-9. Scientific reports, 11(1), 13376. Chalasani, N., Younossi, Z., Lavine, J. E., Charlton, M., Cusi, K., Rinella, M., Harrison, S. A., Brunt, E. M., Sanyal, A. J. (2018). The diagnosis and management of nonalcoholic fatty liver disease: Practice guidance from the American Association for the Study of Liver Diseases. Hepatology, 67(1), 328–357. Christoffersson, G., Waldén, T., Sandberg, M., Opdenakker, G., Carlsson, P. O., Phillipson, M. (2015). Matrix metalloproteinase-9 is essential for physiological Beta cell function and islet vascularization in adult mice. The American journal of pathology, 185(4), 1094–1103. Cohen, J.C., Horton, J.D., and Hobbs, H.H. (2011). Human fatty liver disease: old questions and new insights. Science, 332, 1519-1523. Dagonnier, M., Donnan, G. A., Davis, S. M., Dewey, H. M., Howells, D. W. (2021). Acute Stroke Biomarkers: Are We There Yet?. Frontiers in neurology, 12, 619721. D'Amico, F., Consolo, M., Amoroso, A., Skarmoutsou, E., Mauceri, B., Stivala, F., Malaponte, G., Bertino, G., Neri, S., and Mazzarino, M.C. (2010). Liver immunolocalization and plasma levels of MMP-9 in non-alcoholic steatohepatitis (NASH) and hepatitis C infection. Acta histochemica, 112, 474-481. Deng, Y., Foley, E.M., Gonzales, J.C., Gordts, P.L., Li, Y., and Esko, J.D. (2012). Shedding of syndecan-1 from human hepatocytes alters very low density lipoprotein clearance. Hepatology, 55, 277-286. Dufour, A., Zucker, S., Sampson, N.S., Kuscu, C., and Cao, J. (2010). Role of matrix metalloproteinase-9 dimers in cell migration: design of inhibitory peptides. The Journal of biological chemistry, 285, 35944-35956. Dwivedi, A., Slater, S.C., and George, S.J. (2009). MMP-9 and -12 cause N-cadherin shedding and thereby beta-catenin signalling and vascular smooth muscle cell proliferation. Cardiovascular research, 81, 178-186. Eslam, M., Newsome, P. N., Sarin, S. K., Anstee, Q. M., Targher, G., Romero-Gomez, M., Zelber-Sagi, S., Wai-Sun Wong, V., Dufour, J. F., Schattenberg, J. M., Kawaguchi, T., Arrese, M., Valenti, L., Shiha, G., Tiribelli, C., Yki-Järvinen, H., Fan, J. G., Grønbæk, H., Yilmaz, Y., Cortez-Pinto, H., … George, J. (2020). A new definition for metabolic dysfunction-associated fatty liver disease: An international expert consensus statement. Journal of hepatology, 73(1), 202–209. Foley, E. M., Gordts, P., Stanford, K. I., Gonzales, J. C., Lawrence, R., Stoddard, N., Esko, J. D. (2013). Hepatic remnant lipoprotein clearance by heparan sulfate proteoglycans and low-density lipoprotein receptors depend on dietary conditions in mice. Arteriosclerosis, thrombosis, and vascular biology, 33(9), 2065–2074. Frevert, U., Engelmann, S., Zougbede, S., Stange, J., Ng, B., Matuschewski, K., Liebes, L. and Yee, H. (2005). Intravital observation of plasmodium berhhei sporozoite infevtion of the liver. PLOS biology, 3(6), 1034-1046. Ghasemi, H., Yaraee, R., Faghihzadeh, S., Ghassemi-Broumand, M., Mahmoudi, M., Babaei, M., Naderi, M., Safavi, M., Ghazanfari, Z., Rastin, M., Zamani, S., Tabasi, N., Faghihzadeh, E., Gharebaghi, R., Hassan, Z. M., Mirsharif, E. S., Ghazanfari, T. (2019). Tear and serum MMP-9 and serum TIMPs levels in the severe sulfur mustard eye injured exposed patients. International immunopharmacology, 77, 105812. Hamada, T., Fondevila, C., Busuttil, R. W., Coito, A. J. (2008). Metalloproteinase-9 deficiency protects against hepatic ischemia/reperfusion injury. Hepatology, 47(1), 186–198. Hamano, Y., Zeisberg, M., Sugimoto, H., Lively, J.C., Maeshima, Y., Yang, C., Hynes, R.O., Werb, Z., Sudhakar, A., and Kalluri, R. (2003). Physiological levels of tumstatin, a fragment of collagen IV alpha3 chain, are generated by MMP-9 proteolysis and suppress angiogenesis via alphaV beta3 integrin. Cancer cell, 3, 589-601. Hellemans, K., Michalik, L., Dittie, A., Knorr, A., Rombouts, K., De Jong, J., Heirman, C., Quartier, E., Schuit, F., Wahli, W., et al. (2003). Peroxisome proliferator-activated receptor-beta signaling contributes to enhanced proliferation of hepatic stellate cells. Gastroenterology, 124, 184-201. Itagaki, H., Shimizu, K., Morikawa, S., Ogawa, K., and Ezaki, T. (2013). Morphological and functional characterization of non-alcoholic fatty liver disease induced by a methionine-choline-deficient diet in C57BL/6 mice. International journal of clinical and experimental pathology, 6, 2683-2696. Iimuro, Y., and Brenner, D.A. (2008). Matrix metalloproteinase gene delivery for liver fibrosis. Pharmaceutical research, 25, 249-258. Kang, L., Mayes, W. H., James, F. D., Bracy, D. P., Wasserman, D. H. (2014). Matrix metalloproteinase 9 opposes diet-induced muscle insulin resistance in mice. Diabetologia, 57(3), 603–613. Kim, L. B., Russkih, G. S., Putyatina, A. N., Tsypysheva, O. B. (2018). Advances in gerontology, 31(2), 223–230. Kobayashi, T., Kim, H., Liu, X., Sugiura, H., Kohyama, T., Fang, Q., Wen, F.Q., Abe, S., Wang, X., Atkinson, J.J., et al. (2014). Matrix metalloproteinase-9 activates TGF-beta and stimulates fibroblast contraction of collagen gels. American journal of physiology Lung cellular and molecular physiology, 306, L1006-1015. Komosinska-Vassev, K., Olczyk, P., Winsz-Szczotka, K., Kuznik-Trocha, K., Klimek, K., Olczyk, K. (2011). Age- and gender-dependent changes in connective tissue remodeling: physiological differences in circulating MMP-3, MMP-10, TIMP-1 and TIMP-2 level. Gerontology, 57(1), 44–52. Kurzepa, J., Mądro, A., Czechowska, G., Kurzepa, J., Celiński, K., Kazmierak, W., Slomka, M. (2014). Role of MMP-2 and MMP-9 and their natural inhibitors in liver fibrosis, chronic pancreatitis and non-specific inflammatory bowel diseases. Hepatobiliary pancreatic diseases international, 13(6), 570–579. Lauer-Fields, J.L., Whitehead, J.K., Li, S., Hammer, R.P., Brew, K., and Fields, G.B. (2008). Selective modulation of matrix metalloproteinase 9 (MMP-9) functions via exosite inhibition. The Journal of biological chemistry, 283, 20087-20095. Li, J., Wu, H., Liu, Y., Yang, L. (2020). High fat diet induced obesity model using four strainsof mice: Kunming, C57BL/6, BALB/c and ICR. Experimental animals, 69(3), 326–335. MacArthur, J.M., Bishop, J.R., Standford, K.I., Wang, L., Bensadoun, A., Witztum, J.L. and Esko, J.D. (2007). Liver heparan sulfate proteoglycans mediate clearance of triglyceride-rich lipoproteins independently of LDL receptor family members. The journal of clinical investigation, 117: 153-164. Mantuano, E., Inoue, G., Li, X., Takahashi, K., Gaultier, A., Gonias, S.L., and Campana, W.M. (2008). The hemopexin domain of matrix metalloproteinase-9 activates cell signaling and promotes migration of schwann cells by binding to low-density lipoprotein receptor-related protein. The Journal of neuroscience, 28, 11571-11582. Meissburger, B., Stachorski, L., Roder, E., Rudofsky, G., and Wolfrum, C. (2011). Tissue inhibitor of matrix metalloproteinase 1 (TIMP1) controls adipogenesis in obesity in mice and in humans. Diabetologia 54, 1468-1479. Milutinović, D. V., Brkljačić, J., Teofilović, A., Bursać, B., Nikolić, M., Gligorovska, L., Kovačević, S., Djordjevic, A., Preitner, F., Tappy, L., Matić, G., Veličković, N. (2020). Chronic Stress Potentiates High Fructose-Induced Lipogenesis in Rat Liver and Kidney. Molecular nutrition food research, 64(13), e1901141. Oliveira, L. S., Santos, D. A., Barbosa-da-Silva, S., Mandarim-de-Lacerda, C. A., Aguila, M. B. (2014). The inflammatory profile and liver damage of a sucrose-rich diet in mice. The Journal of nutritional biochemistry, 25(2), 193–200. Pouw, A. E., Greiner, M. A., Coussa, R. G., Jiao, C., Han, I. C., Skeie, J. M., Fingert, J. H., Mullins, R. F., Sohn, E. H. (2021). Cell-Matrix Interactions in the Eye: From Cornea to Choroid. Cells, 10(3), 687. https://doi.org/10.3390/cells10030687 Rahajeng R. (2018). The increased of MMP-9 and MMP-2 with the decreased of TIMP-1 on the uterosacral ligament after childbirth. The Pan African medical journal, 30, 283. Redondo-Munoz, J., Ugarte-Berzal, E., Garcia-Marco, J.A., del Cerro, M.H., Van den Steen, P.E., Opdenakker, G., Terol, M.J., and Garcia-Pardo, A. (2008). Alpha4beta1 integrin and 190-kDa CD44v constitute a cell surface docking complex for gelatinase B/MMP-9 in chronic leukemic but not in normal B cells. Blood, 112, 169-178. Redondo-Munoz, J., Ugarte-Berzal, E., Terol, M.J., Van den Steen, P.E., Hernandez del Cerro, M., Roderfeld, M., Roeb, E., Opdenakker, G., Garcia-Marco, J.A., and Garcia-Pardo, A. (2010). Matrix metalloproteinase-9 promotes chronic lymphocytic leukemia b cell survival through its hemopexin domain. Cancer cell, 17, 160-172. Rosell, A., Cuadrado, E., Ortega-Aznar, A., Hernández-Guillamon, M., Lo, E. H., Montaner, J. (2008). MMP-9-positive neutrophil infiltration is associated to blood-brain barrier breakdown and basal lamina type IV collagen degradation during hemorrhagic transformation after human ischemic stroke. Stroke, 39(4), 1121–1126. Williams, K.H., Shackel, N.A., Gorrell, M.D., McLennan, S.V., and Twigg, S.M. (2013). Diabetes and nonalcoholic Fatty liver disease: a pathogenic duo. Endocrine Reviews, 34, 84-129. Sarrazin, S., Lamanna, W. C., Esko, J. D. (2011). Heparan sulfate proteoglycans. Cold Spring Harbor perspectives in biology, 3(7), a004952. Shimada, M., Hashimoto, E., Taniai, M., Hasegawa, K., Okuda, H., Hayashi, N., Takasaki, K., and Ludwig, J. (2002). Hepatocellular carcinoma in patients with non-alcoholic steatohepatitis. Journal of Hepatology, 37, 154-160. Stanford, K.I., Bishop, J.R., Foley, E.M., Gonzales, J.C., Niesman, I.R., Witztum, J.L., and Esko, J.D. (2009). Syndecan-1 is the primary heparan sulfate proteoglycan mediating hepatic clearance of triglyceride-rich lipoproteins in mice. Journal of clinical investigation, 119, 3236-3245. Steffensen, B., Wallon, U.M., and Overall, C.M. (1995). Extracellular matrix binding properties of recombinant fibronectin type II-like modules of human 72-kDa gelatinase/type IV collagenase. High affinity binding to native type I collagen but not native type IV collagen. The Journal of biological chemistry, 270, 11555-11566. Sternlicht, M.D., and Werb, Z. (2001). How matrix metalloproteinases regulate cell behavior. Annual review of cell and developmental biology, 17, 463-516. Tanaka, S., Hikita, H., Tatsumi, T., Sakamori, R., Nozaki, Y., Sakane, S., Shiode, Y., Nakabori, T., Saito, Y., Hiramatsu, N., Tabata, K., Kawabata, T., Hamasaki, M., Eguchi, H., Nagano, H., Yoshimori, T., Takehara, T. (2016). Rubicon inhibits autophagy and accelerates hepatocyte apoptosis and lipid accumulation in nonalcoholic fatty liver disease in mice. Hepatology, 64(6), 1994–2014. Tandra, S., Yeh, M. M., Brunt, E. M., Vuppalanchi, R., Cummings, O. W., Ünalp-Arida, A., Wilson, L. A., Chalasani, N. (2011). Presence and significance of microvesicular steatosis in nonalcoholic fatty liver disease. Journal of hepatology, 55(3), 654–659. Van den Steen, P.E., Dubois, B., Nelissen, I., Rudd, P.M., Dwek, R.A., and Opdenakker, G. (2002). Biochemistry and molecular biology of gelatinase B or matrix metalloproteinase-9 (MMP-9). Critical reviews in biochemistry and molecular biology, 37, 375-536. Vandooren, J., Geurts, N., Martens, E., Van den Steen, P.E., Jonghe, S.D., Herdewijn, P., and Opdenakker, G. (2011). Gelatin degradation assay reveals MMP-9 inhibitors and function of O-glycosylated domain. World journal of biological chemistry, 2, 14-24. Vandooren, J., Van den Steen, P. E., Opdenakker, G. (2013). Biochemistry and molecular biology of gelatinase B or matrix metalloproteinase-9 (MMP-9): the next decade. Critical reviews in biochemistry and molecular biology, 48(3), 222–272. Wada, T., Miyashita, Y., Sasaki, M., Aruga, Y., Nakamura, Y., Ishii, Y., Sasahara, M., Kanasaki, K., Kitada, M., Koya, D., Shimano, H., Tsuneki, H., Sasaoka, T. (2013). Eplerenone ameliorates the phenotypes of metabolic syndrome with NASH in liver-specific SREBP-1c Tg mice fed high-fat and high-fructose diet. American journal of physiology. Endocrinology and metabolism, 305(11), E1415–E1425. Wang, M.-E., Chen, Y.-C., Chen, I.S., Hsieh, S.-C., Chen, S.-S., and Chiu, C.-H. (2012). Curcumin protects against thioacetamide-induced hepatic fibrosis by attenuating the inflammatory response and inducing apoptosis of damaged hepatocytes. The Journal of nutritional biochemistry, 23, 1352-1366. Wang, M. E., Singh, B. K., Hsu, M. C., Huang, C., Yen, P. M., Wu, L. S., Jong, D. S., Chiu, C. H. (2017). Increasing Dietary Medium-Chain Fatty Acid Ratio Mitigates High-fat Diet-Induced Non-Alcoholic Steatohepatitis by Regulating Autophagy. Scientific reports, 7(1), 13999. Wang, W., Yang, C., Wang, X. Y., Zhou, L. Y., Lao, G. J., Liu, D., Wang, C., Hu, M. D., Zeng, T. T., Yan, L., Ren, M. (2018). MicroRNA-129 and -335 Promote Diabetic Wound Healing by Inhibiting Sp1-Mediated MMP-9 Expression. Diabetes, 67(8), 1627–1638. Wu, Y. S., Lin, Y. L., Huang, C., Chiu, C. H., Nakthong, S., Chen, Y. C. (2020). Cardiac protection of functional chicken-liver hydrolysates on the high-fat diet induced cardio-renal damages via sustaining autophagy homeostasis. Journal of the science of food and agriculture, 100(6), 2443–2452. Yang, S., Wang, L., Pan, W., Bayer, W., Thoens, C., Heim, K., Dittmer, U., Timm, J., Wang, Q., Yu, Q., Luo, J., Liu, Y., Hofmann, M., Thimme, R., Zhang, X., Chen, H., Wang, H., Feng, X., Yang, X., Lu, Y., … Liu, J. (2019). MMP2/MMP9-mediated CD100 shedding is crucial for inducing intrahepatic anti-HBV CD8 T cell responses and HBV clearance. Journal of hepatology, 71(4), 685–698. Younossi, Z.M., Koenig, A.B., Abdelatif, D., Fazel, Y., Henry, L., and Wymer, M. (2016). Global epidemiology of nonalcoholic fatty liver disease-Meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology, 64, 73-84. Yamauchi, K., Yamauchi, T., Mantuano, E., Murakami, K., Henry, K., Takahashi, K., and Campana, W.M. (2013). Low-density lipoprotein receptor related protein-1 (LRP1)-dependent cell signaling promotes neurotrophic activity in embryonic sensory neurons. PloS one, 8, e75497. Yoon, C., Van Niekerk, E.A., Henry, K., Ishikawa, T., Orita, S., Tuszynski, M.H., and Campana, W.M. (2013). Low-density lipoprotein receptor-related protein 1 (LRP1)-dependent cell signaling promotes axonal regeneration. The journal of biological chemistry, 288, 26557-26568. Yu, Q., and Stamenkovic, I. (2000). Cell surface-localized matrix metalloproteinase-9 proteolytically activates TGF-beta and promotes tumor invasion and angiogenesis. Genes development, 14, 163-176. Zeng, X., Zhu, M., Liu, X., Chen, X., Yuan, Y., Li, L., Liu, J., Lu, Y., Cheng, J., Chen, Y. (2020). Oleic acid ameliorates palmitic acid induced hepatocellular lipotoxicity by inhibition of ER stress and pyroptosis. Nutrition metabolism, 17, 11.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81816-
dc.description.abstract非酒精性脂肪肝病(non-alcoholic fatty liver disease,NAFLD)已在過去數十年間逐漸變成最普遍的慢性肝臟疾病。然而,由於慢性肝臟疾病多為多因子複合型,非酒精性脂肪肝病作為單純排除性的病程集合名詞已不適恰,現以代謝功能障礙相關脂肪肝疾病(metabolic dysfunction-associated fatty liver disease,MAFLD)。單純肝臟脂質浸潤在病程中是可逆的,但若缺乏適當的控制,則可能會惡化至不可逆的肝硬化及肝癌階段。雖然肝臟脂質浸潤的詳細致病機制目前仍未詳盡,然先前有臨床報告顯示,血漿中基質金屬蛋白酶第九型(matrix metalloproteinase 9,MMP-9)的濃度在非酒精性脂肪肝炎病患中顯著較高,此現象顯示MMP-9在MAFLD病程進展中可能扮演重要的角色。MMP-9是一具有降解胞外基質能力之蛋白質,能夠調節胞外基質的恆定。在MMP-9眾多標的的截切受質中,Syndecan-1,一種硫酸乙酰肝素蛋白聚醣 (heparan sulfate proteoglycans) ,已在先前研究中被發現能透過調控肝臟中富含三酸甘油酯脂蛋白(TG-rich lipoproteins,TRLs)的清除作用,參與血脂恆定的調節。當Syndecan-1的胞外部分 (ectodomain) 被截切時,會降低肝臟攝入血液中的TRLs,可能因此造成肝臟脂質浸潤的程度下降。 為了更了解MAFLD發展中的生理調節,我們持續餵飼小鼠高脂飼糧8、16及24週並評估其代謝相關表現及肝臟組織的分子活動。結果顯示,隨著餵飼高脂飼糧的時間增加,小鼠體重、肝重比、肝損傷、血中胰島素、血總膽固醇及肝臟中MMP-9活性均顯著增加,而基質金屬蛋白酶組織抑制劑第一型(tissue inhibitor of metalloproteinase 1,TIMP-1)蛋白表現量則顯著下降。高脂飼糧餵飼下,小鼠肝臟中完整的Syndecan-1蛋白表現量下降,而被截切後的Syndecan-1表現量則顯著增加。這部份結果符合我們的假說,即初步證明MMP-9生理活性的增加會截切肝細胞表面Syndecan-1的胞外部分以降低TRLs的持續攝入。而為了進一步釐清MMP-9在MAFLD進程中扮演的角色,我們餵飼野生型及MMP-9基因剔除小鼠高脂飼糧 16週。結果顯示MMP-9 基因剔除小鼠在餵飼高脂飼糧後有顯著增加的三酸甘油脂堆積於肝臟中,組織切片以及油紅染色結果也顯示,餵飼高脂飼糧後,MMP-9基因剔除小鼠的肝臟中堆積較大顆的油滴。在MMP-9缺失小鼠中,除了肝臟中TIMP-1蛋白表現顯著增加,高脂飼糧亦無法激活肝臟中MMP-9活性。此外,血液生化值的結果顯示MMP-9缺失可能對小鼠的肝臟有保護效果。 我們也設計一系列細胞試驗,以釐清MMP-9如何調控肝細胞的脂質堆積。首先我們以脂肪酸誘導肝細胞株FL83B 及Hepa1-6產生脂質堆積。接著利用shRNA及專一性的MMP-9抑制劑以模擬活體中MMP-9缺失的環境。結果顯示MMP-9活性被抑制會增加脂肪酸誘導的肝臟脂質堆積。此外,Syndecan-1被截切的狀況也在脂肪酸誘導的肝細胞中被進一步證明。最後我們添加PMA以刺激肝細胞外的MMP-9活性增加,試圖回復MMP-9活性缺失所造成的肝細胞脂質堆積增加。結果顯示PMA所誘導的MMP-9活性增加可以降低肝細胞中被shMMP-9所增加的脂質堆積。除了脂肪酸誘導的脂質堆積模型,我們也添加TRLs以直接地評估肝細胞與其結合並吸收的能力。結果顯示抑制MMP-9活性可以顯著地回復被PMA所抑制的TRLs結合及吸收能力。 總結來說,此研究中清楚地證明MMP-9會透過截切肝細胞膜上Syndecan-1而達到減緩肝臟脂質堆積的功能,且其活性與TIMP-1表現量之消長可能在MAFLD的早期發展中扮演重要角色。我們認為此研究提供了MAFLD早期發展的分子機轉相當新穎的觀點,並且期待此研究能作為開發MAFLD臨床治療方法的基石。zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-25T03:04:16Z (GMT). No. of bitstreams: 1
U0001-3007202112225600.pdf: 43184364 bytes, checksum: 05e384952cb9a43c56e85e2f8dddcb24 (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents口試委員會審定書……………………………………………………………………... i 致謝 ………………………………………………………………………………...…. ii 中文摘要 …………………………………………………………………………....... iii Abstract ………………………………………………………………………...…….… v Contents ………………………………………..………………………….................. viii Figure Index ……………………………………………………..………………..…..... x Table Index ……………………………………………………………………..…...... xiii Chapter 1. Introduction 1.1 Non-alcoholic fatty liver disease (NAFLD) …………………………………..… 1 1.2 Metabolic dysfunction-associated fatty liver disease (MAFLD)………………… 3 1.3 The potential roles of MMP-9 in NAFLD ………………………………...……... 5 1.4 Matrix metalloproteinase-9 (MMP-9) ………………………………….……..…. 6 1.5 Hepatic Syndecan-1 mediates lipoprotein metabolism …………………………. 10 1.6 Specific aims of this study…………………………………………………......... 12 Chapter 2. Materials and Methods ……………………………………………..…... 13 Chapter 3. The physiological regulation of MMP-9 in MAFLD in mice 3.1 The time-course effects of high-fat diet on MAFLD development in mice....…... 29 3.2 MMP-9 knockout changed HFD-induced MAFLD in mice ……………...…….. 40 Chapter 4. The molecular mechanisms of MMP-9 regulated lipid accumulation… 59 Chapter 5. Discussion………………………………………………………………… 78 Reference …………………………………………………………….………….......... 88 Curriculum Vitae of author ………………………………………….……………. 100 Full-length article of published papers …………………………………………… 103
dc.language.isoen
dc.subjectSyndecan-1zh_TW
dc.subject基質金屬蛋白酶組織抑制劑第一型zh_TW
dc.subject基質金屬蛋白酶第九型zh_TW
dc.subject代謝功能障礙相關脂肪肝疾病zh_TW
dc.subject非酒精性脂肪肝病zh_TW
dc.subject富含三酸甘油酯脂蛋白zh_TW
dc.subject肝臟脂質堆積zh_TW
dc.subjectLipid accumulationen
dc.subjectTG-rich lipoproteinen
dc.subjectNon-alcoholic fatty liver diseaseen
dc.subjectSyndecan-1en
dc.subjectTissue inhibitor of metalloproteinase-1en
dc.subjectMatrix metalloproteinase-9en
dc.subjectMetabolic dysfunction-associated fatty liver diseaseen
dc.title基質金屬蛋白酶第九型在代謝功能障礙相關脂肪肝疾病之生理調控與分子機制zh_TW
dc.titleThe Physiological Regulation and Molecular Mechanisms of Matrix Metalloproteinase-9 in Metabolic Dysfunction-Associated Fatty Liver Diseaseen
dc.date.schoolyear109-2
dc.description.degree博士
dc.contributor.coadvisor江逸凡(Yi-Fan Jiang)
dc.contributor.oralexamcommittee鍾德憲(Hsin-Tsai Liu),吳兩新(Chih-Yang Tseng),陳億乘,黃啟彰,黃惠君,徐慶琳
dc.subject.keyword非酒精性脂肪肝病,代謝功能障礙相關脂肪肝疾病,基質金屬蛋白酶第九型,基質金屬蛋白酶組織抑制劑第一型,Syndecan-1,富含三酸甘油酯脂蛋白,肝臟脂質堆積,zh_TW
dc.subject.keywordNon-alcoholic fatty liver disease,Metabolic dysfunction-associated fatty liver disease,Matrix metalloproteinase-9,Tissue inhibitor of metalloproteinase-1,Syndecan-1,TG-rich lipoprotein,Lipid accumulation,en
dc.relation.page149
dc.identifier.doi10.6342/NTU202101926
dc.rights.note同意授權(全球公開)
dc.date.accepted2021-08-02
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept動物科學技術學研究所zh_TW
dc.date.embargo-lift2023-07-31-
顯示於系所單位:動物科學技術學系

文件中的檔案:
檔案 大小格式 
U0001-3007202112225600.pdf42.17 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved